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We consider the following problems

1) explicit parameterization of an orbit in terms of
‘good’ complex coordinates (generalized

stereographic projection),

2) Kahlerian structure (Kirillov-Kostant-Souriau
differential form) and G-invariant basis of

cohomology groups.

As an example we use coadjoint orbits (general

and degenerate) of group SU (n).



Geometry of coadjoint orbits

Let G be a compact semisimple classical Lie group

with Lie algebra g; § be the Cartan subalgebra of g.

Definition. The set O, = {Ad; p, Vg € G}
is called a coadjoint orbit of the group G

through u € g*.

In the case of classical Lie group Adg uw=g lug.
Coajoint orbit coincides with adjoint one,

which we define by Ady, X = gXg~1, X € g.

Theorem (R. Bott). For each u € g*, the coadjoint
orbit O,, intersects h* in a finite non-empty set of

points, which is an orbit of the Weyl group W (G).

A Weyl group is a finite group generated by
reflectings w, across the hyperplanes orthogonal

to simple roots «:

wa (1) =u—2§ﬁ,ﬁj§§ o, pebh”




A Weyl chamber is an open domain in h* such
that C = {p € h* : (u,a) >0, Va € AT}
A wall of the Weyl chamber is the set

Mo ={pep™: (ua) =0}
Obviously, h* =|Jw-C, we W(G).

Example. Group SU(3).
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Statement. Each orbit O of G is uniquely defined
by an element 1.q of the closed Weyl chamber C.

If ug € C, then the orbit is general (flag manifold).

If ug € M, @ € AT, then the orbit is degenerate.
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Coadjoint orbit as a bundle

For the general orbit (1o € C)
OMO — T\G, T ~ GMO’
T is the maximal torus of G (the Cartan subgroup),

Guo=1{9€G: Adyug = po} is a stability subgroup.

For the degenerate orbit (ug € Mo, « € AT)
O:UJO — G:U'O\G’ G D) G'u,o D) T.

Proposition 1. Suppose O,,, = G,,\G is not the
maximal degenerate orbit in G.

Then a subgroup K such thatG D K D Gy, exists,
and Oy, is a holomorphic bundle over K\G with
fibre G\ K:

Oug = Guo\K x K\G.



Example. Group SU(n).

The only orbit of SU(2) is

_SUQ2) 1
OSU@) = S0 ~ cpl.

The orbits of SU(3):
S — __SU(3)
O V3 = U(1)xU(1)’

SUB) _  SUB)  ~p2
Odegen = SU(2)§<Z}(1) ~ CP~.

OSUQR) ~ OSU(B) w 0U(2) ~ cp2 Pl

— “degen

The orbits of SU(4):

OSU(4) — SU((4)
T U()xU(1)xU(1)’

(’)SU(4) . SU(4)

1 = ST U(LXUL)’
OSU(4) . SU(4)

2 — S(UR)xUR))’

SU(4) SU(4) - 3
O3 = suy<o@ = P

OSU4) ~ O§U<4)>4 OSUB) ~ cp3 w CP2 x CPL



Examples. Classical Lie groups

The maximal tori are

SU(n) T=\U(1)><U(1)V><---><U(1)j,
SO(2n) T = SO(2) x SO2) x - x SO(2),
SO(2n+1) T = SO(2) x 50(23; X - x 50(2),
Sp(n) T =U(1) x U(l)vx%- - x U(1).

n—1

For the general orbits
OSU(n) — cpn1 OSU(n—l)
050(271) — GQn;Q ><] (950(2?”&-2)7
OSO(2n+1) — G2'n,—]_;2 ><] (950(2??,—1)7

OSp(n) — mgpr—1 OSp(n—l).

Gon:2, Gop—1:2 are real Grassman manifolds,

H is the quaternionic space.



1. Complex parameterization of an orbit

To introduce complex structure we complexify G:
Gt = exp{g + ig}
and use the diffeomorphism (D. Montgomery)
O =T\G ~ Py\GC, (1)
Py denotes the minimal parabolic subgroup in GC.

