Quantum Groups and Stochastic Models

Stochastic reaction-diffusion processes are of both theoretical and experimental interest not only because they describe various mechanisms in physics and chemistry but they also provide a way of modelling phenomena like traffic flow, kinetics of biopolimerization, interface growth.

A stochastic process is described in terms of a master equation for the probability distribution $P\left(s_{i}, t\right)$ of a stochastic variable $s_{i}=0,1,2 \ldots, n-$ 1 at a site $i=1,2, \ldots . L$ of a linear chain. A state on the lattice at a time t is determined by the occupation numbers s_{i} and a transition to another configuration s_{i}^{\prime} during an infinitesimal time step $d t$ is given by the probability $\Gamma\left(s, s^{\prime}\right) d t$. The rates $\Gamma \equiv \Gamma_{j l}^{i k}$ are assumed to be independent from the position in the bulk. At the boundaries, i.e. sites

1 and L additional processes can take place with rates L and R. Due to probability conservation

$$
\begin{equation*}
\left\ulcorner(s, s)=-\sum_{s^{\prime} \neq s} \Gamma\left(s^{\prime}, s\right)\right. \tag{1}
\end{equation*}
$$

The master equation for the time evolution of a stochastic system

$$
\begin{equation*}
\frac{d P(s, t)}{d t}=\sum_{s^{\prime}}\left\ulcorner\left(s, s^{\prime}\right) P\left(s^{\prime}, t\right)\right. \tag{2}
\end{equation*}
$$

is mapped to a Schroedinger equation for a quantum Hamiltonian in imaginary time

$$
\begin{equation*}
\frac{d P(t)}{d t}=-H P(t) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\sum_{j} H_{j, j+1}+H^{(L)}+H^{(R)} \tag{4}
\end{equation*}
$$

The ground state of this in general non-hermitean Hamiltonian corresponds to the stationary probability distribution of the stochastic dynamics. The mapping provides a connection with integrable quantum spin chains.

Examples - particles hop between lattice sites i, j with rates $g_{i j}$ with a hard core repulsion (i.e. a site is emty or occupied by one particle)

1. The symmetric exclusion process $-g_{i j}=g_{j i}$. The stochastic Hamiltonian is the $S U(2)$ symmetric spin $1 / 2$ isotropic Heisenberg ferromagnet

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i}\left(\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}+\sigma_{i}^{z} \sigma_{j}^{z}-1\right) \tag{5}
\end{equation*}
$$

The $S U(2)$ symmetry, yet unrevealed in the original master equation becomes manifest through the mapping and allows for exact results of the stochastic dynamics.
2. The ASEP - a diffusion driven lattice gas of particles with rates $\frac{g_{i, i+1}}{g_{i+1, i}}=q \neq 1$ is mapped to a $S U_{q}(2)$-symmetric $X X Z$ chain with anizotropy $\Delta=\frac{\left(q+q^{-1}\right)}{2}$.

MATRIX PRODUCT GROUND STATES APPROACH
The stationary probability distribution, i.e. the ground state of the quantum Hamiltonian is expressed as a product of (or a trace over) matrices that form representation of a quadratic algebra determined by the dynamics of the process. (Derrida et. al.- ASEP with open boundaries; 3-species diffusion-type, reaction-diffusion processes)

ANZATZ

Any zero energy eigenstate of a Hamiltonian with nearest neighbour interaction in the bulk and single site boundary terms can be written as a matrix product state with respect to a quadratic algebra

$$
\Gamma_{j l}^{i k} D_{i} D_{k}=x_{l} D_{j}-x_{j} D_{l}
$$

DIFFUSION $-\Gamma_{k i}^{i k}=g_{i k}$

Consider n species diffusion process on a chain with L sites with nearest-neighbour interaction with exclusion, on successive sites the particles i and k exchange places with probability $g_{i k} \mathrm{dt}$; particles number n_{i} in the bulk is conserved

$$
\begin{equation*}
\sum_{i=0}^{n-1} n_{i}=L \tag{6}
\end{equation*}
$$

Open systems with boundary processes - at site 1 (left) and at site L (right) the particle i is replaced by the particle k with probabilities $L_{k}^{i} d t$ and $R_{k}^{i} d t$ respectively.

