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We consider the following problems

1) explicit parameterization of an orbit in terms of

‘good’ complex coordinates (generalized

stereographic projection),

2) Kählerian structure (Kirillov-Kostant-Souriau

differential form) and G-invariant basis of

cohomology groups.

As an example we use coadjoint orbits (general

and degenerate) of group SU(n).
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Geometry of coadjoint orbits

Let G be a compact semisimple classical Lie group

with Lie algebra g; h be the Cartan subalgebra of g.

Definition. The set Oµ = {Ad∗g µ, ∀g ∈ G}
is called a coadjoint orbit of the group G

through µ ∈ g∗.

In the case of classical Lie group Ad∗g µ = g−1µg.

Coajoint orbit coincides with adjoint one,

which we define by Adg X = gXg−1, X ∈ g.

Theorem (R. Bott). For each µ∈ g∗, the coadjoint

orbit Oµ intersects h∗ in a finite non-empty set of

points, which is an orbit of the Weyl group W (G).

A Weyl group is a finite group generated by

reflectings wα across the hyperplanes orthogonal

to simple roots α:

wα(µ) = µ− 2〈µ,α〉
〈α,α〉 α, µ ∈ h∗.
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A Weyl chamber is an open domain in h∗ such

that C = {µ ∈ h∗ : 〈µ, α〉 > 0, ∀α ∈ ∆+}.
A wall of the Weyl chamber is the set

Γα = {µ ∈ h∗ : 〈µ, α〉 = 0}.
Obviously, h∗ =

⋃
w

w · C, w ∈ W (G).

Example. Group SU(3).
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Statement. Each orbit O of G is uniquely defined

by an element µ0 of the closed Weyl chamber C.

If µ0 ∈ C, then the orbit is general (flag manifold).

If µ0 ∈ Γα, α ∈ ∆+, then the orbit is degenerate.
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Coadjoint orbit as a bundle

For the general orbit (µ0 ∈ C)

Oµ0 = T\G, T ' Gµ0,

T is the maximal torus of G (the Cartan subgroup),

Gµ0 = {g ∈G : Ad∗g µ0 =µ0} is a stability subgroup.

For the degenerate orbit (µ0 ∈ Γα, α ∈ ∆+)

Oµ0 = Gµ0\G, G ⊃ Gµ0 ⊃ T.

Proposition 1. Suppose Oµ0 = Gµ0\G is not the

maximal degenerate orbit in G.

Then a subgroup K such that G ⊃ K ⊃ Gµ0 exists,

and Oµ0 is a holomorphic bundle over K\G with

fibre Gµ0\K:

Oµ0 ' Gµ0\K nK\G.
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Example. Group SU(n).

The only orbit of SU(2) is

OSU(2) = SU(2)
U(1) ' CP1.

The orbits of SU(3):

OSU(3) = SU(3)
U(1)×U(1),

OSU(3)
degen = SU(3)

SU(2)×U(1) ' CP2.

OSU(3) ' OSU(3)
degen oOSU(2) ' CP2oCP1

The orbits of SU(4):

OSU(4) = SU(4)
U(1)×U(1)×U(1),

OSU(4)
1 = SU(4)

SU(2)×U(1)×U(1),

OSU(4)
2 = SU(4)

S(U(2)×U(2)),

OSU(4)
3 = SU(4)

SU(3)×U(1) ' CP3.

OSU(4) ' OSU(4)
3 oOSU(3) ' CP3oCP2oCP1
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Examples. Classical Lie groups

The maximal tori are

SU(n) T = U(1)× U(1)× · · · × U(1)︸ ︷︷ ︸
n−1

,

SO(2n) T = SO(2)× SO(2)× · · · × SO(2)︸ ︷︷ ︸
n

,

SO(2n + 1) T = SO(2)× SO(2)× · · · × SO(2)︸ ︷︷ ︸
n

,

Sp(n) T = U(1)× U(1)× · · · × U(1)︸ ︷︷ ︸
n−1

.

For the general orbits

OSU(n) = CPn−1oOSU(n−1),

OSO(2n) = G2n;2 oOSO(2n−2),

OSO(2n+1) = G2n−1;2 oOSO(2n−1),

OSp(n) = HPn−1oOSp(n−1).

G2n;2, G2n−1;2 are real Grassman manifolds,

H is the quaternionic space.
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1. Complex parameterization of an orbit

To introduce complex structure we complexify G:

GC = exp{g + ig}
and use the diffeomorphism (D. Montgomery)

O = T\G ' P0\GC, (1)

P0 denotes the minimal parabolic subgroup in GC.

(1) takes place for the general orbit.

Indeed, GC admits an Iwasawa decomposition

GC = NAG,

N corresponds to a nilpotent subalgebra of g,

A corresponds to an abelian subalgebra of g,

G is the maximal compact subgroup in GC.

