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Genealogy of the Dirac Operator

• 1913 É. Cartan Orthogonal Lie algebras

• 1927 W. Pauli Inner angular momentum (spin) of electrons

• 1928 P.A.M. Dirac Dirac operator and quantum-relativistic
description of electrons

• 1930 H. Weyl Wave functions of neutrinos

• 1937 É. Cartan Insurmountables difficulties to talk about
spinors on manifolds

• 1963 M. Atiyah and I. Singer Dirac operator on a spin
Riemannian manifold
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Genealogy of the Dirac Operator

• 1963 A. Lichnerowicz (maybe I. Singer in the last 50’s)
Topological obstruction for positive scalar curvature on
compact spin manifolds

• 1974 N. Hitchin The dimension of the space of harmonic
spinors is a conformal invariant and existence of parallel
spinors implies special holonomy

• 1980 M. Gromov and B. Lawson More topological obstruc-
tions for complete metrics with non-negative scalar cur-
vature

• 1981 E. Witten An elemental spinorial proof of the Schoen
and Yau positive mass theorem

• 1995 E. Witten Seiberg–Witten ⇒ Donaldson
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The Wave Equation (1850-1905)

• Wave equation of Maxwell and Special Relativity theories

O ⊂ R3 u : O × R −→ R �u =
1

c2
∂2u

∂t2
+ ∆u = 0

u(p, t) =
∑

f(t)φ(p) f ′′ + λf = 0 ∆φ− λφ = 0

where ∆ = − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 and c is the ratio between electro-

static and electrodynamic units of charge

• Second order in time and space coordinates

• Invariant under Lorentz transformations

O(1, 3) = {A ∈ GL(4,R) |AGAt = G}, G = diag (−1, 1, 1,1)
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The Schrödinger Equation (1926)

• Schrödinger equation of the non-relativistic Quantum Me-
chanics

O ⊂ R3 ψ : O × R −→ C −i
∂ψ

∂t
+ ∆ψ = 0

ψ(p, t) =
∑

f(t)φ(p) f ′ + iλf = 0 ∆φ− λφ = 0

• Invariant under Galileo transformations

R3 · O(3) = {A ∈ GL(4,R) |A =

(
1 0
v A

)
, v ∈ R3, A ∈ O(3)}

• First order in time and second order in space coordinates

• Complex values
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The Classical Dirac Operator

• 1928 P.A.M. Dirac, 1930 H. Weyl

Look for an equation of first order in all the variables, like
this

i

c

∂ψ

∂t
+Dψ = 0 Dψ =

3∑

i=1

γi
∂ψ

∂xi

whose iteration on solutions gives the wave equation. This
holds iff

D2 = ∆ ⇐⇒ γiγj + γjγi = −2δij

for i, j = 1, 2,3. For example, these Pauli matrices

γ1 =

(
i 0
0 −i

)
γ2 =

(
0 1
−1 0

)
γ3 =

(
0 i
i 0

)
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The Classical Dirac Operator and Spinor Fields

• Other possible Pauli matrices γ′i = PγiP−1 or γ′i = −γi.

• Two essentially different (chirality) Dirac-Weyl equations

±
i

c

∂ψ

∂t
+

(
i 0
0 −i

)
∂ψ

∂x
+

(
0 1
−1 0

)
∂ψ

∂y
+

(
0 i
i 0

)
∂ψ

∂z
= 0

• Spinor fields ψ : O × R −→ C2 expand into series

ψ(p, t) =
∑

f(t)φ(p) f ′ + iλf = 0

Dφ =

(
i 0
0 −i

)
∂φ

∂x
+

(
0 1
−1 0

)
∂φ

∂y
+

(
0 i
i 0

)
∂φ

∂z
= −λφ
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The Classical Dirac Operator

• To define the Dirac operator in terms of any other orthonor-
mal basis {e1, e2, e3} as

D = γ(e1)∇e1 + γ(e2)∇e2 + γ(e3)∇e3

we need Pauli matrices for all directions v ∈ R3. Put

γ(v) = γ(v1, v2, v3) = v1γ1 + v2γ2 + v3γ3 =

(
iv1 v2 + iv3

−v2 + iv3 −iv1

)

• A Lie algebra isomorphism

γ : (R3 = o(3),∧) → (su(2),
1

2
[ , ])

• Clifford relations

γ(u)γ(v) + γ(v)γ(u) = −2〈u, v〉I2, ∀u, v ∈ R3
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What Are These Spinor Fields?

• For each A ∈ SU(2) there is a unique real matrix ρ(A) ∈
MR(3) such that

γ(ρ(A)v) = Aγ(v)Āt ∀v ∈ R3

• See that ρ(A) ∈ SO(3) and the map ρ : SU(2) → SO(3) is
a two-sheeted (universal) covering group homomorphism

• Surjective: given R ∈ SO(3), put R = s1 ◦ s2 and prove that
A = γ(v1)γ(v2) ∈ SU(2) and that ρ(A) = R

• Kernel: if A ∈ ker ρ then A commutes with all Pauli matrices
and so A = ±I2
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What Are These Spinor Fields?

