Topology and Geometry of Coadjoint Orbits of Semisimple Lie Groups

J. Bernatska, e-mail: jnb@ukma.kiev.ua P. Holod, e-mail: holod@ukma.kiev.ua

We consider the following problems

- 1) explicit parameterization of an orbit in terms of 'good' complex coordinates (generalized stereographic projection),
- 2) Kählerian structure (Kirillov-Kostant-Souriau differential form) and G -invariant basis of cohomology groups.

As an example we use coadjoint orbits (general and degenerate) of group $SU(n)$.

Geometry of coadjoint orbits

Let G be a compact semisimple classical Lie group with Lie algebra g ; h be the Cartan subalgebra of g .

Definition. The set $\mathcal{O}_{\mu} = \{ \mathsf{Ad}^*_{g} \mu, \forall g \in G \}$ is called a **coadjoint orbit** of the group G through $\mu \in \mathfrak{g}^*$.

In the case of **classical Lie group** $\mathsf{Ad}_g^*\, \mu = g^{-1} \mu g.$ **Coajoint orbit coincides with adjoint one**, which we define by Ad $_g\,X = gXg^{-1},\,X \in \mathfrak{g}.$

Theorem (R. Bott). For each $\mu \in \mathfrak{g}^*$, the coadjoint orbit \mathcal{O}_{μ} intersects \mathfrak{h}^* in a finite non-empty set of points, which is an orbit of the Weyl group $W(G)$.

A **Weyl group** is a finite group generated by reflectings w_{α} across the hyperplanes orthogonal to simple roots α :

$$
w_{\alpha}(\mu) = \mu - 2 \frac{\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, \qquad \mu \in \mathfrak{h}^*.
$$

A **Weyl chamber** is an open domain in \mathfrak{h}^* such that $C = {\mu \in \mathfrak{h}^* : \langle \mu, \alpha \rangle > 0, \, \forall \alpha \in \Delta^+}.$ A **wall** of the Weyl chamber is the set

$$
\Gamma_{\alpha} = \{\mu \in \mathfrak{h}^* : \langle \mu, \alpha \rangle = 0\}.
$$

Obviously, $\mathfrak{h}^* =$ \overline{a} \bar{w} $w\cdot \overline{C},\quad w\in W(G).$

Example. Group $SU(3)$.

 $\alpha_1 \mapsto (1, -1, 0), \quad \alpha_2 \mapsto (0, 1, -1), \quad \alpha_3 \mapsto (1, 0, -1)$

Statement. Each orbit O of G is uniquely defined by an element μ_0 of the closed Weyl chamber \overline{C} .

If $\mu_0 \in C$, then the orbit is **general** (flag manifold). If $\mu_0 \in \Gamma_\alpha$, $\alpha \in \Delta^+$, then the orbit is **degenerate**.

Coadjoint orbit as a bundle

For the **general orbit** ($\mu_0 \in C$)

$$
\mathcal{O}_{\mu_0} = T \backslash G, \quad T \simeq G_{\mu_0},
$$

 T is the maximal torus of G (the Cartan subgroup),

 $G_{\mu_0} = \{ g \in G : \operatorname{Ad}^*_g \mu_0 = \mu_0 \}$ is a stability subgroup.

For the **degenerate orbit** ($\mu_0 \in \Gamma_\alpha$, $\alpha \in \Delta^+$)

$$
\mathcal{O}_{\mu_0} = G_{\mu_0} \backslash G, \quad G \supset G_{\mu_0} \supset T.
$$

Proposition 1. Suppose $\mathcal{O}_{\mu_{\mathbf{0}}}=G_{\mu_{\mathbf{0}}}\backslash G$ is not the maximal degenerate orbit in G .

Then a subgroup K such that $G\supset K\supset G_{\mu_{0}}$ exists, and $\mathcal{O}_{\mu_{\mathbf{0}}}$ is a holomorphic bundle over $K\backslash G$ with fibre $G_{\mu_{\mathbf{0}}}\backslash K$:

$$
\mathcal{O}_{\mu_0} \simeq G_{\mu_0} \backslash K \ltimes K \backslash G.
$$

Example. Group $SU(n)$.

