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1 INTRODUCTION

Structure of autonomous Hamiltonian dynamical systems are especially suitable to analyze
problems such as: symmetries and related topics (existence of conservation laws and

reduction), integrability (including numerical methods), and quantization.

Geometrically, many of their characteristics arise from the existence of a “natural”
geometric structure in the phase space: the symplectic form.

The dynamic information is carried out by the Hamiltonian function, which is
‘independent’ of the geometry.

We wish to generalize Hamiltonian systems in autonomous mechanics to first-order
multisymplectic field theories.

In these models, multisymplectic forms play the same role than symplectic forms in
autonomous mechanics.

There are two multimomentum bundles:

The restricted multimomentum bundle has not a canonical multisymplectic form.
Hamiltonian systems are introduced by means of Hamiltonin sections (carrying the

physical information), which allows us to construct the geometric structure.

The extended multimomentum bundle is endowed with a canonical multisymplectic form.
On it, Hamiltonian systems can be introduced as in autonomous mechanics, by means of

suitable closed 1-forms (and certain kinds of Hamiltonian multivector fields). The resultant
extended Hamiltonian formalism is the generalization to field theories of the extended

formalism of non-autonomous mechanical systems.

C. Paufler, H. Römer, “Geometry of Hamiltonian n-vector fields in multisymplectic field
theory”, J. Geom. Phys. 44(1) (2002) 52-69.
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2 PRELIMINARIES

2.1 Multivector fields in multisymplectic manifolds

(M,Ω) multisymplectic manifold,

Ω ∈ Zm+1(M), 1-nondegenerate (2 ≤ m+ 1 ≤ dim M).

Sections of Λk(TM) are called k-multivector fields in M

(contravariant skew-symmetric tensors of order k in M).

Xk(M) is the set of k-multivector fields in M.

X ∈ Xk(M) is a locally decomposable multivector field if X|U = X1 ∧ . . . ∧Xk

for U ⊂M, and X1, . . . , Xk ∈ X(U).

∀X ∈ Xk(M) loc. dec. multivector field ∃ associated distribution DX ⊂ TM

DX |U = span{X1, . . . , Xk}

X is integrable if DX is involutive.

X ∈ Xk(M) is a locally Hamiltonian k-multivector field if i(X )Ω ∈ Zm+1−k(M).

∀x ∈M , ∃U ⊂M and ∃ζ ∈ Ωm−k(U) such that i(X )Ω = dζ (on U)

ζ locally defined modulo closed (m− k)-forms.

Every ζ ∈ Ωm−k(U) is a local Hamiltonian form for X .

X ∈ Xk(M) is a Hamiltonian k-multivector field if i(X )Ω = dζ, for ζ ∈ Ωm−k(M).

ζ is a Hamiltonian form for X .
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2.2 Multimomentum bundles

π : E →M (Configuration fibre bundle) dim M = m, dim E = n+m.

ω ∈ Ωm(M) volume form on M .

Natural coordinates in E adapted to the bundle: (xν , yA) (ν = 1, . . . ,m; A = 1, . . . , n)

ω = dx1 ∧ . . . ∧ dxm ≡ dmx

Mπ ≡ Λm
2 T∗E ' Aff(J1π,ΛmT∗M) (Extended multimomentum bundle).

Λm
2 T∗E ↪→ ΛmT∗E.

Canonical forms in Mπ: Θ ∈ Ωm(Mπ), Ω := −dΘ ∈ Ωm+1(Mπ).

Natural coordinates in Mπ: (xν , yA, pνA, p).

Θ = pνAdyA ∧ dm−1xν + pdmx (where dm−1xν := i
(

∂
∂xν

)
dmx)

Ω = −dpνA ∧ dyA ∧ dm−1xν − dp ∧ dmx (1)

J1π∗ ≡ Λm
2 T∗E/π∗ΛmT∗E (Restricted multimomentum bundle).

µ : Mπ → J1π∗.

Natural coordinates in J1π∗: (xν , yA, pνA).
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2.3 Hamiltonian systems in J1π∗

Definition 1 A section h : J1π∗ →Mπ of the projection µ is called a Hamiltonian section.
The differentiable forms Θh := h∗Θ and Ωh := −dΘh = h∗Ω are called the Hamilton-Cartan
m and (m+ 1) forms of J1π∗ associated with the Hamiltonian section h.

(J1π∗, h) is a restricted Hamiltonian system.

In natural coordinates: h(xν , yA, pνA) ≡ (xν , yA, pνA, p = −h(xγ, yB, pηB)).

h ∈ C∞(U), U ⊂ J1π∗, is a local Hamiltonian function.