• Let φ : O → C2 be a spinor and A ∈ SU(2). Consider the
open set O′ = ρ(A)t(O) and define

ψ : O′ → C2, ψ(p) = Ātφ(ρ(A)p), ∀p ∈ O′

(Dψ)(p) =
∑3

i=1 γ(ei)(∇eiψ)(p) =
∑3

i=1 γ(ei)Āt(∇ρ(A)ei
φ)(ρ(A)p)

=
∑3

i=1 Ā
tγ(ρ(A)ei)(∇ρ(A)ei

φ)(ρ(A)p) = Āt(Dφ)(ρ(A)p)

and so Dφ = λφ⇔ Dψ = λψ

• If spatial coordinates change through R ∈ SO(3), then com-
ponents of spinors change through ρ−1(R) ∈ SU(2)(?)

• ρ

(
ei θ

2 0
0 e−i θ

2

)
= Rθ is a rotation of angle θ around the

x-axis
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Speaking Bundle Language

• 1963 Atiyah and Singer

? O ⊂ R3 is a chart domain of an oriented Riemannian three-
manifold M

? φ : O → C2 is the local expression of a section of a complex
vector bundle ΣM with fiber C2 associated to a virtual
(?) principal bundle with structure group SU(2)

? Lift transition functions fij : Ui ∩ Uj → SO(3) to maps
gij : Ui ∩ Uj → SU(2) and define

hijk : Ui ∩ Uj ∩ Uk → Z2 = {+1,−1}
according to gik = ±(gjkgij). This h is a cocycle and de-
fines the second Stiefel-Whitney class w2(M) ∈ H2(M,Z2)
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Speaking Bundle Language

? ΣM must have a Hermitian metric 〈 , 〉 and a covariant
derivative ∇ which parallelizes the metric

? A bundle map γ : TM → EndC(ΣM) with

γ(u)γ(v) + γ(v)γ(u) = −2〈u, v〉I2
compatible with both 〈 , 〉 and ∇ called a Clifford multi-
plication because it determines a complex representation
of each Clifford algebra C`(TpM) on the space ΣpM

? In this frame, the Dirac operator is

Dψ =
3∑

i=1

γ(ei)∇ei
ψ

where e1, e2, e3 is an orthonormal basis of TpM
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Emergence Kit for Riemannian Geometry Notation

• Let M be a Riemannian manifold, 〈 , 〉 the metric and ∇
the Levi-Cività connection

• R will be the Riemannian curvature operator

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM)

and also Riemannian curvature tensor of M, given by

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉, X, Y, Z,W ∈ Γ(TM)

• The single and double contractions of this four-covariant
tensor

Ric(X,W ) =
n∑

i=1

R(X, ei, ei,W ) S =
n∑

i,j=1

R(ei, ej, ej, ei)

are the Ricci tensor and the scalar curvature of M, respec-
tively
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Exterior Geometry for Riemannian Geometers

• The exterior bundle Λ∗(M) =
⊕n

k=1 Λk(M) inherits the met-
ric and the connection

• Lemma 1 Music and products are parallel

∇X(Y [) = (∇XY )[, ∇X(α]) = (∇Xα)
]

∇X(ω ∧ η) = (∇Xω) ∧ η+ ω ∧ (∇Xη)

∇X(Y yω) = (∇XY )yω + Y y (∇Xω)

• Exterior product and inner product are adjoint each other

〈X[ ∧ ω, η〉 = 〈ω, Xy η〉

• Riemannian expressions for an old friend and its adjoint

d =
n∑

i=1

e[
i ∧∇ei δ = −

n∑

i=1

eiy∇ei
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Hermitian Bundles

• Let ΣM be a rank N complex vector bundle over M, 〈 , 〉
a Hermitian metric and ∇ a unitary connection with

X〈ψ, φ〉 = 〈∇Xψ, φ〉 + 〈ψ,∇Xφ〉 ψ, φ ∈ Γ(ΣM), X ∈ Γ(TM)

• The Levi-Cività connection allows us to perform second
derivatives

(∇2ψ)(X, Y ) = ∇X∇Y ψ −∇(∇XY )ψ

• The skew-symmetric part

RΣM(X, Y )ψ = (∇2ψ)(X, Y ) − (∇2ψ)(Y, X)

is tensorial in ψ. It is the curvature operator of (ΣM,∇)

• Skew-symmetry and Bianchi identity

〈RΣM(X, Y )ψ, φ〉 = −〈ψ,RΣM(X, Y )φ〉
(∇ZRΣM)(X, Y ) + (∇Y RΣM)(Z,X) + (∇XRΣM)(Y, Z) = 0
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Hermitian Bundles

• As a consequence

α(X, Y ) = tr iRΣM(X, Y ) = −
N∑

k=1

〈RΣM(X, Y )ψk, iψk〉

is a closed two-form with 2πZ-periods

• The first Chern class

c1(ΣM) = [
1

2π
α] ∈ H2(M,Z)

does not depend on the connection ∇

• When N = 1 (complex line bundles case)

c1 : (H1(M, S1),⊗) → (H2(M,Z),+)

is an isomorphism



16

The Rough Laplacian

• Second derivatives allow to define the rough Laplacian

∆ : Γ(ΣM) → Γ(ΣM) ∆ψ = −tr∇2ψ = −
n∑

i=1

(∇2ψ)(ei, ei)

• It is an L2-symmetric non-negative operator, because
∫

M

〈∆ψ, φ〉 =

∫

M

〈∇ψ,∇φ〉

for sections of compact support

• It is an elliptic second order differential operator and so it
has a real discrete non-bounded spectrum

• When ΣM = M × C, ∆ is the usual Laplacian
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Elliptic Differential Operators

• Lemma 2 Let L : Γ(E) → Γ(F ) be an elliptic differential
operator taking sections of a vector bundle E on sections of
another vector bundle F on a compact Riemannian manifold
M.