The only orbit of $SU(2)$ is $\mathcal{O}^{SU(2)} = \frac{SU(2)}{U(1)} \simeq \mathbb{C} \mathsf{P}^1.$

The orbits of
$$
SU(3)
$$
:
\n
$$
\mathcal{O}^{SU(3)} = \frac{SU(3)}{U(1) \times U(1)},
$$
\n
$$
\mathcal{O}^{SU(3)}_{\text{degen}} = \frac{SU(3)}{SU(2) \times U(1)} \simeq \mathbb{C}P^2.
$$
\n
$$
\mathcal{O}^{SU(3)} \simeq \mathcal{O}^{SU(3)}_{\text{degen}} \rtimes \mathcal{O}^{SU(2)} \simeq \mathbb{C}P^2 \rtimes \mathbb{C}P^1
$$

The orbits of $SU(4)$: $\mathcal{O}^{SU(4)} = \frac{SU(4)}{U(1)\times U(1)\times U(1)},$ $\mathcal{O}_1^{SU(4)} = \frac{SU(4)}{SU(2)\times U(1)\times U(1)},$ $\mathcal{O}_2^{SU(4)} = \frac{SU(4)}{S(U(2)\times U(2))},$ $\mathcal{O}_3^{SU(4)} = \frac{SU(4)}{SU(3) \times U(1)} \simeq \mathbb{C} \mathsf{P}^3.$ $\mathcal{O}^{SU(4)}\simeq \mathcal{O}^{SU(4)}_3\rtimes \mathcal{O}^{SU(3)}\simeq \mathbb{C}\mathsf{P}^3\rtimes \mathbb{C}\mathsf{P}^2\rtimes \mathbb{C}\mathsf{P}^1$

Examples. Classical Lie groups

The maximal tori are

$$
SU(n) \qquad T = \underbrace{U(1) \times U(1) \times \cdots \times U(1)}_{n-1},
$$
\n
$$
SO(2n) \qquad T = \underbrace{SO(2) \times SO(2) \times \cdots \times SO(2)}_{n},
$$
\n
$$
SO(2n+1) \quad T = \underbrace{SO(2) \times SO(2) \times \cdots \times SO(2)}_{n},
$$
\n
$$
Sp(n) \qquad T = \underbrace{U(1) \times U(1) \times \cdots \times U(1)}_{n-1}.
$$

For the general orbits

$$
\mathcal{O}^{SU(n)} = \mathbb{C}\mathsf{P}^{n-1} \rtimes \mathcal{O}^{SU(n-1)},
$$

\n
$$
\mathcal{O}^{SO(2n)} = G_{2n;2} \rtimes \mathcal{O}^{SO(2n-2)},
$$

\n
$$
\mathcal{O}^{SO(2n+1)} = G_{2n-1;2} \rtimes \mathcal{O}^{SO(2n-1)},
$$

\n
$$
\mathcal{O}^{Sp(n)} = \mathbb{H}\mathsf{P}^{n-1} \rtimes \mathcal{O}^{Sp(n-1)}.
$$

 $G_{2n;2}$, $G_{2n-1;2}$ are real Grassman manifolds, H is the quaternionic space.

1. Complex parameterization of an orbit

To **introduce complex structure** we complexify G: $G^{\mathbb{C}} = \exp\{\mathfrak{g} + i\mathfrak{g}\}$

and use the diffeomorphism (D. Montgomery)

$$
\mathcal{O} = T \backslash G \simeq P_0 \backslash G^{\mathbb{C}}, \tag{1}
$$

 P_0 denotes the minimal parabolic subgroup in $G^{\mathbb{C}}$. (1) takes place for the **general orbit**.

