

Outer Billiards in the Spaces of Oriented Geodesics of the Three Dimensional Space Forms

Marcos Salvai

FAMAF, National University of Córdoba, Argentina

Let M_κ be the three-dimensional space form of constant curvature $\kappa = 0, 1, -1$, that is, Euclidean space \mathbf{R}^3 , the sphere S^3 , or hyperbolic space H^3 . Let S be a smooth, closed, strictly convex surface in M_κ . We define an outer billiard map B on the four dimensional space \mathcal{G}_κ of oriented complete geodesics of M_κ , for which the billiard table is the subset of \mathcal{G}_κ consisting of all oriented geodesics not intersecting S . We show that B is a diffeomorphism when S is quadratically convex.

For $\kappa = 1, -1$, \mathcal{G}_κ has a Kähler structure associated with the Killing form of $\text{Iso}(M_\kappa)$. We prove that B is a symplectomorphism with respect to its fundamental form and that B can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in \mathbf{R}^{2n} defined in terms of the standard symplectic structure. We show that B does not preserve the fundamental symplectic form on \mathcal{G}_κ associated with the cross product on M_κ , for $\kappa = 0, 1, -1$.

We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points. This is a joint work with Yamile Godoy and Michael Harrison.