In this connection, P0 = NAT , then (1) is evident.

For the degenerate orbit instead of (1) we have

Gµ0\G ' PM\GC,

PM = NAM is a non-minimal parabolic subgroup.
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Generalized stereographic projection

Holod P.I., Skrypnyk T.V. Ukrainian Mathematical Journal 50
(1998), 1504–1512.

Gauss decomposition gives

GC = NTCZ,

TC is the Cartan subgroup of GC, TC = AT ;

N and Z = N∗ are nilpotent subgroups of GC

normalized by TC.

It is obvious that O = NAG
NAT = NATZ

NAT = Z.

Proposition 2. Z gives complex parameters

of stereographic projection for the orbit O.

Gauss decomposition is local and covers one map.

Gauss-Bruhat decomposition is global

GC =
⋂

w∈W (G)/W (T )

P0Zw,

Z = exp
{∑

α∈∆+ zαX−α

}
,

X−α are negative root vectors,

zα denotes complex coordinates, α ∈ ∆+.
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Example. Complexification of SU(n) is SL(n,C).

Decomposition gives

ẑ = n̂âû, û ∈ G = SU(n),

Z 3 ẑ — low triangular matrix (1s on the diagonal)

N 3 n̂ — upper triangular matrix (1s on the diagonal)

A3 â is a real diagonal matrix

â = diag(a1, a2, a3), ai > 0, a1a2a3 = 1.

SU(3):


1 0 0
z1 1 0
z3 z2 1


 =




1 n1 n3

0 1 n2

0 0 1







1
a1

0 0
0 a1

a2
0

0 0 a2


 û

For the general orbit

a2
2 = 1 + |z2|2 + |z3|2, a2

1 = 1 + |z1|2 + |z3 − z1z2|2,
n1 =

1

a2
1

(z̄1(1 + |z2|2)− z2z̄3),

n2 =
1

a2
2

(z̄2 + z1z̄3), n3 =
z̄3

a2
2

For the degenerate orbit assign z1 = 0.
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A coadjoint orbit is generated by the formula

µ̂ = û∗µ̂0û, µ̂0 = µ̂(∞)

with the initial point µ̂0 in the Weyl chamber.

Suppose µ̂ =




µ3 + 1√
3
µ8 µ1 − iµ2 µ4 − iµ5

µ1 + iµ2 −µ3 + 1√
3
µ8 µ6 − iµ7

µ4 + iµ5 µ6 + iµ7 − 2√
3
µ8




Let µ̂0 have the following form:

for the degenerate orbit µ̂0 =




1 0 0
0 1 0
0 0 −2




for the general orbit (ξ, η ∈ R)

µ̂0 = 2
3 ξ




2 0 0
0 −1 0
0 0 −1


 + 2

3 η




1 0 0
0 1 0
0 0 −2


 .

If we denote m = µ3(∞), q = µ8(∞), then

η = −1
2

(
m−

√
3q

)
, ξ = m.
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Complex parameterization of the general orbit

µ1 = − η

a2
2

(z̄2z3 + z2z̄3)− ξ

a2
1

(z1 + z̄1),

µ2 =
iη

a2
2

(z̄2z3 − z2z̄3) +
iξ

a2
1

(z1 − z̄1),

µ3 =
η

a2
2

(|z2|2 − |z3|2) +
ξ

a2
1

(1− |z1|2),

µ4 = − η

a2
2

(z3 + z̄3)− ξ

a2
1

(z3 − z1z2 + z̄3 − z̄1z̄2),

µ5 =
iη

a2
2

(z3 − z̄3) +
iξ

a2
1

(
z3 − z1z2 − (z̄3 − z̄1z̄2)

)
,

µ6 = − η

a2
2

(z2 + z̄2) +
ξ

a2
1

(
z̄1(z3 − z1z2) + z1(z̄3 − z̄1z̄2)

)
,

µ7 =
iη

a2
2

(z2 − z̄2)− iξ

a2
1

(
z̄1(z3 − z1z2)− z1(z̄3 − z̄1z̄2)

)
,

√
3µ8 =

η

a2
2

(2− |z2|2 − |z3|2) +
ξ

a2
1

(1 + |z1|2 − 2|z3 − z1z2|2);

where

a2
2 = 1 + |z2|2 + |z3|2, a2

1 = 1 + |z1|2 + |z3 − z1z2|2.

On the degenerate orbit ξ = 0.
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2. Kählerian structure and G-invariant basis

of cohomology groups

Proposition. (A. Borel) Suppose G is a semisimple

Lie group. Then each orbit Oµ0 = Gµ0\G admits a

complex analytic Kählerian structure invariant under

the group G (G-invariant).

Borel A. Kählerian Coset Spaces of Semisimple Lie Groups.
Proceedings of the National Academy of Sciences of the
United States of America 40 (1954), 1147–1151.