(1) takes place for the general orbit.

Indeed, G* admits an lwasawa decomposition
Gt = NAG,

N corresponds to a nilpotent subalgebra of g,

A corresponds to an abelian subalgebra of g,

G Is the maximal compact subgroup in GC.

In this connection, Py = N AT, then (1) is evident.

For the degenerate orbit instead of (1) we have
Guo\G ~ Py \GT,
Py = NAM is a non-minimal parabolic subgroup.
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Generalized stereographic projection

Holod P.l., Skrypnyk T.V. Ukrainian Mathematical Journal 50
(1998), 1504-1512.

Gauss decomposition gives

Gt = nNTCZ,
TC is the Cartan subgroup of G, TC = AT
N and Z = N* are nilpotent subgroups of G*
normalized by TC,

: , _ NAG __ NATZ __
It is obvious that O = NAT = NAT = Z.

Proposition 2. Z gives complex parameters

of stereographic projection for the orbit O.

Gauss decomposition is local and covers one map.
Gauss-Bruhat decomposition is global
Gt = N PoZw,
weW (G) /W (T)
Z = exp {Za€A+ zaX_a} :
X _ are negative root vectors,

2o denotes complex coordinates, a € AT,



Example. Complexification of SU(n) is SL(n,C).
Decomposition gives

zZ = nau, u€e G=SU(n),
Z 3>z — low triangular matrix (1s on the diagonal)
N > n — upper triangular matrix (1s on the diagonal)

A > a is a real diagonal matrix

a = diag(ai,ap,a3), a; >0, ajapaz = 1.
SU(3):

1 0 O

z1 1 0] =

zz3 zo 1

1
1 n1 n3 .
O 1 no 0]
O 0 1 0
For the general orbit

a5 =14 |z|* 4 |23]°, af = 14 |21]” + |23 — 2122,

1 _
ny = 9(21(1 + |22|%) — 2073),
1

ofle O
ole)

v
)

asz

1 ,_ _ z3
ny = — (224 2123), nz= —
az az

For the degenerate orbit assign z; = 0.



A coadjoint orbit is generated by the formula
f=u o,  fig = fi(o0)
with the initial point iig in the Weyl chamber.

pst sps g1 —ip2 pa—ius

Suppose fi = | w1tine  —ps+ spe pe —ipT
patips  petipr  —sus

Let 1ig have the following form:
1 0 O
for the degenerate orbit o = (o 1 0 )
0 0
for the general orbit (¢, n € R)
> (2 0 0 > (L0 0
0O 0 -1 0O 0 -2
If we denote m = u3(o0), ¢ = ug(co), then

n=-3(m-v3q), £=m.
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Complex parameterization of the general orbit

_%(52z3 + 2023) — %(21 + z1),
as aj

p1 =
mn . _ _ 1 _
p2 = —2(2223 — 2223) + —2(21 — 21),
U] §
ps = —5(|z2f* = |23*) + S5 (1 — |z,
_ M _ 3 = 3%
g = ——2(23 + 23) — —2(z3 —z120+ 23 — z2122),
as aj
) _ 1 _ _
ns = —2(23 — 23) + _2(Z3 — R1k2 — (Z3 - 2122)>7
as ay

pe = —%(Zz + 22) + %(51(23 — z122) + z1(Z3 — Z2122)),
az a1

1 - 1 - — - =
wr = (22— ) — —=(51(23 — 2122) — 21(F3 — 2132)),
a3 a7
V3ug = %(2 — |22|* — |23]*) + %(1 + [21]% — 2|23 — z122]%);
2 1

where

a5 =1+ |2+ |23°, ai =14 |21+ |23 — z122)°

On the degenerate orbit ¢ = 0.
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2. Kahlerian structure and G-invariant basis

of cohomology groups

Proposition. (A. Borel) Suppose G is a semisimple
Lie group. Then each orbit O,,, = G,,,\G admits a
complex analytic Kahlerian structure invariant under
the group G (G-invariant).