Then both kerL and cokerL are finite-dimensional and
the index of L, defined by

indL = dimkerL− dimcokerL = dimkerL− dimkerL∗,

where L∗ : Γ(F ) → Γ(E) is the formal adjoint of L with
respect to the L2-products, depends only on the homo-
topy class of L.

If E = F and the operator L is L2-symmetric, then its
spectrum is a sequence of real numbers and its eigenspaces
are finite-dimensional and consist of smooth sections.
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Dirac Bundles

• A simple geometrical tool

γ ∈ Γ(T ∗M ⊗ EndC(ΣM)) γ : TM → EndC(ΣM)

allowing the definition of a first order operator

D =
n∑

i=1

γ(ei)∇ei

• Compatibility with Hermitian product and connections

〈γ(Y )ψ, η〉 = −〈ψ, γ(Y )η〉 ∇Xγ(Y )ψ = γ(∇XY )ψ+ γ(Y )∇Xψ

implies that D is L2-symmetric
∫

M

〈Dψ, φ〉 =

∫

M

〈ψ,Dφ〉, ∀ψ, η ∈ Γ0(ΣM)
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Dirac Bundles

• Compatibility between D and the rough Laplacian ∆ comes
from the Clifford relations

γ(X)γ(Y ) + γ(Y )γ(X) = −2〈X, Y 〉 X, Y ∈ Γ(TM)

and implies

D2 = ∆ +
1

2

n∑

i,j=1

γ(ei)γ(ej)R
ΣM(ei, ej)

• Consequence: Both D2 and D are elliptic

• Consequence: If the manifold M is compact, then D has a
real discrete spectrum tending to +∞ and to −∞

• (ΣM, 〈 , 〉,∇, γ) is a Dirac bundle over M, γ is the Clifford
multiplication and D is the Dirac operator
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Dirac Bundles

• Lemma 3 Let ΣM be a complex vector bundle over a Rie-
mannian manifold M endowed with a Clifford multiplication
γ : TM → End C(ΣM). Then, there are a Hermitian metric
〈 , 〉 and a unitary connection ∇ such that (ΣM, 〈 , 〉,∇, γ) is
a Dirac bundle. Moreover, if we make the following changes

〈 , 〉 ↪→ 〈 , 〉′ = f2〈 , 〉, ∇ ↪→ ∇′ = ∇ + d log f + iα,

where f is a positive smooth function on M and α is a real
1-form, then (ΣM, 〈 , 〉′,∇′, γ) is another Dirac bundle over
the manifold M.
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Dirac Bundles: New from Old

• Take a Dirac bundle (ΣM, 〈 , 〉,∇, γ) and a complex vector
bundle (E, 〈 , 〉E,∇E) equipped with a Hermitian metric and
a unitary metric connection and put

Σ′M = ΣM ⊗E 〈 , 〉′ = 〈 , 〉 ⊗ 〈 , 〉E ∇′ = ∇⊗∇E

• Define a new Clifford multiplication by

γ′(X)(ψ ⊗ e) = (γ(X)ψ) ⊗ e ψ ∈ Γ(ΣM), e ∈ Γ(E)

• Check that (Σ′M, 〈 , 〉′,∇′, γ′) is another Dirac bundle called
ΣM twisted by E

• If E is a complex line bundle, then twisting by E keeps the
rank N unchanged
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The Exterior Bundle as a Dirac Bundle

• Take as a complex vector bundle

ΣM = Λ∗
C(M) =

n⊕

k=0

(Λk(M) ⊗ C)

endowed with the Hermitian metric and the Levi-Cività con-
nection induced from those of M

• Prove (use Lemma 1) that this definition

γ(X)ω = X[ ∧ ω −Xyω X ∈ Γ(TM), ω ∈ Γ(Λ∗
C(M))

provides a compatible Clifford multiplication

• Then (Λ∗
C(M), 〈 , 〉,∇, γ) is a Dirac bundle with rank N = 2n

and its Dirac operator satisfies

D =
n∑

i=1

ei
[ ∧∇ei

−
n∑

i=1

eiy∇ei
= d+ δ D2 = ∆H
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The Exterior Bundle as a Dirac Bundle

• Hodge-de Rham Theorem If M is compact

kerD = ker∆H
∼= H∗(M,R) =

n⊕

k=1

Hk(M,R)

• The curvature R∗ of this Dirac operator is easy to compute
for 1-forms and so
∫

