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Abstract
The notion of of photon-like object (PhLO) is introduced
and briefly discussed. The nonlinear connection view on the
Frobenius integrability theory on manifolds is considered as a
frame in which appropriate description of photon-like objects
to be developed

1.The Notion of PhLO

PhLO are real massless time-stable physical objects with
a consistent translational-rotational dynamical structure

Remarks:

a/”real”

-necessarily carries energy-momentum,
-can be created and destroyed,
-spatially finite, finite values of physical quantities,
-propagation and (NOT motion) .

b/”massless”

-E = cp, isotropic vector field ζ̄ = (0, 0,−ε, 1)
-TµνT

µν = 0
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c/”translational-rotational”

-the propagation has 2 components: translational and rotational
-both exist simultatiously and consistently

d/”dynamical structure”

- internal energy-momentum redistribution
- may have interacting subsystems

2. Non-linear connections

2.1.Projections: Linear maps P in a linear space W n satisfying: P.P =
P . If (e1, . . . , en) and (ε1, . . . , εn) are two dual bases in W then n =
dim(KerP ) + dim(ImP ). If dim(KerP ) = p and dim(ImP ) =
n− p then P is represented by

P = εa ⊗ ea + (Ni)
aεi × ea, i = 1, . . . , p; a = p + 1, . . . , n .

2.2 Nonlinear connections
Let Mn be a smooth (real) manifold with (x1, . . . , xn) be local coordi-
nate system. We have the corresponding local frames {dx1, . . . , dxn}
and {∂x1, . . . , ∂xn}. Let for each x ∈ M we are given a projection
Px of constant rank p in the tangent space Tx(M). Under this con-
dition we say that a nonlinear connection is given on M . The space
Ker(Px) ⊂ Tx(M) is called P -horizontal, and the space Im(Px) ⊂
Tx(M) is called P -vertical. Thus, we have two distributions on M .
The corresponding integrabilities can be defined in terms of P by means
of the Nijenhuis bracket [P, P ] given by :

[P, P ](X, Y ) = 2
{
[P (X), P (Y )]+P [X,Y ]−P [X, P (Y )]−P [P (X), Y ]

}

Now we add and subtract the term P [P (X), P (Y )], so, the right hand
expression can be represented by

[P, P ](X,Y ) = R(X,Y ) + R̄(X,Y ),
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where

R(X,Y ) = P
(
[(id− P )X, (id− P )Y ]

)
= P

(
[PHX, PHY ]

)

and

R̄(X,Y ) = [PX,PY ]− P
(
[PX,PY ]

)
= PH [PX, PY ].

Since P projects on the vertical subspace Im P , then (id− P ) = PH

projects on the horizontal subspace. Hence, R(X,Y ) 6= 0 measures
the nonintegrability of the corresponding horizontal distribution, and
R̄(X,Y ) 6= 0 measures the nonintegrability of the vertical distribution.

If the vertical distribution is given before-hand and is integrable, then
R(X,Y ) = P

(
[PHX,PHY ]

)
is called curvature of the nonlinear con-

nection P if there exist at least one couple of vector fields (X,Y ) such
that R(X, Y ) 6= 0.

Physics + Mathematics.
Any physical system with a dynamical structure is characterized with

some internal energy-momentum redistributions, i.e. energy-momentum
fluxes, during evolution. Any system of energy-momentum fluxes (as
well as fluxes of other interesting for the case physical quantities sub-
ject to change during evolution, but we limit ourselves just to energy-
momentum fluxes here) can be considered mathematically as generated
by some system of vector fields. A consistent and interelated time-
stable system of energy-momentum fluxes can be considered to corre-
spond to an integrable distribution ∆ of vector fields according to the
principle local object generates integral object. An integrable distribu-
tion ∆ may contain various nonintegrable subdistributions ∆1, ∆2, . . .
which subdistributions may be interpreted physically as interacting sub-
sytems. Any physical interaction between 2 subsystems is necessar-
ily accompanied with available energy-momentum exchange between
them, this could be understood mathematically as nonintegrability of
each of the two subdistributions of ∆ and could be naturally measured
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by the corresponding curvatures. For example, if ∆ is an integrable
3-dimensional distribution spent by the vector fields (X1, X2, X3) then
we may have, in general, three non-integrable 2-dimensional subdistrib-
utions (X1, X2), (X1, X3), (X2, X3). Finally, some interaction with the
outside world can be described by curvatures of nonintegrable distribu-
tions in which elements from ∆ and vector fields outside ∆ are involved
(such processes will not be considered in this paper).

