
Quantum Groups and Stochastic Models

Stochastic reaction-diffusion processes are of both

theoretical and experimental interest not only

because they describe various mechanisms in

physics and chemistry but they also provide a

way of modelling phenomena like traffic flow,

kinetics of biopolimerization, interface growth.

A stochastic process is described in terms of a

master equation for the probability distribution

P (si, t) of a stochastic variable si = 0,1,2...., n−
1 at a site i = 1,2, ....L of a linear chain. A state

on the lattice at a time t is determined by the oc-

cupation numbers si and a transition to another

configuration s′i during an infinitesimal time step

dt is given by the probability Γ(s, s′)dt. The rates

Γ ≡ Γik
jl are assumed to be independent from the

position in the bulk. At the boundaries, i.e. sites
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1 and L additional processes can take place with

rates L and R. Due to probability conservation

Γ(s, s) = −
∑

s′ 6=s

Γ(s′, s) (1)

The master equation for the time evolution of

a stochastic system

dP (s, t)

dt
=

∑

s′
Γ(s, s′)P (s′, t) (2)

is mapped to a Schroedinger equation for a

quantum Hamiltonian in imaginary time

dP (t)

dt
= −HP (t) (3)

where

H =
∑

j

Hj,j+1 + H(L) + H(R) (4)

The ground state of this in general non-hermitean

Hamiltonian corresponds to the stationary prob-

ability distribution of the stochastic dynamics.

The mapping provides a connection with inte-

grable quantum spin chains.



Examples - particles hop between lattice sites i,

j with rates gij with a hard core repulsion (i.e.

a site is emty or occupied by one particle)

1. The symmetric exclusion process - gij = gji.

The stochastic Hamiltonian is the SU(2) sym-

metric spin 1/2 isotropic Heisenberg ferromag-

net

H = −1

2

∑

i

(σx
i σx

j + σ
y
i σ

y
j + σz

i σz
j − 1) (5)

The SU(2) symmetry, yet unrevealed in the

original master equation becomes manifest through

the mapping and allows for exact results of the

stochastic dynamics.

2. The ASEP - a diffusion driven lattice gas of

particles with rates
gi,i+1
gi+1,i

= q 6= 1 is mapped to

a SUq(2)-symmetric XXZ chain with anizotropy

∆ = (q+q−1)
2 .



MATRIX PRODUCT GROUND STATES AP-

PROACH

The stationary probability distribution, i.e. the

ground state of the quantum Hamiltonian is ex-

pressed as a product of (or a trace over) matri-

ces that form representation of a quadratic alge-

bra determined by the dynamics of the process.

(Derrida et. al.- ASEP with open boundaries;

3-species diffusion-type, reaction-diffusion pro-

cesses)

ANZATZ

Any zero energy eigenstate of a Hamiltonian

with nearest neighbour interaction in the bulk

and single site boundary terms can be written

as a matrix product state with respect to a

quadratic algebra

Γik
jlDiDk = xlDj − xjDl

DIFFUSION - Γik
ki = gik



Consider n species diffusion process on a chain

with L sites with nearest-neighbour interaction

with exclusion, on successive sites the particles

i and k exchange places with probability gikdt;

particles number ni in the bulk is conserved

n−1∑

i=0

ni = L (6)

Open systems with boundary processes - at site

1 (left) and at site L (right) the particle i is

replaced by the particle k with probabilities Li
kdt

and Ri
kdt respectively.

Li
i = −

L−1∑

j=0

Li
j, Ri

i = −
L−1∑

j=0

Ri
j (7)

DIFFUSION ALGEBRA

gikDiDk − gkiDkDi = xkDi − xiDk (8)

where i, k = 0,1, ...n− 1 and xi are c-numbers

n−1∑

i=0

xi = 0



This is an algebra with INVOLUTION, hence
hermitean Di

Di = D+
i , g+

ik = −gki xi = x+
i (9)

(or Di = −D+
i , if gik = g+

ki).