M

|(d+ δ)ω|2 =

∫

M

|∇ω|2 +

∫

M

Ric (ω, ω) ω ∈ Γ0(Λ
1
C(M))

• [Bochner Theorem] If M is a compact Riemannian manifold
with positive Ricci curvature, then there are no non-trivial
harmonic 1-forms on M. As a consequence the first Betti
number of M vanishes
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The Exterior Bundle as a Dirac Bundle

• If ω = df for a smooth function f , then
∫

M

|∆f |2 =

∫

M

|∇2f |2 +

∫

M

Ric (∇f,∇f)

• [Lichnerowicz-Obata Theorem] Let M be a compact Rie-
mannian manifold of dimension n whose Ricci curvature sat-
isfies Ric ≥ RicSn(1) = n− 1 Then, the non-zero eigenvalues
λ of the Laplacian operator of M acting on functions satify
λ ≥ n The equality is attained if and only if M is isometric to
an n-dimensional unit sphere

• For the equality, solve the Obata equation

∇2f = −f〈 , 〉
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The Exterior Bundle as a Dirac Bundle

• The Dirac-Euler operator D = d+ δ does not preserve the
degree of forms, but it does preserve the parity of the degree

• Consider the restrictions

Deven = D|Γ(Λeven(M)) Dodd = D|Γ(Λodd(M))

• They are elliptic operators and adjoint each other

• A First Index Theorem

indDeven = dimkerDeven − dimkerDodd =
∑

k even

bk(M) −
∑

k odd

bk(M) = χ(M)

indDeven =

∫

M

e(M)
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Antiholomorphic Exterior Bundle as a Dirac Bundle

• Suppose that M is Kähler with dimension n = 2m and take

ΣM = Λ0,∗(M) =
m⊕

k=0

Λ0,k(M) ⊂ Λ∗
C(M)

endowed with the Hermitian metric and the Levi-Cività con-
nection induced from those of M

• Modify the definition of γ in this way

γ∗(X)ω =
√

2((X[ ∧ ω)0,r+1 −Xyω) X ∈ Γ(TM), ω ∈ Γ(Λ0,r(M))

• Then (Λ0,∗(M), 〈 , 〉,∇, γ∗) is a Dirac bundle with rank N =
2m = 2

n

2 and its Dirac operator satisfies

D∗ =
√

2

(
n∑

i=1

(ei
[ ∧∇ei)

0,∗ −
n∑

i=1

eiy∇ei

)
=

√
2(∂ + ∂∗)
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Antiholomorphic Exterior Bundle as a Dirac Bundle

• Hodge-Dolbeault Theorem If M is a compact Kähler man-
ifold

kerD∗ = ker∆H |Γ(Λ0,∗(M))
∼= H∗(M,O) =

m⊕

k=1

Hk(M,O)

where O is the sheaf of the holomorphic functions on M

• The curvature R0,∗ of this Dirac bundle is easy to compute
on each degree and only depends on the Ricci curvature of
the manifold M

• [Kodaira Theorem] If M is a compact Kähler manifold with
dimension n = 2m and positive Ricci curvature, then there
are no non-trivial harmonic antiholomorphic q-forms on M
with q > 0. As a consequence Hq(M,O) = 0 for 0 < q ≤ m
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Antiholomorphic Exterior Bundle as a Dirac Bundle

• The Dirac-Kähler operator D∗ =
√

2(∂ + ∂∗) does not pre-
serve the degree of forms, but it does preserve the parity of
the degree

• Consider the restrictions

D∗even = D∗
|Γ(Λ0,even(M)) D∗odd = D∗

|Γ(Λ0,odd(M))

• They are elliptic operators and adjoint each other

• A Second Index Theorem

indD∗even =
∑

q even

dimHq(M,O) −
∑

q odd

dimHq(M,O) = χO(M)

the Todd genus of M
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Rank and Dimension

• Exterior bundle: N = 2n. Antiholomorphic exterior bundle:
N = 2

n

2 . Is there some general relation between the rank N
of a Dirac bundle (M, 〈 , 〉,∇, γ) and the dimension n of the
manifold M? Must come from γ : TM → EndC(ΣM)

• Take p ∈ M. The Clifford algebra C`(TpM) is the complex
algebra spanned by the vectors of TpM subjected to these
definition relations

u · v+ v · u = −2〈u, v〉, u, v ∈ TpM

It has complex dimension 2n

• The Clifford relations satisfied by the Clifford multiplica-
tion γ mean exactly that it extends to a complex algebra
homomorphism

γp : C`(TpM) → EndC(ΣpM), γp(λu1 · · ·uk) = λγp(u1) · · · γp(uk)

where λ ∈ C and u1, . . . , uk ∈ TpM
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Rank and Dimension

• Order an orthomormal basis {e1, . . . , en} of TpM in this way

e1, . . . , ek, e1∗, . . . , ek∗ k =
[n
2

]

and put

Pα =
1√
2
γp(eα) −

i√
2
γp(eα∗), Qα =

1√
2
γp(eα) +

i√
2
γp(eα∗)

• The Clifford relations satisfied by γp give

PαPβ + PβPα = QαQβ +QβQα = 0, PαQβ +QβPα = −δαβ

• See that P = P1 · · ·Pk 6= 0 and choose ψ = Pψ0 6= 0. Then

ψ,Qα1ψ, (Qα1Qα2)ψ, . . . , (Qα1Qα2 · · ·Qαk−1)ψ, (Q1Q2 · · ·Qk)ψ ∈ ΣpM

with 1 ≤ α1 < . . . < αl ≤ k, are linearly independent.