$$
\begin{equation*}
L_{i}^{i}=-\sum_{j=0}^{L-1} L_{j}^{i}, \quad R_{i}^{i}=-\sum_{j=0}^{L-1} R_{j}^{i} \tag{7}
\end{equation*}
$$

DIFFUSION ALGEBRA

$$
\begin{equation*}
g_{i k} D_{i} D_{k}-g_{k i} D_{k} D_{i}=x_{k} D_{i}-x_{i} D_{k} \tag{8}
\end{equation*}
$$

where $i, k=0,1, \ldots n-1$ and x_{i} are c-numbers

$$
\sum_{i=0}^{n-1} x_{i}=0
$$

This is an algebra with INVOLUTION, hence hermitean D_{i}

$$
\begin{equation*}
D_{i}=D_{i}^{+}, \quad g_{i k}^{+}=-g_{k i} \quad x_{i}=x_{i}^{+} \tag{9}
\end{equation*}
$$

$\left(\right.$ or $D_{i}=-D_{i}^{+}$, if $\left.g_{i k}=g_{k i}^{+}\right)$.

PROBABILITY DISTRIBUTION:

- periodic boundary conditions

$$
\begin{equation*}
P\left(s_{1}, \ldots s_{L}\right)=\operatorname{Tr}\left(D_{s_{1}} D_{s_{2}} \ldots D_{s_{L}}\right) \tag{10}
\end{equation*}
$$

-boundary processes

$$
\begin{equation*}
P\left(s_{1}, \ldots s_{L}\right)=<w\left|D_{s_{1}} D_{s_{2}} \ldots D_{s_{L}}\right| v> \tag{11}
\end{equation*}
$$

the vectors $\mid v>$ and $<w \mid$ are defined by
$<w\left|\left(L_{i}^{k} D_{k}+x_{i}\right)=0, \quad\left(R_{i}^{k} D_{k}-x_{i}\right)\right| v>=0$
(12)

THUS to find the stationary probability distribution one has to compute traces or matrix elements with respect to the vectors $\mid v>$ and $<w \mid$ of monomials of the form

$$
\begin{equation*}
D_{s_{1}}^{m_{1}} D_{s_{2}}^{m_{2}} \ldots . . D_{s_{L}}^{m_{L}} \tag{13}
\end{equation*}
$$

The problem to be solved is twofold - Find a representation of the matrices D that is a solution of the quadratic algebra and match the algebraic solution with the boundary conditions.

The relations (8) allow an ordering of the elements D_{k}. Monomials of given order are the Poincare- Birkhoff-Witt (PBW) basis for polynomials of fixed degree as the probability distribution is due to the conservation laws (6). Consider the associative algebra generated by an unit e and n elements D_{k} obeying $n(n-1) / 2$ relations (8). The alphabetically ordered monomials

$$
\begin{equation*}
D_{s_{1}}^{n_{1}} D_{s_{2}}^{n_{2}} \ldots D_{s_{l}}^{n_{l}}, \tag{14}
\end{equation*}
$$

where $s_{1}<s_{2}<\ldots . s_{l}, l \geq 1$ and $n_{1}, n_{2}, \ldots . n_{l}$ are non-negative integers, are a linear basis in the algebra, the PBW basis.

BRAID ASSOCIATIVITY - coincidence of two different ways of ordering which is sufficient to verify for cubic monomials only with the corresponding relations for the rates.

PROPOSITION:

1. In the case of Lie-algebra type diffusion algebras the n generators D_{i}, and e can be mapped to the generators $J_{j k}$ of $G L(n)$ and the mapping is invertible. The UEA generated by D_{i} belongs to the UEA of the Lie-algebra of $G L(n)$.
2. The multiparameter quantized noncommutative space can be realized equivalently as a q-deformed Heisenberg algebra of n oscillators depending on $n(n-1) / 2+1$ parameters (or in general on $n(n-1) / 2+n$ parameters). The UEA of the elements D_{i} in the case of a diffusion algebra with all coefficients x_{i} on the RHS of eq.(8) equal to zero belongs to the UEA of a
multiparameter deformed Heisenberg algebra to which a consistent multiparameter $G L_{q}(n)$ quantization corresponds.
3. In an algebra with x-terms on the RHS of (8) only then is braid associativity satisfied if out of the cofficients x_{i}, x_{k}, x_{l} corresponding to a triple $D_{i} D_{k} D_{l}$ either one coefficient x is zero or two coefficients x are zero and the rates are respectively related. The diffusion algebras in this case can be obtained by either a change of basis in the n-dimensional noncommutative space or by a suitable change of basis of the lower dimensional quantum space. The appearence of the nonzero linear terms in the RHS of the quantum plane relations leads to a lower dimensional noncommutative space and a reduction of the $G L_{q}(n)$ invariance.

