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Let

a, a∗ be the standard annihilation and creation operators satis-

fying [a∗, a] = 1 and acting in the Hilbert space H.

For any fixed l ∈ N, we define the multiboson representation of

sl(2,R) as the triple of operators

A0 := α0(n), A− := α−(n) al, A+ := (a∗)lα−(n),

where n := a∗a,
defined on dense subset of H and satisfying sl(2,R) commutation

relations:

[A−,A+] = A0, [A0,A±] = ±2A±
with symmetricity conditions:

A0 ⊂ A∗
0, A− ⊂ A∗

+, A+ ⊂ A∗−.



The previous relations imply that the functions α0, α− are real-

valued and satisfy the following difference equations
(
α0(n)− α0(n− l)− 2

)
α−(n− l) = 0 for n > l, (1)

(n + 1)l α2−(n)− (n− l + 1)l α2−(n− l) = α0(n) for n > l, (2)

(n + 1)l α2−(n) = α0(n) for 0 6 n < l, (3)

where (n)l = n(n + 1) . . . (n + l − 1) and one has applied the

identities

(a∗)lal = (n− l + 1)l al(a∗)l = (n + 1)l.



The solution to the above system of difference equations is of

the form {sl-sol}

α0(n) = 2
[
n

l

]
+ α0(n mod l),

α−(n) =

√
1

(n + 1)l

([
n

l

]
+ α0(n mod l)

) ([
n

l

]
+ 1

)
,

where [x] is the integer part of x.



In order to express the operators A0, A−, A+ explicitly in terms

of the creation and annihilation operators let us define the bounded

operator

R :=
l− 1

2
+

l−1∑

m=1

exp(−2πim
l n)

exp(2πim
l )− 1

for l > 1 and R := 0 for l = 1. This operator acts on elements

of the basis by

R |n〉 = n mod l |n〉
and commutes with operators A0, A−, A+.



Thus one has
1

l
(n−R) |n〉 =

[
n

l

]
|n〉 .

Finally the multiboson representation of sl(2,R) is given in terms

of a and a∗ by {sl-oper}

A0 =
2

l
(n−R) + α0(R),

A− =

√
1

(n + 1)l

(
1

l
(n−R) + α0(R)

) (
1

l
(n−R) + 1

)
al,

A+ = (a∗)l

√
1

(n + 1)l

(
1

l
(n−R) + α0(R)

) (
1

l
(n−R) + 1

)
,

where α0 is an arbitrary positive function on {0, . . . , l − 1}



The above formulae show that the Hilbert space H splits

H =
l−1⊕

r=0

Hr

onto invariant subspaces

Hr := span{ |k〉r := |kl + r〉 | k ∈ N ∪ {0}},
which are eigenspaces of R corresponding to the eigenvalue r.



Remarks:

|k〉r are eigenvectors of A0

A0 |k〉r = (2k + α0(r)) |k〉r
and A−, A+ act on |k〉r as weighted shift operators:

A− |k〉r =
√

k(k + α0(r)− 1) |k − 1〉r ,

A+ |k〉r =
√

(k + α0(r))(k + 1) |k + 1〉r .



Bogoliubov-like transformations

We consider the group B := R× o Z2, where R× := R \ {0},
Z2 = {−1,1}, with the group operation defined by

(a, σ) · (b, τ) := (abσ, στ).

which acts on the generators of A in the following way

ba,σ(A0) :=
1 + a2

2a
A0 + σ

1− a2

2a
(A− + A+),

ba,σ(A−) :=
1− a2

4a
A0 + σ

(1− a)2

4a
A+ + σ

(1 + a)2

4a
A−,

ba,σ(A+) :=
1− a2

4a
A0 + σ

(1 + a)2

4a
A+ + σ

(1− a)2

4a
A−.



There exists
the unitary representation of the subgroup R+ o Z2 ⊂ B

Ua,σ |n〉r := |n; a, σ〉r , (a, σ) ∈ R+ o Z2,

where

|n; a, σ〉r :=





σn
√

n!
(α0(r))ncn

∞∑
k=0

Mk(n;α0(r), c) |k〉r for aσ < 1

σn
√

n!
(α0(r))ncn

∞∑
k=0

(−1)kMk(n;α0(r), c) |k〉r for aσ > 1

σn |n〉r for a = 1

c =
(

a−1
a+1

)2
and Mk(n, γ, c) — Meixner polynomials

such that

ba,σ(X) = Ua,σXU∗a,σ



Integrable one-mode Hamiltonians

Let us take the quantum system described by arbitrary self-

adjoint operator belonging to the multiboson algebra A:

Hµν :=
µ + ν

2
A0 +

µ− ν

2
(A− + A+) =

=
µ + ν

2
α0(n) +

µ− ν

2
(α−(n) al + (a∗)lα−(n))

where (µ, ν) ∈ R2 \ {(0,0)}.



Let us observe that

Hµν |k〉r = bk−1 |k − 1〉r + ak |k〉r + bk |k + 1〉r ,

where

ak =
µ + ν

2
(2k + α0(r))

bk =
µ− ν

2

√
(k + α0(r))(k + 1).



If µ 6= ν the formula of Hµν is directly related to three term

recurrence relation

xPk(x) = bk−1 Pk−1(x) + ak Pk(x) + bk Pk+1(x)

which is valid for any orthonormal polynomials family {Pn}∞n=0.