Indeed, $G^{\mathbb{C}}$ admits an **Iwasawa decomposition** $G^{\mathbb{C}} = NAG,$

 N corresponds to a nilpotent subalgebra of \mathfrak{g} ,

A corresponds to an abelian subalgebra of g ,

G is the maximal compact subgroup in $G^{\mathbb{C}}$.

In this connection, $P_0 = NAT$, then (1) is evident.

For the **degenerate orbit** instead of (1) we have

 $G_{\mu_0}\backslash G\simeq P_M\backslash G^{\mathbb{C}},$

 $P_M = NAM$ is a non-minimal parabolic subgroup.

Generalized stereographic projection

Holod P.I., Skrypnyk T.V. Ukrainian Mathematical Journal **50** (1998), 1504–1512.

Gauss decomposition gives

 $G^{\mathbb{C}} = NT^{\mathbb{C}}Z,$ $T^{\mathbb{C}}$ is the Cartan subgroup of $G^{\mathbb{C}},$ $T^{\mathbb{C}}=AT;$ N and $Z = N^*$ are nilpotent subgroups of $G^{\mathbb{C}}$ normalized by $T^\mathbb{C}.$

It is obvious that $O = \frac{NAG}{NAT} = \frac{NATZ}{NAT} = Z$. **Proposition 2.** Z gives complex parameters of stereographic projection for the orbit \mathcal{O} .

Gauss decomposition is local and covers one map. Gauss-Bruhat decomposition is global

$$
G^{\mathbb{C}} = \bigcap_{w \in W(G)/W(T)} P_0 Z w,
$$

$$
Z = \exp \left\{ \sum_{\alpha \in \Delta^+} z_{\alpha} X_{-\alpha} \right\},\
$$

 $X_{-\alpha}$ are negative root vectors,

 z_{α} denotes complex coordinates, $\alpha \in \Delta^+$.

Example. Complexification of $SU(n)$ is $SL(n,\mathbb{C})$. Decomposition gives

 $\hat{z} = \hat{n}\hat{a}\hat{u}, \quad \hat{u} \in G = SU(n),$

 $Z \ni \hat{z}$ — low triangular matrix (1s on the diagonal) $N \ni \hat{n}$ — upper triangular matrix (1s on the diagonal) $A \ni \hat{a}$ is a real diagonal matrix $\hat{a} = \text{diag}(a_1, a_2, a_3), \quad a_i > 0, \quad a_1 a_2 a_3 = 1.$

$$
SU(3):
$$
\n
$$
\begin{pmatrix}\n1 & 0 & 0 \\
z_1 & 1 & 0 \\
z_3 & z_2 & 1\n\end{pmatrix} = \begin{pmatrix}\n1 & n_1 & n_3 \\
0 & 1 & n_2 \\
0 & 0 & 1\n\end{pmatrix} \begin{pmatrix}\n\frac{1}{a_1} & 0 & 0 \\
0 & \frac{a_1}{a_2} & 0 \\
0 & 0 & a_2\n\end{pmatrix} \hat{u}
$$

For the **general orbit**

$$
a_2^2 = 1 + |z_2|^2 + |z_3|^2, \quad a_1^2 = 1 + |z_1|^2 + |z_3 - z_1 z_2|^2,
$$

\n
$$
n_1 = \frac{1}{a_1^2} (\bar{z}_1 (1 + |z_2|^2) - z_2 \bar{z}_3),
$$

\n
$$
n_2 = \frac{1}{a_2^2} (\bar{z}_2 + z_1 \bar{z}_3), \quad n_3 = \frac{\bar{z}_3}{a_2^2}
$$

For the **degenerate orbit** assign $z_1 = 0$.

A coadjoint orbit is generated by the formula

$$
\hat{\mu} = \hat{u}^* \hat{\mu}_0 \hat{u}, \qquad \hat{\mu}_0 = \hat{\mu}(\infty)
$$

with the initial point $\hat{\mu}_0$ in the Weyl chamber.