NOTE - the diffusion algebra has always the one- dimensional representations with the corresponding relations for the rates.

Representations of the diffusion algebras
A. Lie-algebra types

1. All rates equal, $g_{i j}=g_{j i}=g$

The algebra after rescaling the generators $D_{i}, i=$ $0,1,2, \ldots n-1$ by

$$
\begin{equation*}
D_{i}=\frac{x_{i}}{g} D_{i}^{\prime}, \quad \sum_{i=1}^{n-1} x_{i}=0 \tag{15}
\end{equation*}
$$

takes the form

$$
\begin{align*}
{\left[D_{0}, D_{1}\right] } & =D_{0}-D_{1} \tag{16}\\
{\left[D_{0}, D_{2}\right] } & =D_{0}-D_{2} \\
& \vdots \\
{\left[D_{n-2}, D_{n-1}\right] } & =D_{n-2}-D_{n-1}
\end{align*}
$$

These algebraic relations are solved in terms of the $G L(n)$ Lie-algebra generators J_{i}^{j} :

$$
\begin{align*}
D_{0} & =J_{0}^{0}+J_{0}^{1}+J_{0}^{2}+\ldots+J_{0}^{n-1} \tag{17}\\
D_{1} & =J_{1}^{0}+J_{1}^{1}+J_{1}^{2}+\ldots+J_{1}^{n-1} \\
D_{2} & =J_{2}^{0}+J_{2}^{1}+J_{2}^{2}+\ldots+J_{2}^{n-1} \\
& \vdots \\
D_{n-1} & =J_{n-1}^{0}+J_{n-1}^{1}+J_{n-1}^{2}+\ldots J_{n-1}^{n-1}
\end{align*}
$$

The conventional basis for fundamental representation of the $G L(n)$ generators given by the $\left(e_{i j}\right)_{a b}=\delta_{i a} \delta_{j b}, i, j, a, b=0,1,2 \ldots n-1$ provides the n-dimensional matrix representation of the generators D, with entries 1 in only the first row of D_{0}, the second row of D_{1}, the third row of D_{3}, \ldots the last row of D_{n-1} and all the entries elsewhere zero. The correspondence is one-toone since

$$
\begin{equation*}
J_{i}^{j}=\frac{1}{n} D_{i} D_{j}^{T} \tag{18}
\end{equation*}
$$

The Poincare-Birkhoff-Witt basis of the algebra generated by the elements D is a subsystem of the basis of the universal enveloping algebra of $s l(n) \oplus u(1)$ which is the hidden symmetry algebra of a stochastic diffusion system with all rates equal.
1.1. Algebra and Boundary Problem for $n=2$ and $n=3$

The algebra $\left[D_{0}, D_{1}\right]=D_{0}-D_{1}$, is solved by
$D_{0}=J_{0}^{0}+J_{0}^{1} \quad D_{1}=J_{1}^{0}+J_{1}^{1}$
The boundary vectors are determined by the conditions

$$
\begin{equation*}
<w \mid\left(L_{1}^{0} D_{0}-L_{0}^{1} D_{1}+x_{1}\right)=0 \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left(-R_{1}^{0} D_{0}+R_{0}^{1} D_{1}-x_{0}\right) \mid v>=0 \tag{20}
\end{equation*}
$$

with $x_{0}+x_{1}=0$. The boundary matrices are simultaneously diagonalized with the constraints

$$
\begin{equation*}
L_{1}^{0}+L_{0}^{1}=g, \quad R_{0}^{1}+R_{1}^{0}=-g \tag{21}
\end{equation*}
$$

CONTRADICTION - all the rates are probability rates and have to be POSITIVE. There is an algebraic solution consistent with the boundary conditions, namely

$$
\begin{align*}
& D_{0}=\frac{x_{0}}{g}\left((1+\alpha) J_{0}^{0}+J_{0}^{1}+\alpha J_{1}^{1}\right) \tag{22}\\
& D_{1}=\frac{x_{1}}{g}\left(\alpha J_{0}^{0}+J_{1}^{0}+(1+\alpha) J_{1}^{1}\right)
\end{align*}
$$