Borel A. Kahlerian Coset Spaces of Semisimple Lie Groups.
Proceedings of the National Academy of Sciences of the
United States of America 40 (1954), 1147-1151.

The corresponding Kahlerian form is generated by
a Kahlerian potential &:
PR
w = ZZ —
ik aZjﬁzk

de YA\ dzk.

The aims:
to find a Kahlerian potential for each orbit;

to construct a GG-invariant basis of conomology groups.
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Structure of cohomology ring of an orbit

All forms of odd degrees on an orbit are precise

(A. Borel). Moreover, for the general orbit
O+ b2+ .- 4+ 2" = ord W(Q),

b* denotes Betti number.

For the degenerate orbit

ord W(G )’
where G, is the stability subgroup in pq.

Examples.

Group SU(2), dim ©5U(2) =2

cohomology ring H* = HO @ H?

Betti numbers 1+ 1=2

Group SU(3)
for general orbit ©SU(3), dim ©SUR3) =6
cohomology ring H* = HO @ H?2 @ H* @ H°
Betti numbers 14+24+2+1=6

for degenerate orbit Oi%g), dim Oagéég’]) =4

cohomology ring H* = HO ® H? @ H*
Betti numbers 14+1+4+1=3
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As shown above almost all orbits are bundles. This

fact can be used for constructing cohomology rings.

Let O be not a maximal degenerate orbit in GG,
then there exist orbits 01, O5 such that
O =01 xOo.
By Leray-Hirsch theorem
H*(O) = H*(01) @ H*(0O5).

Example. For SU(3) we have

OSUQR) — Oage%g’]) w 0U(2) ~ cP2 P,

Then

H2(05U(3))
— 99 HOa HO® H2 & H2 © HO ¢
®H?® H?® H* @ HO®oH* @ H?
HA(OSU3))
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Basis of H2(05U(3))
From Leray-Hirsch theorem we obtain
H2(0°Y3)) = HO(1)eH?(2)eH?(1)0HO(2),

SU(3) 2
1 denotes Odegen ~ CP~,

2 denotes ©5U(2) ~ cp1l.
Then &°U(3) (21,20,23) =

= f1(1) WP (22, 23) + falz2, 23) - (27),

_ 21\/1+|22|2+|Z3|2_
1+4|23]°—212023

where z7

It is easy to compute the Kahlerian potentials

. > 1,
corresponding to wtP" (25, 23) and WP (z7):

TP (z1) = In(1 + |71]?) =

_ \21\2(1+\22\2+|Z3|2))
=1In (1 T 14|23/ —212023]° ) °

®CP? (29, 23) = In(1 + |22]2 + |23)?).

Basis forms on @5V (3) can be

F1(71) - wCP (20, 23),  folzo, 23) - TP (21).
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Kahlerian structure.

Kirillov-Kostant-Souriau differential form

A Kahlerian structure can be represented by

the Kirillov-Kostant-Souriau differential form.

Besse A. L. Einstein Manifolds. Springer-Verlag, 1987.

Define the Killing form on g by
(1, X) =Tr(u-ad, X), pegt, Xeg,

the Kirillov-Kostant-Souriau differential 2-form by
w(ad, X,ad, V) = (1, [X,Y]), XY €q.

Statement. If GG is a compact semisimple group, the
Kirillov-Kostant-Souriau 2-form coincides with a

(G-invariant Kahlerian form.
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Example. Kahlerian potential for SU (3):

® = (po, a1)P1 + (o, a2)Po,
®1 = In(1 4 [21]° + |23 — z122]2),
®o = In(1 + [22] + [23]°),
where g = (m, q) is an initial value of u = (u3, ug);

a; = (1,0), ap = (-3, @) are simple roots.

We guess that the Kahlerian potential for each

orbit has the following form:

= (po, o) Py
2

If 1o satisfies the integer condition
(g, ap)
then the corresponding orbit can be quantized.

In other words, there exists an irreducible unitary
representation of the corresponding group in the space of
holomorphic functions on the orbit. The function is a section
and serves as a quantum state.

The end
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