3. Back to PhLO.
The base manifold is the Minkowski space-time M = (R4, η), where η
is the pseudometric with signη = (−,−,−, +), canonical coordinates
(x, y, z, ξ = ct), and canonical volume form ωo = dx ∧ dy ∧ dz ∧ dξ.
We have the corresponding vector field

ζ̄ = −ε
∂

∂z
+

∂

∂ξ
, ε = ±1

determining that the straight-line of translational propagation of our
PhLO is along the spatial coordinate z.

Let’s denote the corresponding to ζ̄ completely integrable 3-dimensional
Pfaff system by ∆∗(ζ̄). Thus, ∆∗(ζ̄) is generated by three linearly in-
dependent 1-forms (α1, α2, α3) which annihilate ζ̄, i.e.

α1(ζ̄) = α2(ζ̄) = α3(ζ̄) = 0; α1 ∧ α2 ∧ α3 6= 0.

Instead of (α1, α2, α3) we introduce the notation (A,A∗, ζ) and define
ζ by

ζ = εdz + dξ,

Now, since ζ defines 1-dimensional completely integrable Pfaff system
we have the corresponding completely integrable distribution (Ā, Ā∗, ζ̄).
We specify further these objects according to the following



5

Definition: We shall call these dual systems electromagnetic if
they satisfy the following conditions (〈, 〉 is the coupling between forms
and vectors):

1. 〈A, Ā∗〉 = 0, 〈A∗, Ā〉 = 0,
2. the vector fields (Ā, Ā∗) have no components along ζ̄,
3. the 1-forms (A,A∗) have no components along ζ,
4. (Ā, Ā∗) are η-corresponding to (A,A∗) respectively .

Further we shall consider only PhLO of electromagnetic nature.

From conditions 2,3 and 4 it follows that

A = u dx + p dy, A∗ = v dx + w dy;

Ā = −u
∂

∂x
− p

∂

∂y
, Ā∗ = −v

∂

∂x
− w

∂

∂y
,

and from condition 1 it follows v = −εu, w = εp, where ε = ±1,
and (u, p) are two smooth functions on M . Thus we have

A = u dx + p dy, A∗ = −ε p dx + ε u dy;

Ā = −u
∂

∂x
− p

∂

∂y
, Ā∗ = ε p

∂

∂x
− ε u

∂

∂y
.

The completely integrable 3-dimensional Pfaff system (A,A∗, ζ) con-
tains three 2-dimensional subsystems: (A,A∗), (A, ζ) and (A∗, ζ). We
have the following

Proposition 1. The following relations hold:

dA ∧ A ∧ A∗ = 0; dA∗ ∧ A∗ ∧ A = 0;

dA ∧ A ∧ ζ = ε
[
u(pξ − εpz)− p(uξ − εuz)

]
ωo;

dA∗ ∧ A∗ ∧ ζ = ε
[
u(pξ − εpz)− p(uξ − εuz)

]
ωo.

Proof. Immediately checked.
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These relations say that the 2-dimensional Pfaff system (A,A∗) is com-
pletely integrable for any choice of the two functions (u, p), while the
two 2-dimensional Pfaff systems (A, ζ) and (A∗, ζ) are NOT completely
integrable in general, and the same curvature factor

R = u(pξ − εpz)− p(uξ − εuz)

determines their nonintegrability.
Correspondingly, the 3-dimensional completely integrable distribution

(or differential system) ∆(ζ) contains three 2-dimensional subsystems:
(Ā, Ā∗), (Ā, ζ̄) and (Ā∗, ζ̄). We have the

Proposition 2. The following relations hold ([X, Y ] denotes the
Lie bracket):

[Ā, Ā∗] ∧ Ā ∧ Ā∗ = 0,

[Ā, ζ̄ ] = (uξ − εuz)
∂

∂x
+ (pξ − εpz)

∂

∂y
,

[Ā∗, ζ̄ ] = −ε(pξ − εpz)
∂

∂x
+ ε(uξ − εuz)

∂

∂y
.

