shape equation and in-plane strain equations

- Shape equation

$$
\begin{aligned}
p- & 2 H\left(\lambda+k_{d} J\right)+k_{c}\left(2 H+c_{0}\right)\left(2 H^{2}-c_{0} H-2 K\right) \\
& +k_{c} \nabla^{2}(2 H)-\frac{k_{d}}{2}\left(a \varepsilon_{11}+2 b \varepsilon_{12}+c \varepsilon_{22}\right)=0
\end{aligned}
$$

- In-plane strain equations

$$
\begin{aligned}
& k_{d}\left[-d(2 J) \wedge \omega_{2}-\frac{1}{2}\left(\varepsilon_{11} d \omega_{2}-\varepsilon_{12} d \omega_{1}\right)+\frac{1}{2} d\left(\varepsilon_{12} \omega_{1}+\varepsilon_{22} \omega_{2}\right)\right]=0 \\
& k_{d}\left[d(2 J) \wedge \omega_{1}-\frac{1}{2}\left(\varepsilon_{12} d \omega_{2}-\varepsilon_{22} d \omega_{1}\right)-\frac{1}{2} d\left(\varepsilon_{11} \omega_{1}+\varepsilon_{12} \omega_{2}\right)\right]=0
\end{aligned}
$$

- Special example: spherical cell membrane with homogenous strains

$$
\begin{gathered}
\varepsilon_{12}=0, \varepsilon_{11}=\varepsilon_{22}=\varepsilon=\text { constant } ; \\
p R^{2}+\left(2 \lambda+3 k_{d} \varepsilon\right) R+k_{c} c_{0}\left(c_{0} R-2\right)=0
\end{gathered}
$$

R is the radius of the spherical surface

Mechanical stability

- $2^{\text {nd }}$ order variation of free energy (sphere)
$\Omega_{1} \omega_{1}+\Omega_{2} \omega_{2}=d \Omega+* d \chi \quad$ (Hodge decomposed theorem)
$\delta^{2} \mathcal{F}=G_{1}+G_{2}$

$$
\begin{aligned}
G_{1}= & \int \Omega_{3}^{2}\left(3 k_{d} / R^{2}+2 k_{c} c_{0} / R^{3}+p / R\right) d A \\
& +\int \Omega_{3} \nabla^{2} \Omega_{3}\left(k_{c} c_{0} / R+2 k_{c} / R^{2}+p R / 2\right) d A+\int k_{c}\left(\nabla^{2} \Omega_{3}\right)^{2} d A \\
& +\frac{3 k_{d}}{R} \int \Omega_{3} \nabla^{2} \Omega d A+k_{d} \int\left(\nabla^{2} \Omega\right)^{2} d A+\frac{k_{d}}{2 R^{2}} \int \Omega \nabla^{2} \Omega d A \\
G_{2}= & \frac{k_{d}}{4} \int\left(\nabla^{2} \chi\right)^{2} d A+\frac{k_{d}}{2 R^{2}} \int \chi \nabla^{2} \chi d A \geq 0
\end{aligned}
$$

- Expansion of spherical harmonic functions

$$
\Omega_{3}=\sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} a_{l m} Y_{l m}(\theta, \phi), a_{l m}^{*}=(-1)^{m} a_{l,-m}
$$

$$
\Omega=\sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} b_{l m} Y_{l m}(\theta, \phi), b_{l m}^{*}=(-1)^{m} b_{l-m}
$$

$$
\begin{aligned}
G_{1}= & \sum_{l=0}^{\infty} \sum_{m=0}^{l} 2\left|a_{m m}\right|^{2}\left\{3 k_{d}+[l(l+1)-2] l(l+1) k_{c} / R^{2}-k_{c} c_{0} / R-p R / 2\right] \\
& -\sum_{l=0}^{\infty} \sum_{m=0}^{l} \frac{3 k_{d}}{R} l(l+1)\left(a_{m m}^{*} b_{l m}+a_{l m} b_{m m}\right) \\
& +\sum_{l=0}^{\infty} \sum_{m=0}^{l} \frac{k_{d}}{R^{2}}\left[2 l^{2}(l+1)^{2}-l(l+1)\right]\left|b_{l m}\right|^{2}
\end{aligned}
$$

Quadratic form

Critical pressure

If $p<p_{l}=\frac{3 k_{d}}{[2 l(l+1)-1] R}+\frac{2 k_{c}\left[l(l+1)-c_{0} R\right]}{R^{3}} \quad(l=2,3, \cdots)$
then G_{1} is positive definite.

$$
p_{c}=\min \left\{p_{l}\right\}=\left\{\begin{array}{cc}
\frac{3 k_{d}}{11 R}+\frac{2 k_{c}\left[6-c_{0} R\right]}{R^{3}}<\frac{k_{c}\left[23-2 c_{0} R\right]}{R^{3}}, & \left(3 k_{d} R^{2}<121 k_{c}\right) \\
\frac{2 \sqrt{3 k_{d} k_{c}}}{R^{2}}+\frac{k_{c}}{R^{3}}\left(1-2 c_{0} R\right), & \left(3 k_{d} R^{2}>121 k_{c}\right)
\end{array}\right.
$$

- $k_{d}=0, p_{c}=\frac{2 k_{c}\left(6-c_{0} R\right)}{R^{3}}, \sim$ spherical lipid vesicle [Ou-Yang \& Helfrich 1987 PRL 59 2486]
- Classic shell: $c_{0}=0, k_{d} \sim Y h, k_{c} \sim Y h^{3}, R \gg h, p_{c} \sim Y h^{2} / R^{2}$
- Membrane skeleton enhances the mechanical stability of cell membranes, at least for spherical shape

Taking typical data of cell membrane, $k_{c} \sim 20 k_{B} T$ [Duwe et al. 1990 J. Phys. Fr. 51 945], $k_{d} \sim 6 \times 10^{-4} k_{B} T / n m^{2}$ [Lenormand et al. 2001 Biophys. J. 81 43], $h \sim 4 n m, R \sim 1 \mu m, c_{0} R \sim 1$, we have $p_{c} \sim 2 \mathrm{~Pa}$.
If not considering k_{d}, we have $p_{c} \sim 0.2 \mathrm{~Pa}$.

Summary

- Several problems in the elasticity of biomembranes, smectic-A liquid crystal, and carbon related structures are discussed
- Variational problems on 2D surface are dealt with exterior differential forms
- Elasticity and stability of lipid bilayer and cell membrane are calculated and compared with each other.

Acknowledgement

- Prof. Zhong-Can Ou-Yang (Advisor in ITP)

Thank you for your attention!