PROBABILITY DISTRIBUTION:

- periodic boundary conditions

P (s1, ....sL) = Tr(Ds1Ds2...DsL) (10)

-boundary processes

P (s1, ....sL) =< w|Ds1Ds2...DsL|v > (11)

the vectors |v > and < w| are defined by

< w|(Lk
i Dk + xi) = 0, (Rk

i Dk − xi)|v >= 0
(12)

THUS to find the stationary probability distri-
bution one has to compute traces or matrix ele-
ments with respect to the vectors |v > and < w|
of monomials of the form

D
m1
s1 D

m2
s2 .....D

mL
sL (13)



The problem to be solved is twofold - Find a

representation of the matrices D that is a so-

lution of the quadratic algebra and match the

algebraic solution with the boundary conditions.

The relations (8) allow an ordering of the el-

ements Dk. Monomials of given order are the

Poincare- Birkhoff-Witt (PBW) basis for poly-

nomials of fixed degree as the probability dis-

tribution is due to the conservation laws (6).

Consider the associative algebra generated by

an unit e and n elements Dk obeying n(n− 1)/2

relations (8). The alphabetically ordered mono-

mials

D
n1
s1 D

n2
s2 ....D

nl
sl

, (14)

where s1 < s2 < ....sl, l ≥ 1 and n1, n2, ....nl are

non-negative integers, are a linear basis in the

algebra, the PBW basis.



BRAID ASSOCIATIVITY - coincidence of two

different ways of ordering which is sufficient to

verify for cubic monomials only with the corre-

sponding relations for the rates.

PROPOSITION:

1. In the case of Lie-algebra type diffusion alge-

bras the n generators Di, and e can be mapped

to the generators Jjk of GL(n) and the mapping

is invertible. The UEA generated by Di belongs

to the UEA of the Lie-algebra of GL(n).

2. The multiparameter quantized noncommu-

tative space can be realized equivalently as a

q-deformed Heisenberg algebra of n oscillators

depending on n(n − 1)/2 + 1 parameters (or in

general on n(n − 1)/2 + n parameters ). The

UEA of the elements Di in the case of a diffu-

sion algebra with all coefficients xi on the RHS

of eq.(8) equal to zero belongs to the UEA of a



multiparameter deformed Heisenberg algebra to

which a consistent multiparameter GLq(n) quan-

tization corresponds.

3. In an algebra with x-terms on the RHS of (8)

only then is braid associativity satisfied if out of

the cofficients xi, xk, xl corresponding to a triple

DiDkDl either one coefficient x is zero or two

coefficients x are zero and the rates are respec-

tively related. The diffusion algebras in this case

can be obtained by either a change of basis in

the n-dimensional noncommutative space or by

a suitable change of basis of the lower dimen-

sional quantum space. The appearence of the

nonzero linear terms in the RHS of the quan-

tum plane relations leads to a lower dimensional

noncommutative space and a reduction of the

GLq(n) invariance.

NOTE - the diffusion algebra has always the

one- dimensional representations with the cor-

responding relations for the rates.



Representations of the diffusion algebras

A. Lie-algebra types

1. All rates equal, gij = gji = g
The algebra after rescaling the generators Di, i =
0,1,2, ...n− 1 by

Di =
xi

g
D′

i,
n−1∑

i=1

xi = 0 (15)

takes the form

[D0, D1] = D0 −D1 (16)

[D0, D2] = D0 −D2
...

[Dn−2, Dn−1] = Dn−2 −Dn−1

These algebraic relations are solved in terms of
the GL(n) Lie-algebra generators J

j
i :

D0 = J0
0 + J1

0 + J2
0 + ... + Jn−1

0 (17)

D1 = J0
1 + J1

1 + J2
1 + ... + Jn−1

1
D2 = J0

2 + J1
2 + J2

2 + ... + Jn−1
2

...