Proof. Immediately checked.

From these last relations and in accordance with Prop.1 it follows
that the distribution (Ā, Ā∗) is integrable, and it can be easily shown
that the two distributions (Ā, ζ̄) and (Ā∗, ζ̄) would be completely inte-
grable only if the same curvature factor

R = u(pξ − εpz)− p(uξ − εuz)

is zero.
We mention also that the projections

〈A, [Ā∗, ζ̄ ]〉 = −〈A∗, [Ā, ζ̄ ]〉 = εu(pξ − εpz)− εp(uξ − εuz) = εR

give the same factor R. The same curvature factor appears, of course,
as coefficient in the exterior products [Ā∗, ζ̄ ]∧Ā∗∧ ζ̄ and [Ā, ζ̄ ]∧Ā∧ ζ̄.
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In fact, we obtain

[Ā∗, ζ̄ ]∧Ā∗∧ζ̄ = −[Ā, ζ̄ ]∧Ā∧ζ̄ = −εR
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
+R

∂

∂x
∧ ∂

∂y
∧ ∂

∂ξ
.

On the other hand, for the other two projections we obtain

〈A, [Ā, ζ̄ ]〉 = 〈A∗, [Ā∗, ζ̄ ]〉 =
1

2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
.

Clearly, the last relation may be put in terms of the Lie derivative Lζ̄

as

1

2
Lζ̄(u

2 + p2) = −1

2
Lζ̄〈A, Ā〉 = −〈A,Lζ̄Ā〉 = −〈A∗, Lζ̄Ā

∗〉.

Remark. Further in the paper we shall denote
√

u2 + p2 ≡ φ, and
shall assume that φ is a spatially finite function, so, u and p must also
be spatially finite.

Proposition 3. There is a function ψ(u, p) such, that

Lζ̄ψ =
u(pξ − εpz)− p(uξ − εuz)

φ2
=

R

φ2
.

Proof. It is immediately checked that ψ = arctan p
u is such one.

We note that the function ψ has a natural interpretation of phase
because of the easily verified now relations u = φ cos ψ, p = φ sin ψ,
and φ acquires the status of amplitude. Since the transformation
(u, p) → (φ, ψ) is non-degenerate this allows to work with the two
functions (φ, ψ) instead of (u, p).

From Prop.3 we have

R = φ2Lζ̄ψ = φ2(ψξ − εψz) .
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Back to Non-linear connections
The above relations show that we can introduce two nonlinear con-

nections: P and P̃ . In fact, since the integrable distribution (Ā, Ā∗)
lives in the (x, y)-plane we present the coordinates in order (z, ξ, x, y)
and the bases (dz, dξ, dx, dy), (∂z, ∂ξ, ∂x, ∂y). We choose the vertical
distribution to be generated by (∂x, ∂y). The corresponding projections
look like:

PV = dx⊗ ∂

∂x
+dy⊗ ∂

∂y
−ε udz⊗ ∂

∂x
−udz⊗ ∂

∂y
−ε pdξ⊗ ∂

∂x
−pdz⊗ ∂

∂y
,

P̃V = dx⊗ ∂

∂x
+dy⊗ ∂

∂y
+pdz⊗ ∂

∂x
+εpdz⊗ ∂

∂y
−udξ⊗ ∂

∂x
−εudξ⊗ ∂

∂y
,

The corresponding matrices look like:

PV =

∥∥∥∥∥∥∥∥

0 0 0 0
0 0 0 0
−εu −u 1 0
−εp −p 0 1

∥∥∥∥∥∥∥∥
, PH =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
εu u 0 0
εp p 0 0