Suppose
$$
\hat{\mu} = \begin{pmatrix} \mu_3 + \frac{1}{\sqrt{3}}\mu_8 & \mu_1 - i\mu_2 & \mu_4 - i\mu_5 \\ \mu_1 + i\mu_2 & -\mu_3 + \frac{1}{\sqrt{3}}\mu_8 & \mu_6 - i\mu_7 \\ \mu_4 + i\mu_5 & \mu_6 + i\mu_7 & -\frac{2}{\sqrt{3}}\mu_8 \end{pmatrix}
$$

 $\overline{}$

Let $\hat{\mu}_0$ have the following form:

for the degenerate orbit $\overline{1}$ 1 0 0 0 1 0 $0 \t 0 \t -2$ \mathcal{L} for the general orbit $(\xi, \, \eta \in \mathbb{R})$ $\hat{\mu}_0 = \frac{2}{3} \xi$ $\frac{1}{2}$ 2 0 0 $0 -1 0$ $0 \t 0 \t -1$ $+ \frac{2}{3}\eta$ $\frac{1}{2}$ $\left| \right|$ 1 0 0 0 1 0 $0 \t 0 \t -2$ \mathbf{r} \vert . If we denote $m = \mu_3(\infty)$, $q = \mu_8(\infty)$, then

$$
\eta = -\frac{1}{2} \left(m - \sqrt{3}q \right), \quad \xi = m.
$$

10

 \mathbf{r}

Complex parameterization of the **general orbit**

$$
\mu_1 = -\frac{\eta}{a_2^2}(\bar{z}_2 z_3 + z_2 \bar{z}_3) - \frac{\xi}{a_1^2}(z_1 + \bar{z}_1),
$$

\n
$$
\mu_2 = \frac{i\eta}{a_2^2}(\bar{z}_2 z_3 - z_2 \bar{z}_3) + \frac{i\xi}{a_1^2}(z_1 - \bar{z}_1),
$$

\n
$$
\mu_3 = \frac{\eta}{a_2^2}(|z_2|^2 - |z_3|^2) + \frac{\xi}{a_1^2}(1 - |z_1|^2),
$$

\n
$$
\mu_4 = -\frac{\eta}{a_2^2}(z_3 + \bar{z}_3) - \frac{\xi}{a_1^2}(z_3 - z_1 z_2 + \bar{z}_3 - \bar{z}_1 \bar{z}_2),
$$

\n
$$
\mu_5 = \frac{i\eta}{a_2^2}(z_3 - \bar{z}_3) + \frac{i\xi}{a_1^2}(z_3 - z_1 z_2 - (\bar{z}_3 - \bar{z}_1 \bar{z}_2)),
$$

\n
$$
\mu_6 = -\frac{\eta}{a_2^2}(z_2 + \bar{z}_2) + \frac{\xi}{a_1^2}(\bar{z}_1(z_3 - z_1 z_2) + z_1(\bar{z}_3 - \bar{z}_1 \bar{z}_2)),
$$

\n
$$
\mu_7 = \frac{i\eta}{a_2^2}(z_2 - \bar{z}_2) - \frac{i\xi}{a_1^2}(\bar{z}_1(z_3 - z_1 z_2) - z_1(\bar{z}_3 - \bar{z}_1 \bar{z}_2)),
$$

\n
$$
\sqrt{3}\mu_8 = \frac{\eta}{a_2^2}(2 - |z_2|^2 - |z_3|^2) + \frac{\xi}{a_1^2}(1 + |z_1|^2 - 2|z_3 - z_1 z_2|^2);
$$

where

$$
a_2^2 = 1 + |z_2|^2 + |z_3|^2
$$
, $a_1^2 = 1 + |z_1|^2 + |z_3 - z_1 z_2|^2$.

On the **degenerate orbit** $\xi = 0$.