Θh = pνAdyA ∧ dm−1xν − hdmx , Ωh = −dpνA ∧ dyA ∧ dm−1xν + dh ∧ dmx

Definition 2 Let (J1π∗, h) be a restricted Hamiltonian system. Let Γ(M,J1π∗) be the set
of sections of τ̄ . Consider the map

H : Γ(M,J1π∗) −→ R
ψ 7→

∫
M
ψ∗Θh

The variational problem for this system is the search of the critical sections of the functional
H, with respect to the variations of ψ given by ψt = σt◦ψ, where {σt} is a local one-parameter
group of every Z ∈ XV(τ̄)(J1π∗) (τ̄ -vertical vector fields in J1π∗).

d

dt

∣∣∣
t=0

∫
M

ψ∗tΘh = 0

This is the so-called Hamilton-Jacobi principle of the Hamiltonian formalism.

Theorem 1 The following assertions on a section ψ ∈ Γ(M,J1π∗) are equivalent:

1. ψ is critical section for the variational problem posed by the Hamilton-Jacobi principle.

2. ψ∗ i(X)Ωh = 0, ∀X ∈ X(J1π∗).

3. ψ is an integral section of an integrable connection ∇h satisfying the equation

i(∇h)Ωh = (m− 1)Ωh

4. ψ is an integral section of an integrable multivector field Xh ∈ Xm(J1π∗) satisfying that

i(Xh)Ωh = 0 , i(Xh)(τ̄ ∗ω) = 1 (τ̄ -transversality) (2)

5. If (U ;xν , yA, pνA) is a system of coordinates in J1π∗, then ψ satisfies in U

∂(yA ◦ ψ)

∂xν
=

∂h

∂pνA

∣∣∣
ψ

;
∂(pνA ◦ ψ)

∂xν
= − ∂h

∂yA

∣∣∣
ψ

(3)

which are the Hamilton-De Donder-Weyl equations of the rest. Hamiltonian system.

Definition 3 Xh ∈ Xm(J1π∗) is a Hamilton-De Donder-Weyl (HDW) multivector field for
the system (J1π∗, h) if it is locally decomposable and verifies equations (2).
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3 HAMILTONIAN SYSTEMS IN Mπ

3.1 Extended Hamiltonian systems

Definition 4 (Mπ,Ω, α) is an extended Hamiltonian system if:

1. α ∈ Z1(Mπ).

2. There exists a locally decomposable multivector field Xα ∈ Xm(Mπ) satisfying that

i(Xα)Ω = (−1)m+1α ; i(Xα)(κ̄∗ω) = 1 (κ̄-transversality) (4)

If α is exact, (Mπ,Ω, α) is an extended global Hamiltonian system. Then ∃H ∈ C∞(Mπ)
such that α = dH, which are called Hamiltonian functions of the system. (For an extended
Hamiltonian system, H exist only locally, and they are called local Hamiltonian functions).

In addition, the integrability of Xα must be also considered.

Proposition 1 If (Mπ,Ω, α) is an extended Hamiltonian system, then i(Y )α 6= 0, ∀Y ∈
XV(µ)(Mπ), Y 6= 0. In particular, for every system of natural coordinates (xν , yA, pνA, p)) in
Mπ adapted to the bundle structure (with ω = dmx),

i

(
∂

∂p

)
α = 1

Proposition 2 If (Mπ,Ω, α) is an extended Hamiltonian system, locally α = dp+β, where
β is a closed and µ-basic local 1-form in Mπ.

α = dp+ dh̃(xν , yA, pνA) = d(p+ h̃(xν , yA, pνA)) ≡ dH (5)

where h̃ = µ∗h, for some h ∈ C∞(µ(U)), (U ⊂M).
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Theorem 2 Let α ∈ Z1(Mπ) satisfying the condition stated in Proposition 1. Then there
exist locally decomposable multivector fields Xα ∈ Xm(Mπ) (not necessarily integrable) sat-
isfying equations (4) (and hence (Mπ,Ω, α) is an extended Hamiltonian system). In a local
system the above solutions depend on n(m2 − 1) arbitrary functions.