∥∥∥∥∥∥∥∥
,

(PV )∗ =

∥∥∥∥∥∥∥∥

0 0 −εu −εp
0 0 −u −p
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
, (PH)∗ =

∥∥∥∥∥∥∥∥

1 0 εu εp
0 1 u p
0 0 0 0
0 0 0 0

∥∥∥∥∥∥∥∥
,

P̃V =

∥∥∥∥∥∥∥∥

0 0 0 0
0 0 0 0
p εp 1 0
−u −εu 0 1

∥∥∥∥∥∥∥∥
, P̃H =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
−p −εp 0 0
u εu 0 0

∥∥∥∥∥∥∥∥
,

(P̃V )∗ =

∥∥∥∥∥∥∥∥

0 0 p −u
0 0 εp −εu
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
, (P̃H)∗ =

∥∥∥∥∥∥∥∥

1 0 −p u
0 1 −εp εu
0 0 0 0
0 0 0 0

∥∥∥∥∥∥∥∥
,



9

The projections of the coordinate bases are:(
∂

∂z
,

∂

∂ξ
,

∂

∂x
,

∂

∂y

)
.PV =

(
−εu

∂

∂x
− εp

∂

∂y
,−u

∂

∂x
− p

∂

∂y
,

∂

∂x
,

∂

∂y

)
;

(
∂

∂z
,

∂

∂ξ
,

∂

∂x
,

∂

∂y

)
.PH =

(
∂

∂z
+ εu

∂

∂x
+ εp

∂

∂y
,

∂

∂ξ
+ u

∂

∂x
+ p

∂

∂y
, 0, 0

)
;

(dz, dξ, dx, dy) .(PV )∗ = (0, 0,−εudz − udξ + dx,−εpdz − pdξ + dy))

(dz, dξ, dx, dy) .(PH)∗ = (dz, dξ, εudz + udξ, εpdz + pdξ))

Consider now the 2-forms:

G = (PV )∗dx ∧ (PH)∗dx + (PV )∗dy ∧ (PH)∗dy =

εu dx ∧ dz + εp dy ∧ dz + u dx ∧ dξ + p dy ∧ dξ

G̃ = (P̃V )∗dx ∧ (P̃H)∗dx + (P̃V )∗dy ∧ (P̃H)∗dy =

−p dx ∧ dz + u dy ∧ dz − εp dx ∧ dξ + εu dy ∧ dξ

It follows: G = A∧ζ, G̃ = A∗∧ζ and G̃ = ∗G, where ∗ is the Hodge
star operator defined by η. Clearly, the two 2-forms (G, ∗G) represent
the two nonintegrable Pfaff systems (A, ζ) and (A∗, ζ).

The corresponding curvatures are:

R = ε(uξ − εuz)dz ∧ dξ ⊗ ∂

∂x
+ ε(pξ − εpz)dz ∧ dξ ⊗ ∂

∂y

R̃ = −(pξ − εpz)dz ∧ dξ ⊗ ∂

∂x
+ (uξ − εuz)dz ∧ dξ ⊗ ∂

∂y
We obtain

R
(

PH
∂

∂z
, PH

∂

∂ξ

)
= [Ā, ζ̄ ]

R̃
(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)
= [εĀ∗, ζ̄ ]
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Again Physics + Mathematics
The two 2-forms obtained (G, ∗G) suggest to test them as basic

constituents of Classical electrodynamics, i.e. if they satisfy Maxwell
equations. However, it turns out that dG 6= 0 and d∗G 6= 0 in general.
As for the energy-momentum part of Maxwell theory, determined by the
corresponding energy-momentum tensor

Tµ
ν =

1

2

[
GµσG

νσ + (∗G)µσ(∗Gνσ
]
, and T44 = u2 + p2 = φ2,

we obtain the following relations:

∇νT
ν
µ =

1

2

[
Gαβ(dG)αβµ + (∗G)αβ(d ∗G)αβµ

]
.