Dn−1 = J0
n−1 + J1

n−1 + J2
n−1 + ...Jn−1

n−1



The conventional basis for fundamental repre-

sentation of the GL(n) generators given by the

(eij)ab = δiaδjb, i, j, a, b = 0,1,2...n − 1 provides

the n-dimensional matrix representation of the

generators D, with entries 1 in only the first row

of D0, the second row of D1, the third row of

D3,...the last row of Dn−1 and all the entries

elsewhere zero. The correspondence is one-to-

one since

J
j
i =

1

n
DiD

T
j (18)

The Poincare-Birkhoff-Witt basis of the alge-

bra generated by the elements D is a subsystem

of the basis of the universal enveloping algebra

of sl(n)⊕u(1) which is the hidden symmetry al-

gebra of a stochastic diffusion system with all

rates equal.

1.1. Algebra and Boundary Problem for n = 2

and n = 3



The algebra [D0, D1] = D0 −D1, is solved by

D0 = J0
0 + J1

0 D1 = J0
1 + J1

1
The boundary vectors are determined by the

conditions

< w|(L0
1D0 − L1

0D1 + x1) = 0 (19)

(−R0
1D0 + R1

0D1 − x0)|v >= 0 (20)

with x0 + x1 = 0. The boundary matrices are

simultaneously diagonalized with the constraints

L0
1 + L1

0 = g, R1
0 + R0

1 = −g, (21)

CONTRADICTION - all the rates are probabil-

ity rates and have to be POSITIVE. There is an

algebraic solution consistent with the boundary

conditions, namely

D0 =
x0

g
((1 + α)J0

0 + J1
0 + αJ1

1) (22)

D1 =
x1

g
(αJ0

0 + J0
1 + (1 + α)J1

1)

It introduces an additional arbitrary parameter

and this is the price to be paid to match the

algebra with the boundary vectors which hence



determines a Fock representation of the diffu-
sion algebra with a constraint for the rates

g(L1
0+L0

1+R1
0+R0

1) = (L1
0+L0

1)(R
1
0+R0

1) (23)

Unlike the n = 2 problem the expressions for the
n = 3 D-matrices

D0 =
x0

g
(J0

0 + J1
0 + J2

0) (24)

D1 =
x1

g
(J0

1 + J1
1 + J2

1)

D2 =
x2

g
(J0

2 + J1
2 + J2

2)

that solve the diffusion algebra yield a consis-
tent solution for the boundary vectors. The lat-
ter are in this case determined by the systems

< w((−L0
1 − L0

2)D0 + L1
0D1 + L2

0D2 + x0)) = 0

< w(L0
1D0 + (−L1

0 − L1
2)D1 + L2

1D2 + x1) = 0

< w(L0
2D0 + L1

2D1 + (−L2
0 − L2

1)D2 + x2) = 0

and

(−R0
1 −R0

2)D0 + R1
0D1 + R2

0D2 − x0)v >= 0



(R0
1D0 + (−R1

0 −R1
2)D1 + R2

1D2 − x1)v >= 0

(R0
2D0 + R1

2D1 + (−R2
0 −R2

1)D2 − x2)v >= 0

with x0 +x1 +x2 = 0 The parameters x provide

a matching condition for a common eigenvalue

zero of the left and right transition matrices with

the corresponding left and right boundary vec-

tors and constraints on the boundary rates

R1
0L2

0 + L1
0R2

0 + (L0
1 + L0

2)(R
1
0 + R2

0) +

(R0
1 + R0

2)(L
1
0 + L2

0) = g(L1
0 − L2

0 + R1
0 −R2

0)

(R1
0 + R1

2)L
2
1 − (L1

0 + L1
2)R

2
1 + R0

1(L
1
0 + L1

2 + L2
1)−

L0
1(R

2
1 + R1

0 + R1
2) = g(L0

1 − L2
1 + R0

1 − L2
1)

The generalisation of these representations to

general n is straightforward.

A realisation

Jik = A+
i Ak (25)

yields a representation of the elements D and

the the boundary vectors in the oscillator basis.