31

Rank and Dimension

• Proposition Let ΣM be a rank N Dirac bundle on an n-
dimensional Riemannian manifold M. Then we have the in-
equality

N ≥ 2[ n

2],

and the equality is attained if and only if the Clifford multi-
plication

γp : C`(TpM) → EndC(ΣpM)

at each point p of the manifold provides a complex algebra
epimorphism. In fact, in this case, γp is an isomorphism when
n is even and, when n is odd, γp is an isomorphism when it
is restricted to the Clifford algebra of any hyperplane of the
tangent space TpM
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Minimal Rank: Spinor Bundles and Spinc Manifolds

• A Dirac bundle ΣM with minimal rank N = 2[n

2] is called a
spinor bundle and its sections ψ ∈ Γ(ΣM) are called spinor
fields

• A Riemannian manifold M which supports a spinor bundle
over it will be said to be a spinc manifold

• A spinc structure on a spinc manifold M is an isomorphism
class of spinor bundles ΣM

• The complex exterior bundle Λ∗
C(M) over a Riemannian

manifold M is not a spinor bundle (N = 2n > 2[ n

2])

• The antiholomorphic exterior bundle Λ∗
C(M) over a Kähler

manifold M is a spinor bundle (N = 2m = 2
n

2 = 2[n

2]). Each
Kähler manifold is a spinc manifold
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Minimal Rank: Spinor Bundles and Spinc Manifolds

• Proposition Let (ΣM, 〈 , 〉,∇, γ) be a spinor bundle over a
spinc manifold M

Metric and connection uniqueness

〈 , 〉′ = f2〈 , 〉, ∇′ = ∇ + d log f + iα

for a positive smooth function f and a real 1-form α

Dirac bundles uniqueness

Σ′M ∼= ΣM ⊗E

If Σ′M is another spinor bundle, then E is a line bundle

AΣM = Hom γ(ΣM,ΣM) has rank one. It is called the
auxiliary line bundle of ΣM. If L is an arbitrary line bun-
dle, we have

AΣM⊗L = AΣM ⊗ L−2
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Minimal Rank: Spinor Bundles and Spinc Manifolds

• Example: AΛ0,∗(M)
∼= K−1

M = Λ0,m(M)

• Consequence: Spinc structures on a spinc manifold are pa-
rametrized by H2(M,Z)

• Proposition Clifford multiplication uniqueness

γ′ = PγP−1 (n even) or γ′ = ±PγP−1 (n odd)

for an isometry field P ∈ Γ(AutC(ΣM))

• All these uniqueness results follow from the fundamental
fact characterizing spinor bundles among all Dirac bundles:
any complex endomorphism of any of its fibers commuting
with all the Pauli matrices must be a complex multiple of the
identity
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Spinor Bundles with Trivial Auxiliary Bundle

• If AΣM is trivial, any φ ∈ Γ(AΣM) nowhere vanishing section
satisfies φ2 = hI for a real function h

• Proposition Let ΣM be a spinor bundle over a spinc man-
ifold M. Then the auxiliary line bundle AΣM is trivial if and
only if there is an isometric real o quaternionic structure
on the spinor bundle commuting with γ, that is, a com-
plex antilinear bundle isometry θ : ΣM → ΣM with θ2 = ±I.
This structure is parallel for exactly one of the compatible
connections

• On a given spinc manifold M there is a spinor bundle ΣM
with trivial auxiliary line bundle iff there is a spinor bundle
whose auxiliary line bundle has a squared root
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Trivial Auxiliary Bundle: Spin Manifolds

• A spinc manifold M which admits a spinor bundle with trivial
auxiliary line bundle will be said to be a spin manifold

• A spin structure on a spin manifold M is an isomorphism
class of pairs (ΣM, θ) consisting of a spinor bundle ΣM and
a quaternionic or real structure θ defined on it. The only
connection on ΣM parallelizing θ is called the spin Levi-
Cività connection

• The antiholomorphic exterior bundle Λ0,∗(M) on a Kähler
manifold M determines a spin structure iff its canonical line
bundle KM is trivial, that is, M is Calabi-Yau. A Kähler mani-
fold is a spin manifold iff KM is a square iff [c1(M)]mod 2 = 0

• Spin structures on a spin manifold are parametrized by
H1(M,Z2)
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Topological Consequences

• If M is a spinc manifold, the cohomology class

[c1(AΣM)]mod 2 ∈ H2(M,Z2)

does not depend on the chosen spinor bundle ΣM

• The obstructions for the auxiliary line bundle to have a
squared root and for the bundle of oriented orthonormal
frames to have a twofold covering principal bundle with struc-
ture group Spin(n) coincide, that is,