2. Kahlerian structure and ¨ G**-invariant basis of cohomology groups**

Proposition. (A. Borel) Suppose G is ^a semisimple Lie group. Then each orbit $\mathcal{O}_{\mu_{\mathbf{0}}}=G_{\mu_{\mathbf{0}}}\backslash G$ admits a complex analytic Kählerian structure invariant under the group G (G-invariant).

Borel A. Kählerian Coset Spaces of Semisimple Lie Groups. Proceedings of the National Academy of Sciences of the United States of America **40** (1954), 1147–1151.

The corresponding Kählerian form is generated by a Kählerian potential Φ :

$$
\omega = i \sum_{j,k} \frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k} \, dz_j \wedge d\overline{z}_k.
$$

The aims:

to find a Kählerian potential for each orbit;

to construct a G-invariant basis of cohomology groups.

Structure of cohomology ring of an orbit

All forms of odd degrees on an orbit are precise (A. Borel). Moreover, for the **general orbit**

$$
b0 + b2 + \cdots + b2n = \text{ord } W(G),
$$

 b^{k} denotes Betti number.

For the **degenerate orbit**

$$
b^{0} + b^{2} + \dots + b^{2m} = \frac{\text{ord } W(G)}{\text{ord } W(G_{\mu_{0}})},
$$

where $G_{\mu_{\mathbf{0}}}$ is the stability subgroup in $\mu_{\mathbf{0}}.$

Examples.

Group
$$
SU(2)
$$
, dim $\mathcal{O}^{SU(2)} = 2$
\ncohomology ring $H^* = H^0 \oplus H^2$
\nBetti numbers $1 + 1 = 2$
\nGroup $SU(3)$
\nfor general orbit $\mathcal{O}^{SU(3)}$, dim $\mathcal{O}^{SU(3)} = 6$
\ncohomology ring $H^* = H^0 \oplus H^2 \oplus H^4 \oplus H^6$
\nBetti numbers $1 + 2 + 2 + 1 = 6$
\nfor **degenerate orbit** $\mathcal{O}^{SU(3)}_{\text{degen}}$, dim $\mathcal{O}^{SU(3)}_{\text{degen}} = 4$
\ncohomology ring $H^* = H^0 \oplus H^2 \oplus H^4$
\nBetti numbers $1 + 1 + 1 = 3$

As shown above almost all orbits are bundles. This fact can be used for constructing cohomology rings.

Let $\mathcal O$ be not a maximal degenerate orbit in G , then there exist orbits \mathcal{O}_1 , \mathcal{O}_2 such that

$$
\mathcal{O}=\mathcal{O}_1\rtimes \mathcal{O}_2.
$$

By **Leray-Hirsch theorem**

$$
H^*(\mathcal{O}) = H^*(\mathcal{O}_1) \otimes H^*(\mathcal{O}_2).
$$

Example. For $SU(3)$ we have

$$
\mathcal{O}^{SU(3)}=\mathcal{O}_{\text{degen}}^{SU(3)}\rtimes\mathcal{O}^{SU(2)}\simeq\mathbb{C}\mathsf{P}^2\rtimes\mathbb{C}\mathsf{P}^1.
$$

Then

$$
H^*(\mathcal{O}^{SU(3)}) = (H^0 \oplus H^2 \oplus H^4) \otimes (H^0 \oplus H^2) =
$$

\n
$$
= H^0 \otimes H^0 \oplus \overline{H^0 \otimes H^2 \oplus H^2 \otimes H^0} \oplus
$$

\n
$$
\oplus \underline{H^2 \otimes H^2 \oplus H^4 \otimes H^0} \oplus H^4 \otimes H^2
$$

\n
$$
H^4(\mathcal{O}^{SU(3)})
$$

Basis of $H^2(\mathcal{O}^{SU(3)})$

From Leray-Hirsch theorem we obtain

$$
H^{2}(\mathcal{O}^{SU(3)}) = H^{0}(1)\otimes H^{2}(2)\oplus H^{2}(1)\otimes H^{0}(2),
$$

1 denotes $\mathcal{O}^{SU(3)}_{\text{degen}} \simeq \mathbb{C}\mathbb{P}^{2}$,
2 denotes $\mathcal{O}^{SU(2)} \simeq \mathbb{C}\mathbb{P}^{1}$.