Local expressions: Xα =
m∧
ν=1

(
∂

∂xν
+ F̃A

ν

∂

∂yA
+ G̃ρ

Aν

∂

∂pρA
+ g̃ν

∂

∂p

)
, where

F̃A
ν =

∂H

∂pνA
=

∂h̃

∂pνA
(A = 1, . . . , n, ν = 1, . . . ,m) (6)

G̃µ
Aµ = − ∂H

∂yA
= − ∂h̃

∂yA
(A = 1, . . . , n) (7)

g̃ν = − ∂h̃

∂xν
+

∂h̃

∂pνA
G̃η
Aη −

∂h̃

∂pηA
G̃η
Aν (A = 1, . . . , n; η 6= ν) (8)

Definition 5 Xα ∈ XmMπ) is an extended Hamilton-De Donder-Weyl multivector field for
(Mπ,Ω, α) if it is a solution to eqs. (4).

Integrability of Xα makes that the number of arbitrary functions ≤ n(m2 − 1).

If Xα integrable and ψ̃(x) is an integral section of Xα, then

∂(yA ◦ ψ̃)

∂xν
= F̃A

ν ◦ ψ̃ ;
∂(pνA ◦ ψ̃)

∂xν
= G̃ν

Aν ◦ ψ̃ ;
∂(p ◦ ψ̃)

∂xν
= g̃ν ◦ ψ̃

and equations (6), (7) and (8) give PDE’s for the integral sections of Xα.
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3.2 Geometric properties of extended Hamiltonian systems

Proposition 3 Let (Mπ,Ω, α) be an extended Hamiltonian system, and Dα the character-
istic distribution of α. Then:

1. Dα is a µ-transverse involutive distribution of corank equal to 1.

2. The integral submanifolds S of Dα are 1-codimensional and µ-transverse local subman-
ifolds of Mπ.

3. If S is an integral submanifold of Dα, then µ|S : S → J1π∗ is a local diffeomorphism.

4. For every integral submanifold S of Dα, and p ∈ S, there exists W ⊂Mπ, with p ∈ W ,
such that h = (µ|W∩S)

−1 is a local Hamiltonian section of µ defined on µ(W ∩ S).

As α = dH = d(p+ µ∗h) (locally), every local Hamiltonian function H is a constraint
defining locally the integral submanifolds of Dα. Thus the local Hamiltonian sections

associated with these submanifolds are expressed as

h(xν , yA, pνA) = (xν , yA, pνA, p = −h(xγ, yB, pηB))

Proposition 4 Every extended HDW Xα ∈ Xm(Mπ) for (Mπ,Ω, α) is tangent to every
integral submanifold of Dα. As a consequence, if Xα is integrable, then its integral sections
are contained in the integral submanifolds of Dα.

Using the local expressions of α and Xα, and equations (6) and (7), the tangency condition
leads to equations (8), which are just consistency conditions. (See also the comment in

Remark 1).
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3.3 Relation between extended and restricted Hamiltonian

systems

Theorem 3 Let (Mπ,Ω, α) be an extended Hamiltonian system, and (J1π∗, h) a restricted
Hamiltonian system such that Imh = S is an integral submanifold of Dα. For every Xα ∈
Xm(Mπ) solution to the equations (4)

i(Xα)Ω = (−1)m+1α , i(Xα)(κ̄∗ω) = 1

there exists Xh ∈ Xm(J1π∗), such that Λmh∗Xh = Xα|S, which is a solution to the eqs. (2)

i(Xh)Ωh = 0 , i(Xh)(τ̄ ∗ω) = 1

Furthermore, if Xα is integrable, then Xh is integrable too, and the integral sections of Xh
are recovered from those of Xα as follows: if ψ̃ : M →Mπ is an integral section of Xα, then
ψ = µ ◦ ψ̃ : M → J1π∗ is an integral section of Xh.

Definition 6 Given an extended Hamiltonian system (Mπ,Ω, α), and considering all the
Hamiltonian sections h : J1π∗ →Mπ such that Imh are integral submanifolds of Dα, we have
a family {(J1π∗, h)}α, which is called the class of restricted Hamiltonian systems associated
with (Mπ,Ω, α).

Proposition 5 Let {(J1π∗, h)}α be the class of restricted Hamiltonian systems associated
with an extended Hamiltonian system (Mπ,Ω, α). The submanifolds {(Sh, ∗Sh

Ω}) are mul-
tisymplectomorphic (where Sh = Imh, for every Hamiltonian section h in this class, and
Sh

: Sh ↪→Mπ is the natural embedding).

Proposition 6 Given a restricted Hamiltonian system (J1π∗, h), let S : S = Imh ↪→Mπ
be the natural embedding. Then, there exists a unique local form α ∈ Ω1(Mπ) such that:

1. α ∈ Z1(Mπ) (it is a closed form).

2. ∗Sα = 0.