It introduces an additional arbitrary parameter and this is the price to be paid to match the algebra with the boundary vectors which hence
determines a Fock representation of the diffusion algebra with a constraint for the rates

$$
\begin{equation*}
g\left(L_{0}^{1}+L_{1}^{0}+R_{0}^{1}+R_{1}^{0}\right)=\left(L_{0}^{1}+L_{1}^{0}\right)\left(R_{0}^{1}+R_{1}^{0}\right) \tag{23}
\end{equation*}
$$

Unlike the $n=2$ problem the expressions for the $n=3 D$-matrices

$$
\begin{align*}
& D_{0}=\frac{x_{0}}{g}\left(J_{0}^{0}+J_{0}^{1}+J_{0}^{2}\right) \tag{24}\\
& D_{1}=\frac{x_{1}}{g}\left(J_{1}^{0}+J_{1}^{1}+J_{1}^{2}\right) \\
& D_{2}=\frac{x_{2}}{g}\left(J_{2}^{0}+J_{2}^{1}+J_{2}^{2}\right)
\end{align*}
$$

that solve the diffusion algebra yield a consistent solution for the boundary vectors. The latter are in this case determined by the systems

$$
\begin{aligned}
& \left.<w\left(\left(-L_{1}^{0}-L_{2}^{0}\right) D_{0}+L_{0}^{1} D_{1}+L_{0}^{2} D_{2}+x_{0}\right)\right)=0 \\
& <w\left(L_{1}^{0} D_{0}+\left(-L_{0}^{1}-L_{2}^{1}\right) D_{1}+L_{1}^{2} D_{2}+x_{1}\right)=0 \\
& <w\left(L_{2}^{0} D_{0}+L_{2}^{1} D_{1}+\left(-L_{0}^{2}-L_{1}^{2}\right) D_{2}+x_{2}\right)=0
\end{aligned}
$$

and

$$
\left.\left(-R_{1}^{0}-R_{2}^{0}\right) D_{0}+R_{0}^{1} D_{1}+R_{0}^{2} D_{2}-x_{0}\right) v>=0
$$

$$
\begin{aligned}
& \left(R_{1}^{0} D_{0}+\left(-R_{0}^{1}-R_{2}^{1}\right) D_{1}+R_{1}^{2} D_{2}-x_{1}\right) v>=0 \\
& \left(R_{2}^{0} D_{0}+R_{2}^{1} D_{1}+\left(-R_{0}^{2}-R_{1}^{2}\right) D_{2}-x_{2}\right) v>=0
\end{aligned}
$$

with $x_{0}+x_{1}+x_{2}=0$ The parameters x provide a matching condition for a common eigenvalue zero of the left and right transition matrices with the corresponding left and right boundary vectors and constraints on the boundary rates

$$
\begin{aligned}
R_{0}^{1} L_{0}^{2}+L_{0}^{1} R_{0}^{2}+\left(L_{1}^{0}\right. & \left.+L_{2}^{0}\right)\left(R_{0}^{1}+R_{0}^{2}\right)+ \\
\left(R_{1}^{0}+R_{2}^{0}\right)\left(L_{0}^{1}+L_{0}^{2}\right) & =g\left(L_{0}^{1}-L_{0}^{2}+R_{0}^{1}-R_{0}^{2}\right) \\
\left(R_{0}^{1}+R_{2}^{1}\right) L_{1}^{2}-\left(L_{0}^{1}+L_{2}^{1}\right) R_{1}^{2} & +R_{1}^{0}\left(L_{0}^{1}+L_{2}^{1}+L_{1}^{2}\right)- \\
L_{1}^{0}\left(R_{1}^{2}+R_{0}^{1}+R_{2}^{1}\right) & =g\left(L_{1}^{0}-L_{1}^{2}+R_{1}^{0}-L_{1}^{2}\right)
\end{aligned}
$$

The generalisation of these representations to general n is straightforward.
A realisation

$$
\begin{equation*}
J_{i k}=A_{i}^{+} A_{k} \tag{25}
\end{equation*}
$$

yields a representation of the elements D and the the boundary vectors in the oscillator basis.