Gαβ(dG)αβµdxµ = (∗G)αβ(d ∗G)αβµdxµ =

1

2
Lζ̄(u

2 + p2).ζ =
1

2
Lζ̄φ

2.ζ

On the other hand

(∗G)αβ(dG)αβµdxµ = −Gαβ(d ∗G)αβµdxµ =
[
u(pξ − εpz)− p(uξ − εuz)

]
ζ = R.ζ.

Also, we find〈
A, R̃

(
P̃H

∂

∂z
, P̃H

∂

∂ξ

)〉
= −

〈
εA∗,R

(
PH

∂

∂z
, PH

∂

∂ξ

)〉
= −R.

So, if Lζ̄φ = 0 we can say that our two 2-forms G = A ∧ ζ and
∗G = A∗ ∧ ζ, having zero invariants, are nonlinear solutions to the
nonlinear equations

Gαβ(dG)αβµ = 0, (∗G)αβ(d ∗G)αβµ = 0,

Gαβ(d ∗G)αβµ + (∗G)αβ(dG)αβµ = 0.

From physical point of view these three equations say that the two sub-
systems of our PhLO, mathematically represented by the G and ∗G
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keep the energy-momentum they carry, and are in permanent energy-
momentum exchange with each other in equal quantities, i.e. in perma-
nent dynamical equilibrium. The mathematical quantity that guarantees
the dynamical nature of this equilibrium is the nonzero curvature R or
R. The permanent nature of this dynamical equilibrium suggests to
look for corresponding parameter(s), which should represent relation(s)
between/among the state at a given moment of PhLO and its intrin-
sical capability to overcome the destroying tendencies of the existing
nonintegrabilities by means of appropriate propagation properties.

We note the relations:〈
A,PH

∂

∂ξ

〉
=

〈
A∗, P̃H

∂

∂z

〉
= −

〈
A,PV

∂

∂ξ

〉
= ε

〈
A,PH

∂

∂z

〉
=

−ε

〈
A,PV

∂

∂z

〉
= ε

〈
A∗, P̃H

∂

∂ξ

〉
= −

〈
A∗, P̃V

∂

∂

〉
=

−ε

〈
A∗, P̃V

∂

∂ξ

〉
= u2 + p2 = φ2 = −η(A,A) = −η(A∗, A∗) ≡ S2.

On the other hand〈
(PV )∗(dx) ∧ (PV )∗(dy),R

(
PH

∂

∂z
, PH

∂

∂ξ

)
∧ R̃

(
P̃H

∂

∂z
, P̃H

∂

∂ξ

)〉
=

=

〈
(P̃V )∗(dx) ∧ (P̃V )∗(dy),R

(
PH

∂

∂z
, PH

∂

∂ξ

)
∧ R̃

(
P̃H

∂

∂z
, P̃H

∂

∂ξ

)〉
=

ε
[
(uξ − εuz)

2 + (pξ − εpz)
2
]

= ε (R)2 ≡ εZ2.

Hence, the relation

S2

Z2
=

u2 + p2

[
(uξ − εuz)2 + (pξ − εpz)2

] =
φ2

φ2(ψξ − εψz)2
=

1

(Lζ̄ψ)2
≡ (lo)

2

defines the quantity κlo, κ = ±1 as an appropriate such parameter.

4. Translational-rotational consistency
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In order to introduce mathematically the translational-rotational con-
sistency we recall the relations

Ā∧Ā∗ = εφ2 ∂

∂x
∧ ∂

∂y
6= 0; [Ā, ζ ]∧[Ā∗, ζ ] = εφ2(Lζ̄ψ)2

∂

∂x
∧ ∂

∂y
6= 0 .

Thus we have two frames (Ā, Ā∗, ∂z, ∂ξ) and ([Ā, ζ̄ ], [Ā∗, ζ̄ ], ∂z, ∂ξ).
The internal energy-momentum redistribution during propagation is
strongly connected with the existence of linear map transforming the
first frame into the second one since both are defined by the dynamical
nature of our PhLO. Taking into account that only the first two vec-
tors of these two frames change during propagation we write down this
relation in the form

([Ā, ζ ], [Ā∗, ζ ]) = (Ā, Ā∗)
∥∥∥∥
α β
γ δ

∥∥∥∥ .