[c1(AΣM)]mod 2 = w2(M)
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Topological Consequences

• Theorem Let M be an oriented Riemannian manifold. If
M admits a spinor bundle, then its second Stiefel-Whitney
cohomology class satisfies

w2(M) ∈ im
(
H2(M,Z) → H2(M,Z2)

)

If M admits a spinor bundle with trivial auxiliary line bundle,
that is, if it admits a spinor bundle with a real or quaternionic
structure, that is, if it admits a spin structure, then

w2(M) = 0

• These necessary topological conditions are also sufficient
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Geometrical Consequences

• On any Dirac bundle, compatibility between Clifford multi-
plication and connections

∇Y γ(Z)ψ = γ(∇Y Z)ψ+ γ(Z)∇Y ψ Y, Z ∈ Γ(TM), ψ ∈ Γ(ΣM)

implies (taking derivatives and skew-symmetrizing) compati-
bility between Clifford multiplication and curvatures

RΣM(X, Y )(γ(Z)ψ) = γ(R(X, Y )Z)ψ+ γ(Z)(RΣM(X, Y )ψ)

where X, Y, Z ∈ Γ(TM) and ψ ∈ Γ(ΣM)

• You can check that this another operator

R0(X, Y )ψ =
1

4

n∑

i,j=1

R(X, Y, ei, ej)γ(ei)γ(ej)ψ

satisfies the same compatibility as RΣM does
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Geometrical Consequences

• Then, the difference R′ = RΣM −R0 satisfies

R′(X, Y )γ(Z)ψ = γ(Z)R′(X, Y )ψ X, Y, Z ∈ Γ(TM), ψ ∈ Γ(ΣM)

and so commutes with the Pauli matrices

• Consequence: If ΣM is a spinor bundle, this difference R′

must be a scalar

RΣM(X, Y ) =
1

4

n∑

i,j=1

R(X, Y, ei, ej)γ(ei)γ(ej) + iα(X, Y )

for X, Y ∈ Γ(TM) and where α is a real two-form on M

• If θ ∈ Γ(AΣM), since we have RAΣM(X, Y )θ = [RΣM(X, Y ), θ]
and θ commutes with the first addend,

RAΣM(X, Y ) = 2iα(X, Y ) X, Y ∈ Γ(TM)
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Geometrical Consequences

• Proposition The curvature operator of a spinor bundle ΣM
over a Riemannian manifold M

RΣM(X, Y ) =
1

4

n∑

i,j=1

R(X, Y, ei, ej)γ(ei)γ(ej) +
1

2
RAΣM(X, Y )

is completely determined by the Riemannian curvature of M
and the curvature (imaginary valued) two-form of the auxil-
iary line bundle AΣM

• [Schrödinger-Lichnerowicz formula] If D is the Dirac oper-
ator of a spinor bundle, then

D2 = ∆ +
1

4
S+

1

4

n∑

i,j=1

RAΣM(ei, ej)γ(ei)γ(ej)

where S is the scalar curvature of M and RAΣM the curvature
of the auxiliary line bundle
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Geometrical Consequences

• Take ψ ∈ Γ(ΣM) in the spinor bundle of a spin structure
ΣM on a compact spin manifold M. Then

∫

M

|Dψ|2 =

∫

M

|∇ψ|2 +
1

4

∫

M

S|ψ|2

• [Lichnerowicz Theorem] If M is a compact spin manifold
with positive scalar curvature, then there are no non-trivial
harmonic spinor fields on any spin structure of M. If we weak-
en the curvature assumption into non-negative scalar curva-
ture, we have that all harmonic spinor fields must be parallel.

• [Wang Classification] The only simply-connected spin man-
ifolds carrying non-trivial parallel spinor fields are Calabi-
Yau (including hyper-Kähler and flat) manifolds, associative
seven-dimensional manifolds and Cayley eight-dimensional ma-
nifolds (all of them Ricci-flat)
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The Index Theorem

• [Hitchin Ph.D. Thesis] The kernel of the Dirac operator
of a spinor bundle ΣM on a compact spinc manifold has no
topological meaning and its index is zero, but...

• The complex volume element ω = i[
n+1

2 ]γ(e1) · · · γ(en) is a
parallel section of EndC(ΣM) with ω2 = I which, when n is
even, anti-commutes with the Clifford multiplication and so
decomposes the spinor bundle and the Dirac operator

ΣM = Σ+M ⊕ Σ−M D = D+ ⊕D−

into chiral ±1-eigenbundles with the same rank and the cor-
responding restrictions which are adjoint each other

• dimkerD = dimkerD++dimkerD−has no topological mean-
ing, but indD+ = dimkerD+ − dimkerD−...
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The Index Theorem