3. i(Y )α 6= 0, for every non-vanishing Y ∈ XV(µ)(Mπ) and, in particular, such that

i

(
∂

∂p

)
α = 1, for every system of natural coordinates (xν , yA, pνA, p) in Mπ, adapted

to the bundle structure (with ω = dmx).

Definition 7 Given a restricted Hamiltonian system (J1π∗, h), if α ∈ Ω1(Mπ) satisfies the
above conditions, (Mπ,Ω, α) is called the local extended Hamiltonian system associated with
(J1π∗, h).
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3.4 Variational principle and field equations

Γα(M,Mπ): set of sections of κ̄ which are integral submanifolds of Dα.

XV(κ̄)
α (Mπ) = {Z ∈ X(Mπ) | i(Z)α = 0 , Z is κ̄-vertical}

(Z are κ̄-vertical vector fields tangent to the integral submanifolds of Dα).

Definition 8 Let (Mπ,Ω, α) be an extended Hamiltonian system. Consider the map

H̃α : Γα(M,Mπ) −→ R
ψ̃ 7→

∫
U
ψ̃∗Θ

The variational problem for this system is the search for the critical sections of the functional
H̃α, with respect to the variations of ψ̃ ∈ Γα(M,Mπ) given by ψ̃t = σt ◦ ψ̃, where {σt} is the
local one-parameter group of any compact-supported vector field Z ∈ XV(κ̄)

α (Mπ), that is

d

dt

∣∣∣
t=0

∫
U

ψ̃∗tΘ = 0

This is the extended Hamilton-Jacobi principle.

Theorem 4 The following assertions on ψ̃ ∈ Γα(M,Mπ) are equivalent:

1. ψ̃ is a critical section for the Hamilton-Jacobi principle.

2. ψ̃∗ i(X)Ω = 0, for every X ∈ Xα(Mπ).

3. ψ̃ is an integral section of an integrable multivector field X ∈ Xm(Mπ) which is a
solution to the equations (4)

i(Xα)Ω = (−1)m+1α , i(Xα)(κ̄∗ω) = 1

4. If (U ;xν , yA, pνA, p) is a natural system of coordinates in Mπ, then ψ̃ satisfies the
following system of equations in U

∂(yA ◦ ψ̃)

∂xν
=

∂h̃

∂pνA

∣∣∣
ψ̃

,
∂(pνA ◦ ψ̃)

∂xν
= − ∂h̃

∂yA

∣∣∣
ψ̃

,
∂(p ◦ ψ̃)

∂xν
= −∂(h̃ ◦ ψ̃)

∂xν
(9)

where h̃ = µ∗h, for some h ∈ C∞(µ(U)), is any function such that α|U = dp +
dh̃(xν , yA, pνA). These are the extended Hamilton-De Donder-Weyl equations of the
extended Hamiltonian system.

Remark 1 The last group of equations (9) are consistency conditions with respect to the
hypothesis on the sections ψ̃. In fact, this group of equations leads to p ◦ ψ̃ = −h̃ ◦ ψ̃+ ctn.,
that is, ψ̃ ∈ Γα(M,Mπ). (See also the comment after Proposition 4). The rest of the
equations (9) are just the Hamilton-De Donder-Weyl equations (3) of the restricted case.
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4 CONCLUSIONS and OUTLOOK

1. J1π∗ is the ‘natural’ multimomentum phase space for field theories, but it has not a
natural multisymplectic structure.

Restricted Hamiltonian systems are defined by Hamiltonian sections h : J1π∗ →Mπ,
which are also used to construct the multisymplectic form Ωh in J1π∗.

Both the geometry and the ‘physical information’ are coupled in Ωh.

2. (Mπ,Ω) is a canonical multisymplectic manifold.

Extended Hamiltonian systems are defined by closed 1-forms, α ∈ Z1(Mπ), which
must be µ-transverse.

The geometry (Ω) and the ‘physical information’ (α) are not coupled.

Field equations are analogous to the dynamical equations of autonomous mechanical
Hamiltonian systems.

3. Every extended Hamiltonian system is associated with a family of restricted Hamilto-
nian systems.

Every restricted Hamiltonian system is associated with an extended Hamiltonian sys-
tems (at least locally).

4. The definitions of restricted and extended Hamiltonian systems for submanifolds of
J1π∗ and Mπ (satisfying suitable conditions) can be achieved. Their properties are
analogous to the former case.

5. We hope that some problems could be studied in the extended formalism in an easier
way than in the restricted case:

• Multisymplectic reduction by symmetries.

• Integrability.

• Quantization.

In fact, the extended Hamiltonian formalism has already been used for defining Poisson
brackets in field theories.
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