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Coherent state map and corresponding algebra

H – a bounded positive operator with simple spectrum in Hilbert
space H

|0〉 – cyclic vector, i.e. {E(∆) |0〉}∆∈B(R) is linearly dense in H

〈0|0〉 = 1

I : L2(R, dµ) 3 f 7−→
∫
R

f(λ)E(dλ) |0〉 ∈ H

is an isomorphism for

µ(∆) = 〈0|E(∆) 0〉.

I∗ ◦H ◦ I acts in L2(R, dµ) as the multiplication by argument
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By Gram-Schmidt orthonormalization one obtains orthonormal
polynomials Pn in L2(R, dµ)

The orthonormal basis in H

|n〉 := Pn(H) |0〉 = I(Pn)

H |n〉 = bn−1 |n− 1〉+ an |n〉+ bn |n + 1〉

bn > 0, b−1 = 0 and an, bn ∈ R

Jacobi matrix

J =


a0 b0 0 · · ·
b0 a1 b1

0 b1 a2
. . .

...
. . .

. . .


Tomasz Goliński Operator algebras related to bounded positive operator



Coherent state map and corresponding algebra
Examples

Toda isospectral deformation

Moments of measure µ

σk :=

∫
R

λkµ(dλ) > 0

σk = 〈0|Hk 0〉, k ∈ N ∪ {0}

Resolvent Rλ := (H− λ1)−1

〈0|Rλ 0〉 =

∫
R

µ(dx)

x− λ
= −

∞∑
k=0

σk

λk+1
,

where the second equality is valid for |λ| > ‖H‖.
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Coherent state map – a complex analytic map K : D → H from
disc D with linearly dense image, expressed by

K(z) =
∞∑

n=0

cnzn |n〉 , 0 < cn ∈ R

Annihilation operator

AK(z) = zK(z).

A |n〉 :=
cn−1

cn
|n− 1〉 ,

where c−1 = 0.
Creation operator

A∗ |n〉 =
cn

cn+1
|n + 1〉 .
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Generalized exponential function E : D̃ → C

E(v̄w) := 〈K(v)|K(w)〉,

We consider two coherent state maps

K1(z) :=
∞∑

n=0

√
σnzn |n〉 ,

for |z| < ‖H‖−
1
2

K2(z) :=
∞∑

n=0

1
√

σn
zn |n〉

for |z| < ‖H‖
1
2 .
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E1(z) = −1

z
〈0|R 1

z
|0〉 =

∞∑
n=0

σnzn

Decomposition of unity∫
|K2(z)〉〈K2(z)| ν(dz) = 1,

ν(dz) :=
1

2π
dϕ f∗µ(dr),

where z = reiϕ and f∗µ is pullback of (2) by f(x) := x2.

E2(vw) =

∫
E2(vz)E2(zw) ν(dz),
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T - Toeplitz algebra, i.e. C∗-algebra generated by shift operator

S |n〉 = |n− 1〉 , n ∈ N
S |0〉 = 0.

Proposition

i) Let us assume that A1 is bounded. Then the C∗-algebra A1

generated by A1 coincides with T if and only if the sequence
{σn−1

σn
}n∈N is convergent.

ii) Let us assume that A2 is bounded. Then the C∗-algebra A2

generated by A2 coincides with T if and only if the sequence
{σn−1

σn
}n∈N is convergent.

iii) If both A1 and A2 are bounded then A1 = A2.
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Sketch of proof

i)

lim inf
n→∞

σn

σn−1
6 lim inf

n→∞
n
√

σn 6 lim sup
n→∞

n
√

σn 6 lim sup
n→∞

σn

σn−1

lim
n→∞

n
√

σn = lim
n→∞

σn

σn−1

S = (A1A∗
1)
− 1

2 A1 ∈ A1

A1A∗
1 − (‖H‖)−1

1 is compact. Thus A1 = (A1A∗
1)

1
2 S ∈ T .

iii) A1 bounded ⇒ A2A∗
2 bounded from below

A1A∗
1 = (A2A∗

2)
−1

A1 = (A2A∗
2)
−1A2

A2 = (A1A∗
1)
−1A1
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We will restrict our considerations to the case A1 = A2 = T .