• [Atiyah-Singer Index Theorem]

indD+
E =

∫

M

ch(E)e
1

2
c1(AΣM)Â(M)

for the Dirac operator of a spinor bundle ΣM twisted by a
complex vector bundle E, where

ch(E) = ch(c1(E), . . . , cl(E)) Â(M) = Â(p1(M), . . . , pk(M))

ch(c1, . . . , cl) =
l∑

i=1

exi Â(p1, . . . , pk) =
k∏

j=1

yj

2 sinh yj

2

σk stands for the k-th symmetric elementary polynomial, and

σi(x1, . . . , xl) = ci, σj(y
2
1 , . . . , y

2
k) = pj

where ci(E) ∈ H2i(M,Z) are the Chern classes of E, pj(M) ∈
H4j(M,Z) the Pontrjagin classes of M, and c1(AΣM) ∈ H2(M,Z)
the Chern class of the auxiliary line bundle
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The Index Theorem: Aplications

• If n = dimM = 2, then

ch(E) = l+ c1(E), e
1

2
c1(AΣM) = 1 +

1

2
c1(AΣM), Â(M) = 1

• [Index Theorem for Surfaces]

indD+
E =

∫

M

(
l

2
c1(AΣM) + c1(E)

)

• Spin case (trivial AΣM and E ): indD+
E = 0

• The case of the antiholomorphic exterior bundle (ΣM =
Λ0,∗(M) and AΣM = K−1

M )

dimH0(M,O(E)) − dimH1(M,O(E)) = l(1 − g(M)) +

∫

M

c1(E)

which is the Riemann-Roch theorem
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The Index Theorem: Aplications

• If n = dimM = 4 and AΣM is trivial, then

ch(E) = l+ c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
Â(M) = 1 −

1

24
p1(M)

• [Index Theorem for Spin Four-Manifolds]

indD+
E =

∫

M

(
1

2
c1(E)2 − c2(E) −

l

24
p1(M)

)

• Case E = ΣM (l = 4, c1(E) = 0 because of the existence of
the structure θ and p1(M) = −2c2(E) because of TM ⊗ C ∼=
Σ+M ⊗ Σ−M)

• Therefore

indD+
ΣM =

1

3

∫

M

p1(M)
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The Index Theorem: Aplications

• If n = dimM = 4 and AΣM is trivial, we had

indD+
ΣM =

1

3

∫

M

p1(M)

• But ΣM ⊗ E = ΣM ⊗ ΣM ∼= EndC(ΣM)
γ∼= Λ∗

C(M) and so
DE = d+ δ

• See that ω ∈ EndC(Λ∗
C(M)) coincides with the Hodge ∗ up

to a sign

• [Hirzebruch Signature Theorem] Let M be a compact (spin)
manifold of dimension four. Then, the signature of M is re-
lated with its first Pontrjagin class as follows

σ(M) = b+2 (M) − b−2 (M) =
1

3

∫

M

p1(M)
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The Index Theorem: Aplications

• [Index Theorem for Spin Four-Manifolds II]

indD+
E = −

l

8
σ(M) +

∫

M

(
1

2
c1(E)2 − c2(E)

)

• Take E as a trivial line bundle, then

indD+ = −
1

8
σ(M)

and remember that the quaternionic structure preserves Σ+M
and commutes with the Dirac operator

• [Rochlin Theorem] Let M be a four-dimensional compact
spin manifold. Then, the signature of M is divisible by 16

• There are simply-connected compact topological four-manifolds
with w2(M) = 0 and σ(M) = 8 (!?)
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The Index Theorem: Aplications

• [Integrality of the Â-genus] We define the Â-genus of an
even-dimensional compact manifold as the rational number

Â(M) =

∫

M

Â(M)

Then, if M is spin its Â-genus is an integer number

• [Lichnerowicz Theorem] Let M be a compact spin Rie-
mannian manifold with positive scalar curvature. Then the
Â-genus of M vanishes

• Notice that CP 2 is a compact non-spin four-manifold with

Â(CP 2) = −
1

8
σ(CP 2) = −

1

8

and admits a metric with positive scalar curvature
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The Spectrum of the Dirac Operator

• Bochner/Lichnerowicz-Obata=Lichnerowicz/Friedrich-Bär

• If M is a compact spin manifold, the integral Schrödinger-
Lichnerowicz formula gave

∫

M

(
|Dψ|2 − |∇ψ|2 −

1

4
S|ψ|2

)
= 0

for each ψ ∈ Γ(ΣM)

• Use this Schwarz inequality

|Dψ|2 =

∣∣∣∣∣
n∑

i=1

γ(ei)∇ei
ψ

∣∣∣∣∣

2

≤

(
n∑

i=1

|γ(ei)∇ei
ψ|

)2

=

(
n∑

i=1

|∇ei
ψ|

)2

≤ n|∇ψ|2

and get the Friedrich inequality
∫

M

(
|Dψ|2 −

n

4(n− 1)
S|ψ|2

)
≥ 0
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The Spectrum of the Dirac Operator

• [Friedrich Theorem] Let M be a compact spin manifold of
dimension n whose scalar curvature satisfies S ≥ SSn(1) = n(n− 1)
Then, the eigenvalues λ of the Dirac operator of any spin
structure of M satify |λ| ≥ n