The corresponding Kählerian form is generated by

a Kählerian potential Φ:

ω = i
∑

j,k

∂2Φ

∂zj∂z̄k
dzj ∧ dz̄k.

The aims:

to find a Kählerian potential for each orbit;

to construct a G-invariant basis of cohomology groups.
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Structure of cohomology ring of an orbit

All forms of odd degrees on an orbit are precise

(A. Borel). Moreover, for the general orbit

b0 + b2 + · · ·+ b2n = ordW (G),

bk denotes Betti number.

For the degenerate orbit

b0 + b2 + · · ·+ b2m =
ordW (G)

ordW (Gµ0)
,

where Gµ0 is the stability subgroup in µ0.

Examples.

Group SU(2), dimOSU(2) = 2

cohomology ring H∗ = H0 ⊕H2

Betti numbers 1 + 1 = 2

Group SU(3)

for general orbit OSU(3), dimOSU(3) = 6

cohomology ring H∗ = H0 ⊕H2 ⊕H4 ⊕H6

Betti numbers 1 + 2 + 2 + 1 = 6

for degenerate orbit OSU(3)
degen , dimOSU(3)

degen = 4

cohomology ring H∗ = H0 ⊕H2 ⊕H4

Betti numbers 1 + 1 + 1 = 3
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As shown above almost all orbits are bundles. This

fact can be used for constructing cohomology rings.

Let O be not a maximal degenerate orbit in G,

then there exist orbits O1, O2 such that

O = O1 oO2.

By Leray-Hirsch theorem

H∗(O) = H∗(O1)⊗H∗(O2).

Example. For SU(3) we have

OSU(3) = OSU(3)
degen oOSU(2) ' CP2oCP1 .

Then

H∗(OSU(3)) = (H0 ⊕H2 ⊕H4)⊗ (H0 ⊕H2) =

= H0 ⊗H0 ⊕
H2(OSU(3))︷ ︸︸ ︷

H0 ⊗H2 ⊕H2 ⊗H0⊕
⊕H2 ⊗H2 ⊕H4 ⊗H0

︸ ︷︷ ︸
H4(OSU(3))

⊕H4 ⊗H2
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Basis of H2(OSU(3))

From Leray-Hirsch theorem we obtain

H2(OSU(3)) = H0(1)⊗H2(2)⊕H2(1)⊗H0(2),

1 denotes OSU(3)
degen ' CP2,

2 denotes OSU(2) ' CP1.

Then ωSU(3)(z1, z2, z3) =

= f1(z̃1) ·ωCP2
(z2, z3)+f2(z2, z3) ·ωCP1

(z̃1),

where z̃1 = z1
√

1+|z2|2+|z3|2
1+|z3|2−z1z2z̄3

.

It is easy to compute the Kählerian potentials

corresponding to ωCP2
(z2, z3) and ωCP1

(z̃1):

ΦCP1
(z̃1) = ln(1 + |z̃1|2) =

= ln
(
1 + |z1|2(1+|z2|2+|z3|2)

|1+|z3|2−z1z2z̄3|2
)

.

ΦCP2
(z2, z3) = ln(1 + |z2|2 + |z3|2).

Basis forms on OSU(3) can be

f1(z̃1) · ωCP2
(z2, z3), f2(z2, z3) · ωCP1

(z̃1).
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Kählerian structure.

Kirillov-Kostant-Souriau differential form

A Kählerian structure can be represented by

the Kirillov-Kostant-Souriau differential form.

Besse A. L. Einstein Manifolds. Springer-Verlag, 1987.

Define the Killing form on g by

〈µ, X〉 = Tr(µ · adµ X), µ ∈ g∗, X ∈ g;

the Kirillov-Kostant-Souriau differential 2-form by

ω(adµ X, adµ Y ) = 〈µ, [X, Y ]〉, X, Y ∈ g.

Statement. If G is a compact semisimple group, the

Kirillov-Kostant-Souriau 2-form coincides with a

G-invariant Kählerian form.
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Example. Kählerian potential for SU(3):

Φ = (µ0, α1)Φ1 + (µ0, α2)Φ2,

Φ1 = ln(1 + |z1|2 + |z3 − z1z2|2),
Φ2 = ln(1 + |z2|2 + |z3|2),

where µ0 = (m, q) is an initial value of µ = (µ3, µ8);

α1 = (1,0), α2 = (−1
2,
√

3
2 ) are simple roots.

We guess that the Kählerian potential for each

orbit has the following form:

Φ =
∑

k

(µ0, αk)Φk.

If µ0 satisfies the integer condition

2
(µ0, αk)

(αk, αk)
∈ Z,

then the corresponding orbit can be quantized.

In other words, there exists an irreducible unitary
representation of the corresponding group in the space of
holomorphic functions on the orbit. The function is a section
and serves as a quantum state.

The end
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