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Abstract

The 6-parameter group of motions in 3-dimen-
sional Euclidean space is recognized as the lar-
gest group of point (geometric) transformations
admitted by the membrane shape equation —
the Euler-Lagrange equation associated with the
Helfrich functional in Mongé representation.

The conserved currents of six linearly indepen-
dent conservation laws, which correspond to the
variational symmetries of the membrane shape
equation and hold on its smooth solutions, are
obtained.

All types of non-equivalent group-invariant solu-
tions of the membrane shape equation are iden-
tified via an optimal system of one-dimension
subalgebras of rhe symmetry algebra. The re-
duced equations determining these group-inva-
riant solutions are derived.



Membrane Shape Equation

The equilibrium shape of a lipid membrane (bi-
layer) is supposed to be determined by the ex-
tremals of the Helfrich curvature free energy
(shape energy)
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Here k., k, co, A and p are real constants repre-
senting the bending and Gaussian rigidity of the
membrane, the spontaneous curvature, tensile
stress and osmotic pressure difference between
the outer and inner media; dA is the area ele-
ment of the membrane surface §, H and K are
the mean and Gaussian curvatures of §, dV is
the volume element.

The corresponding Euler-Lagrange equation
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IS referred to as the membrane shape equation.

Here A is the Laplace-Beltrami operator on the
surface S.



Mongé representation

Let (z!,22,23) be a fixed right-handed rectan-
gular Cartesian coordinate system in the 3D Eu-
clidean space R3 in which the surface S is im-
mersed, let this surface be given by the equation

S:z3=w(z!z?), (z1,2°)ex CcR?

and let us take zl, 22 to serve as Gaussian co-
ordinates on the surface S.

In the above Mongé representation, the mem-
brane shape equation is to be regarded as a
fourth-order partial differential equation in two
independent variables z1, 2 and one dependent
variable w.



Symmetries of the Shape Equation

Group of motions in R3
Generators Characteristics
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Six linearly independent conservation laws
DanO‘ =Q,E(L), a=1,2, j=1,...,6

exist that hold on the solutions of the shape
equation. The respective conserved currents Pj@
are

PJQ‘ = NjO‘L
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are the so-called Noether operators, correspond-
ing to the vector fields Vv with characteristics Qj;
E is the Euler operator:
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D, are the total derivative operators:
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L denotes the Lagrangian density of the Helfrich

shape energy functional.
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Group-invariant solutions

The vector fields

(vi), (va+avz), a=const

constitute an optimal system of one-dimensional
subalgebras of the symmetry algebra. So, the
essentially different group-invariant solutions cor-
respond to the groups generated by the vector
fields vi and v4 4+ avs.

The G (vi)-invariant solutions are sought in the
form:

w=W (z')

The G (v4+ avsz)-invariant solutions — of the
form:

w = W (r)+aarctan (%) o= [(azl)Q + <x2>2]%



Reduced equation for G (vq)-invariant solutions

Ry, = const
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v = dW/dz!

Lagrangian for G (vq)-invariant solutions
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Reduced equations for G (v4 + avs)-invariant so-

lutions
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Lagrangians for G (v4 + avy)-invariant solutions

L = 2keLy + 2kecoLa + (5kecd + A) L3

where
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