2

• For the equality, solve the Killing spinor equation

∇ψ = ∓γψ

• [Bär Classification] Let M be a compact simply connect-
ed spin Riemannian manifold admitting a non-trivial Killing
spinor field. Then M is isometric to a sphere Sn, or to an
Einstein-Sasakian manifold, or to a six-dimensional nearly-
Kähler non-Kähler manifold, or to a seven-dimensional as-
sociative manifold
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The Spectrum of the Dirac Operator

• Conformal change of metric: If (ΣM, 〈 , 〉,∇, γ) is a spinor
bundle on (M, 〈 , 〉), then (ΣM, 〈 , 〉,∇∗, γ∗) with

∇∗ = ∇−
1

2
γ(·)γ(∇u) −

1

2
〈·,∇u〉 γ∗ = euγ

is a spinor bundle on (M, 〈 , 〉∗) with

〈 , 〉∗ = e2u〈 , 〉

• Conformal covariance of the Dirac operator:

D∗(e−
n−1

2
uψ) = e−

n+1

2
uDψ, ψ ∈ Γ(ΣM)

• Recipe: Write the Friedrich inequality for the conformal
metric 〈 , 〉∗ and use this conformal covariance
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The Spectrum of the Dirac Operator

• Result: A new conformal Friedrich inequality
∫

M

e−u

{
|Dψ|2 −

n

4(n− 1)
S∗e2u|ψ|2

}
≥ 0

valid for ψ ∈ Γ(ΣM) and for all smooth function u ∈ C∞(M)

• Choose u to do S∗e2u constant taking into account that

S∗e2u =

{
e−

n−2

2
uYe

n−2

2
u if n ≥ 3

−2∆u+ 2K if n = 2

to become constant, where Y = 4(n−1)
n−2

∆ + S is the Yamabe
operator

• A suitable choice gives

S∗e2u =

{
µ1(Y) (the first eigenvalue of Y) if n ≥ 3
4πχ(M)
A(M)

if n = 2
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The Spectrum of the Dirac Operator

• [Hijazi Theorem] Suppose that λ is an eigenvalue of the
Dirac operator of a compact spin Riemannian manifold M
with dimension n ≥ 3 which admits a conformal metric with
positive scalar curvature. Then

λ2 ≥
n

4(n − 1)
µ1(Y)

where µ1(Y) is the first eigenvalue of the Yamabe operator
of M

• [Bär Theorem] If M is a compact spin surface of genus zero
and λ is an eigenvalue of its Dirac operator, then

λ2 ≥
4π

A(M)

where A(M) is the area of M
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The Spectrum of the Dirac Operator

• If M is a compact spin manifold with non-empty boundary
∂M = S, the integral Schrödinger-Lichnerowicz formula has
a boundary term
∫

M

(
|Dψ|2 − |∇ψ|2 −

1

4
S|ψ|2

)
= −

∫

S
〈γ(N)Dψ + ∇Nψ, ψ〉

where ψ ∈ Γ(ΣM) and N is the inner unit normal

• Restriction of the spinor bundle: If (ΣM, 〈 , 〉,∇, γ) is the
spinor bundle on M, then (ΣM|S , 〈 , 〉,∇/ , γ/ ) with

∇/ = ∇−
1

2
γ(A·)γ(N) γ/ = γγ(N)

is a Dirac bundle on the hypersurface S
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The Spectrum of the Dirac Operator

• [Reilly Inequality] Rewrite the bundary term using the struc-
ture of the restricted Dirac bundle and use the same Schwarz
inequality as in the boundary free case. Then

∫

M

(
1

4
S|ψ|2 −

n

n+ 1
|Dψ|2

)
≤
∫

S

(
〈D/ψ, ψ〉 −

n

2
H|ψ|2

)

for ψ ∈ Γ(ΣM) and where H is the (inner) mean curvature
of the n-dimensional boundary

• [Reilly-Witten Trick] When the bulk manifold M has non-
negative scalar curvature, solve a boundary problem

Dψ = 0 on M π+ψ|S = π+φ along S
for a given spinor field φ on the boundary and a suitable π+

(usually needed H ≥ 0)
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The Spectrum of the Dirac Operator

• Witten proof of the positive mass: M is a complete non-
compact asymptotically Euclidean three-manifold with non-
negative scalar curvature. Take Sr as the sphere |x| = r and
choose φr as a unit Killing spinor for the round metric. Then

0 ≤ ĺım
r→+∞

∫

Sr

(
〈D/ψr, ψr〉 −Hr|ψr|2

)
= 4πm

where m is a constant asociated to the end: its mass

• Other choice: M is a compact spin manifold with non-
negative scalar curvature and the hypersurface boundary S
has non-negative (inner) mean curvature. Take φ as an eigen-
spinor for the eigenvalue of D/ with the least absolute value
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The Spectrum of the Dirac Operator

• [Hijazi-M-Zhang extrinsic comparison] Let S be a hyper-
surface bounding a domain in a spin manifold of dimension
n+1with non-negative scalar curvature and suppose that the
mean curvature of S satisfies H ≥ HSn(1) = 1 Then, the eigen-
values λ of the Dirac operator of the induced spin structure
of S satify |λ| ≥ n

2
and the equality holds iff the eigenspinors

associated to ±n
2

are restrictions to S of parallel spinors on
the bulk manifold M