Q :=
∞∑

n=0

qn|n〉〈n| ∈ T , 0 < q < 1

Structural function R : specQ → specA∗
1A1 (continuous)

R(qn) :=
σn−1

σn
for n ∈ N ∪ {0},

R(0) := lim
n→∞

σn−1

σn
= ‖H‖−1 ,

Structural relations:
A∗

1A1 = R(Q)

A1A∗
1 = R(qQ)

qQA1 = A1Q

qA∗
1Q = QA∗

1
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N |n〉 := n |n〉

[A1,N] = A1

[A∗
1,N] = −A∗

1

A∗k
1 Ak

1 = R(Q)...R(qkQ), Ak
1A

∗k
1 = R(qQ)...R(qk+1Q)

σk =
1

R(q)...R(qk)
=

1

〈0|Ak
1A

∗k
1 0〉

E1(z) :=
∞∑

n=0

zn

R(q)...R(qk)
,

E2(z) :=
∞∑

n=0

R(q)...R(qk) zn.
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Example (little q-Jacobi polynomials)

R(x) =
(1− x)(1− b1q

−1x) . . . (1− br−1q
−1x)

(1− a1q−1x) . . . (1− arq−1x)
(1− χ{1}(x)),

χ{1} is a characteristic function of the set {1}
ai, bi < 1.
Generalized exponential functions — basic hypergeometric series

E1(z) = rΦr−1

(
a1. . . ar

b1 . . .br−1

∣∣∣∣ q; z

)
=

∞∑
n=0

(a1; q)n . . . (ar; q)n

(q; q)n(b1; q)n . . . (br−1; q)n
zn

E2(z) = r+1Φr

(
q q b1 . . .br−1

a1. . .ar

∣∣∣∣ q; z

)
for |z| < 1
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Example (little q-Jacobi polynomials)

Moments

σn =
(a1; q)n . . . (ar; q)n

(q; q)n(b1; q)n . . . (br−1; q)n
,

q-Pochhammer symbol

(α; q)n := (1− α)(1− αq) . . . (1− αqn−1)
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Example (little q-Jacobi polynomials, case r = 1)

R(x) =
1− x

1− ax

1 < a < q−1

Structural relations

1−Q = (1− aQ)A∗
1A1

1− qQ = (1− aqQ)A1A∗
1

Moments are

σk =
(aq; q)k

(q; q)k
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Example (little q-Jacobi polynomials, case r = 1)

Coefficients of Jacobi matrix

an =
qn(1− aqn+1)(1− qn)

(1− q2n)(1− q2n+1)
+

aqn(1− qn)(1− a−1qn−1)

(1− q2n−1)(1− q2n)
,

bn =

√
aq2n+1(1− qn+1)(1− aqn+1)(1− a−1qn)(1− qn)

(1− q2n)(1− q2n+1)2(1− q2n+2)
.

Measure µ is discrete

µ(dλ) =
(aq; q)∞(a−1, q)∞

(q; q)∞(q; q)∞

∞∑
n=0

(qλ; q)nanλ

(a−1λ; q)n
δ(λ− qn)dλ.

The polynomials orthonormal with respect to this measure are a
subclass of little q-Jacobi polynomials.
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Example (little q-Jacobi polynomials, case r = 1)

Exponential functions

E1(z) = 1Φ0

(
aq
−

∣∣∣∣ q; z

)

E2(z) = 2Φ1

(
q q
a

∣∣∣∣ q; z

)
Reproducing property

E2(vw) =
1

2π

∫ 1

0
dr

∫ 2π

0
dϕE2(vreiϕ)E2(re

−iϕw)×

(aq; q)∞(a−1, q)∞
(q; q)∞(q; q)∞

∞∑
n=0

(qr; q)nanr

(a−1r; q)n
δ(r − q2n)
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Example (little q-Jacobi polynomials, case r = 2 and a1 = q,
b1 < a2, 0 < a2 < 1)