Then
$$
\omega^{SU(3)}(z_1, z_2, z_3) =
$$

= $f_1(\widetilde{z_1}) \cdot \omega^{\mathbb{C}P^2}(z_2, z_3) + f_2(z_2, z_3) \cdot \omega^{\mathbb{C}P^1}(\widetilde{z_1}),$
where $\widetilde{z_1} = \frac{z_1 \sqrt{1 + |z_2|^2 + |z_3|^2}}{1 + |z_3|^2 - z_1 z_2 \overline{z_3}}.$

It is easy to compute the Kählerian potentials corresponding to $\omega^{\mathbb{C}\mathsf{P}^2}$ (z_2,z_3) and ω $\mathbb{C}\mathsf{P}^1$ (\tilde{z}_1) :

$$
\Phi^{\mathbb{C}P^1}(\tilde{z}_1) = \ln(1+|\tilde{z}_1|^2) =
$$

= $\ln\left(1+\frac{|z_1|^2(1+|z_2|^2+|z_3|^2)}{|1+|z_3|^2-z_1z_2\bar{z}_3|^2}\right).$

$$
\Phi^{\mathbb{C}P^2}(z_2, z_3) = \ln(1+|z_2|^2+|z_3|^2).
$$

Basis forms on $\mathcal{O}^{SU(3)}$ can be

$$
f_1(\widetilde{z_1}) \cdot \omega^{\mathbb{C}P^2}(z_2, z_3), \quad f_2(z_2, z_3) \cdot \omega^{\mathbb{C}P^1}(\widetilde{z_1}).
$$

Kahlerian structure. ¨ Kirillov-Kostant-Souriau differential form

A Kählerian structure can be represented by the Kirillov-Kostant-Souriau differential form. Besse A. L. Einstein Manifolds. Springer-Verlag, 1987.

Define the Killing form on g by

 $\langle \mu, X \rangle = \text{Tr}(\mu \cdot \text{ad}_{\mu} X), \quad \mu \in \mathfrak{g}^*, X \in \mathfrak{g};$

the Kirillov-Kostant-Souriau differential 2-form by

 $\omega(\operatorname{ad}_{\mu} X, \operatorname{ad}_{\mu} Y) = \langle \mu, [X, Y] \rangle, \quad X, Y \in \mathfrak{g}.$

Statement. If G is a compact semisimple group, the Kirillov-Kostant-Souriau 2-form coincides with ^a G-invariant Kählerian form.

Example. Kählerian potential for $SU(3)$:

$$
\Phi = (\mu_0, \alpha_1)\Phi_1 + (\mu_0, \alpha_2)\Phi_2,
$$

\n
$$
\Phi_1 = \ln(1 + |z_1|^2 + |z_3 - z_1 z_2|^2),
$$

\n
$$
\Phi_2 = \ln(1 + |z_2|^2 + |z_3|^2),
$$

where $\mu_0=(m,q)$ is an initial value of $\mu=(\mu_3,\mu_8)$; $\alpha_1=(1,0)$, $\alpha_2=(-\frac{1}{2},\frac{\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$) are simple roots.

We guess that the Kählerian potential for each orbit has the following form:

$$
\Phi = \sum_{k} (\mu_0, \alpha_k) \Phi_k.
$$

If μ_0 satisfies the **integer condition**

$$
2\frac{(\boldsymbol{\mu}_0,\boldsymbol{\alpha}_k)}{(\boldsymbol{\alpha}_k,\boldsymbol{\alpha}_k)}\in\mathbb{Z},
$$

then the corresponding orbit can be **quantized**.

In other words, there exists an irreducible unitary representation of the corresponding group in the space of holomorphic functions on the orbit. The function is a section and serves as a quantum state.