Solving this system with respect to the real numbers (α, β, γ, δ) we
obtain∥∥∥∥
α β
γ δ

∥∥∥∥ =
1

φ2

∥∥∥∥
−1

2Lζ̄φ
2 εR

−εR −1
2Lζ̄φ

2

∥∥∥∥ = −1

2

Lζ̄φ
2

φ2

∥∥∥∥
1 0
0 1

∥∥∥∥+εLζ̄ψ

∥∥∥∥
0 1
−1 0

∥∥∥∥ .

Assuming the conservation law Lζ̄φ
2 = 0, we obtain that the rotational

component of propagation is governed by the matrix εLζ̄ψ J , where J
denotes the canonical complex structure in R2, and since φ2 Lζ̄ψ = R
we conclude that the rotational component of propagation is available
if and only if the Frobenius curvature is NOT zero: R 6= 0. We may
also say that a consistent translational-rotational dynamical structure
is available if the amplitude φ2 = u2 + p2 is a running wave along ζ̄
and the phase ψ = arctgp

u is NOT a running wave along ζ̄.
As we noted before the local conservation law Lζ̄φ

2 = 0, being equiv-
alent to Lζ̄φ = 0, gives one dynamical linear first order equation. This
equation pays due respect to the assumption that our spatially finite
PhLO, together with its energy density, propagates translationally with



13

the constant velocity c. We need one more equation in order to specify
the phase function ψ. If we pay corresponding respect also to the rota-
tional aspect of the PhLO nature it is desirable this equation to intro-
duce and guarantee the conservative and constant character of this
aspect of PhLO nature. Since rotation is available only if Lζ̄ψ 6= 0,
the simplest such assumption respecting the constant character of the
rotational component of propagation seems to be Lζ̄ψ = const, i.e.
lo = const. Thus, the equation Lζ̄φ = 0 and the frame rotation
(Ā, Ā∗, ∂z, ∂ξ) → ([Ā, ζ̄ ], [Ā∗, ζ̄ ], ∂z, ∂ξ), i.e. [Ā, ζ̄ ] = −εĀ∗Lζ̄ψ and
[Ā∗, ζ̄ ] = εĀ Lζ̄ψ, give the following equations for the two functions
(u, p):

uξ − εuz = −κ

lo
p, pξ − εpz =

κ

lo
u .

If we now introduce the complex valued function Ψ = u I + p J , where
I is the identity map in R2, the above two equations are equivalent to

Lζ̄Ψ =
κ

lo
J(Ψ) ,

which clearly confirms once again the translational-rotational consis-
tency in the form that no translation is possible without rotation,
and no rotation is possible without translation, where the rotation is
represented by the complex structure J . Since the operator J rotates to
angle α = π/2, the parameter lo determines the corresponding transla-
tional advancement, and κ = ±1 takes care of the left/right orientation
of the rotation. Clearly, a full rotation (i.e. 2π-rotation) will require a
4lo-translation, so, the natural time-period is T = 4lo/c = 1/ν, and
4lo is naturally interpreted as the PhLO size along the spatial direction
of translational propagation.

In order to find an integral characteristic of the PhLO rotational
nature in action units we correspondingly modify, (i.e. multiply by
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κlo/c) and consider any of the two equal Frobenius 4-forms:

κlo
c

dA ∧ A ∧ ζ =
κlo
c

dA∗ ∧ A∗ ∧ ζ =
κlo
c

εRωo .

Integrating this 4-form over the 4-volume R3× 4lo we obtain the quan-
tity H = εκET = ±ET , where E is the integral energy of the PhLO,
which clearly is the analog of the Planck formula E = hν, i.e. h = ET .

As an illustration we show a picture and a moving picture of a class
of solutions to the above equations.



Figure 1: Theoretical example with κ = −1. The Poynting vector is directed left-to-right.

Figure 2: Theoretical example with κ = 1. The Poynting vector is directed left-to-right.
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