R(x) =
(1− b1q

−1x)

(1− a2q−1x)
(1− χ{1}(x))

Structural relations

(1− a2q
−1Q)A∗

1A1 = (1− b1q
−1Q)(1− |0〉〈0|)

(1− a2Q)A1A∗
1 = 1− b1Q,

Moments σn

σn =
(a2; q)n

(b1; q)n
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Example (little q-Jacobi polynomials, case r = 2 and a1 = q,
b1 < a2, 0 < a2 < 1)

Coefficients of Jacobi matrix

an =
qn(1− a2q

n)(1− b1q
n−1)

(1− b1q2n−1)(1− b1q2n)
+

a2q
n−1(1− qn)(1− qn−1b1/a2)

(1− b1q2n−2)(1− b1q2n−1)

bn =

√
a2q2n(1− qn+1)(1− qnb1/a2)(1− a2qn)(1− b1qn−1)

(1− b1q2n−1)(1− b1q2n)2(1− b1q2n+1)

Measure

µ(dλ) =
(a2; q)∞(b1/a2; q)∞

(b1; q)∞(q; q)∞

∞∑
n=0

(qλ; q)∞an
2

(λb1/a2; q)∞
δ(λ− qn)dλ
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Example (little q-Jacobi polynomials, case r = 2 and a1 = q,
b1 < a2, 0 < a2 < 1)

Exponential functions

E1(z) = 2Φ1

(
a2 q
b1

∣∣∣∣ q; z

)

E2(z) = 2Φ1

(
b1 q
a2

∣∣∣∣ q; z

)
Reproducing property

E2(vw) =
1

2π

∫ 1

0
dr

∫ 2π

0
dϕE2(vreiϕ)E2(re

−iϕw)×

×(a2; q)∞(b1/a2; q)∞
(b1; q)∞(q; q)∞

∞∑
n=0

(rq; q)∞an
2

(rb1/a2; q)∞
δ(r − q2n)
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Example (little q-Jacobi polynomials, case r = 2 and a1 = q,
b1 < a2, 0 < a2 < 1)

Orthogonal polynomials corresponding to this case are the little
q-Jacobi polynomials.

b1 = q — previous case r = 1

b1 = q2, a2 = q — the little q-Legendre polynomials

b1 = 0, 0 < a2 < 1 — the little q-Laguerre/Wall polynomials
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Example (Classical Jacobi polynomials)

Coefficients of Jacobi matrix (α, β > −1)

an =
β2 − α2

(2n + α + β)(2n + α + β + 2)

bn = 2

√
(n + 1)(n + 1 + α)(n + 1 + β)(n + 1 + α + β)

(2n + α + β + 1)(2n + α + β + 2)2(2n + α + β + 3)

Measure

µ(dλ) = (1− λ)αλβ Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
χ[0,1](λ)dλ

Moments

σn =
(β + 1)n

(α + β + 2)n
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Example (Classical Jacobi polynomials)

Structural function

R(qx) =
α + β + 1 + x

β + x
(1− χ{1}(x))

Structural relations

(β + N)A∗
1A1 = (α + β + 1 + N)(1− |0〉〈0|)

(β + 1 + N)A1A∗
1 = α + β + 2 + N

Tomasz Goliński Operator algebras related to bounded positive operator



Coherent state map and corresponding algebra
Examples

Toda isospectral deformation

Example (Classical Jacobi polynomials)

Exponential functions

E1(z) = 2F1

(
β + 1 1

α + β + 2

∣∣∣∣ z

)

E2(z) = 2F1

(
α + β + 2 1

β + 1

∣∣∣∣ z

)
Reproduction property of E2 holds for measure

ν(dz) =
1

2π
(1− r2)αr2β Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
χ[0,1](r)dϕdr

Tomasz Goliński Operator algebras related to bounded positive operator



Coherent state map and corresponding algebra
Examples

Toda isospectral deformation

Example (Classical Jacobi polynomials)

Subcases:

α = β = λ− 1
2 — Gegenbauer/ultraspherical polynomials

α = β = −1
2 – Chebychev I kind

α = β = 1
2 – Chebychev II kind

α = β = 0 – Legendre/spherical
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Toda isospectral deformation

One-parameter subgroup

R 3 t 7−→ Ut ∈ AutH

such that matrix J

H =
∞∑

n,m=0

(Jt)nm |m〉t t 〈n|

is three-diagonal

|n〉t := Ut |n〉 .
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Evolution of basis
d

dt
|n〉t = B∗

t |n〉t ,

Bt :=

(
d

dt
Ut

)
U∗

t .
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Instead of considering the evolution of the basis, one can consider
the evolution of H

Ht := U∗
tHUt =

∞∑
n,m=0

(Jt)nm |m〉 〈n|

d

dt
Ht = [Ht,Bt]

with condition that |0〉 is cyclic for all Ht and Jt is three-diagonal
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Let Ht depend on infinite number of ”times” t = (t1, t2, . . .)

Toda lattice equations

∂

∂tk
Ht = [Ht,Bk t]

Bk t := Hk
t − P0(Hk

t )− 2P+(Hk
t )

P0(Hk
t ) is diagonal operator

P0(Hk
t ) :=

∞∑
n=0

(Jk
t )nn|n〉〈n|

P+(Hk
t ) is upper-triangular operator

P+(Hk
t ) :=

∞∑
n=1

n−1∑
m=0

(Jk
t )mn|m〉〈n|
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Moments σk(t) satisfy the equations

∂

∂tl
σk(t) = 2(σk+l(t)− σk(t)σl(t))

Since ∂
∂tk

σl(t) = ∂
∂tl

σk(t) then there exists a function
τ(t) = τ(t1, t2, . . .) such that

σk(t) =
1

2

∂

∂tk
log τ(t)

Evolution equation in terms of τ

∂

∂tk

∂

∂tl
τ(t) = 2

∂

∂tk+l
τ(t)
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Equation on measure µt

∂

∂tk
µt(dλ) =

(
λk −

∫
R

γkµt(dγ)

)
µt(dλ)

Solution of evolution equations

τ(t) = τ(0)

∫
R

e2
P∞

l=1 tlλ
l
µ0(dλ)

µt(dλ) =
e2

P∞
l=1 tlλ

l∫
R e2

P∞
l=1 tlγl

µ0(dγ)
µ0(dλ)

σk(t) =
1∫

R e2
P∞

l=1 tlγl
µ0(dγ)

∫
R

λke2
P∞

l=1 tlλ
l
µ0(dλ),
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Evolution equation on structural function

∂

∂tl
Rt(Q) = 2Rt(Q)

(
1

Rt(Q)Rt(qQ) . . .Rt(ql−1Q)
−

− 1

Rt(qQ)Rt(q2Q) . . .Rt(qlQ)

)
Hierarchy of equations on annihilation and creation operators

∂

∂tl
A1 t = [(Al

1 tA
∗l
1 t)

−1,A1 t]
∂

∂tl
A∗

1 t = −[(Al
1 tA

∗l
1 t)

−1,A∗
1 t]

∂

∂tl
A2 t = −[(Al

2 tA
∗l
2 t)

−1,A2 t]
∂

∂tl
A∗

2 t = [(Al
2 tA

∗l
2 t)

−1,A∗
2 t]
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Proposition

Provided that lim σn−1(0)
σn(0) exists, lim σn−1(t)

σn(t) exists for all t.

Thus if A1 = T for t = 0 it is also true for any t.
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The Askey-scheme of hypergeometric orthogonal polynomials and its
q-analogue.

Report DU 98-17, Delft University of Technology,
http://aw.twi.tudelft.nl/∼koekoek/askey.html, 1998.

Anatol Odzijewicz.

Quantum algebras and q-special functions related to coherent states
maps of the disc.

Commun. Math. Phys., 192:183–215, 1998.

Anatol Odzijewicz and Tudor S. Ratiu.

The Banach Poisson geometry of the multi-diagonal Toda-like
lattices.
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