Since
∑ 1

bk
is divergent then there exists the unique measure dω

on R such the map F given by

Hr 3 |k〉r 7−→ F (|k〉r) := Pk ∈ L2(R, dω)

is the isomorphism of Hilbert spaces with the property that

F ◦Hµν|Hr
◦ F−1 = x̂,

where x̂ is the operator of multiplication by x in L2(R, dω). Thus

we gather that the spectrum of Hµν is the support of measure



dω. It means that by finding the measure dω and polynomials Pn

we obtain the evolution flow

R 3 t −→ eitHµν = F−1 ◦ eitx̂ ◦ F ∈ Aut(Hr)

of quantum system described by the Hamiltonian Hµν.

From definition of Bogoliubov group B it follows that transfor-

mations ba,σ preserve the family of operators Hµν and the labels

(µ, ν) transform as follows

(a,1) : (µ, ν) 7→ (a−1µ, aν), (a,−1) : (µ, ν) 7→ (aν, a−1µ).

This defines the action of the group B in the set R2 \ {(0,0)} of

labels. Orbits of B are pairs of hiperbolae indexed by one real

parameter c ∈ R
Oc := B · (c,1) = {(x, y) ∈ R2 \ {(0,0)} | xy = c}.



We can restrict our considerations to each component Hr of

decomposition of H separately since they are invariant under the

action of Hµν.

Due to the implementation formula ba,σ(X) = Ua,σXU∗a,σ it is

sufficient to find spectral decomposition for the one operator

from each orbit Oc, e.g. H√
c,
√

c, H√
c,−√c and H1,0. Taking

into account scaling by constant we can further without loosing

generality restrict ourselves to three Hamiltonians H1,1, H1,−1

and H1,0.



µ, ν polynomials spectrum of H|H
ν = 0, µ > 0 Laguerre R+ ∪ {0}
ν = 0, µ < 0 Laguerre R− ∪ {0}
µ = 0, ν > 0 Laguerre R+ ∪ {0}
µ = 0, ν < 0 Laguerre R− ∪ {0}
µ > 0, ν < 0 Meixner-Pollaczek R
µ < 0, ν > 0 Meixner-Pollaczek R

µ, ν > 0 Meixner {2√µν n + 1
2

√
µν | n = 0,1,2, . . .}

µ, ν < 0 Meixner {−2
√

µν n− 1
2

√
µν | n = 0,1,2, . . .}



Orthogonal polynomials assigned to Hµν



Example: ν < µ < 0 - Meixner orthonormal polynomials

Pn(x) = (−1)nMn

( −x

2
√

µν
− 1

4
;
1

2
, c

)

where c =
µ+ν+2

√
µν

µ+ν−2
√

µν

dω(x) =
∞∑

n=0

δ(x +
1

2

√
µν + 2

√
µν n)

(1
2)n

n!
cn dx

eigenvectors of H|H

|En〉 =

√√√√ n!

(1
2)ncn

∞∑

k=0

(−1)kMk(n;
1

2
, c) |k〉



Coherent state representation

Due to the decomposition H =
⊕l−1

r=0Hr into irreducible repre-

sentations, it is sufficient to restrict our considerations to each

Hr separately. We consider coherent states as eigenstates of A−

A− |ζ〉r := ζ |ζ〉r .

The coherent states |ζ〉r ∈ Hr are given by the series

|ζ〉r =
∞∑

k=0

ζk
√

k!(α0(r))k

|k〉r

which converges for any ζ ∈ C and belongs to domain

D1 :=





∞∑

n=0

vn |n〉 ∈ H
∣∣∣∣∣

∞∑

n=0

n2 |vn|2 < ∞


 .



The notion of the coherent states allows us to construct the

anti-unitary embedding

Hr 3 |ψ〉 7−→ Ir(ψ)(ζ) := 〈ψ|ζ〉r ∈ L2O(C, dµr)

of Hr into the Hilbert space L2O(C, dµr) of holomorphic functions

on C, which are square integrable with respect to the measure

dµr(ζ, ζ) :=
ρα0(r)Kα0(r)

(2ρ)

2πΓ(α0(r))
ρ dρ dϕ,

where ζ = ρeiϕ and Kα0(r)
is the modified Bessel function of the

second kind.



The space L2O(C, dµr) has the reproducing kernel

K(η, ζ) := 〈η|ζ〉 = 0F1

(
−

α0(r)
ηζ

)
,

i.e. for any f ∈ L2O(C, dµr) one has
∫

C

K(η, ζ)f(η)dµr(η, η) = f(ζ).

The isomorphism Ir gives the realization of the operators A0,

A+, A− as the differential operators

Ir ◦A0 ◦ I −1
r = 2ζ

d

dζ
+ α0(r), (7)

Ir ◦A+ ◦ I −1
r = ζ, (8)

Ir ◦A− ◦ I −1
r =

(
α0(r) + ζ

d

dζ

)
d

dζ
(9)



acting in L2O(C, dµr). In order to describe them as the genera-

tors of the discrete series α0(r) = 2,3, . . . representation of the

group SL(2,R), let us consider a unitary integral transform

P : L2O(C, dµr) −→ L2O(D, dνr),

where D := {z ∈ C | |z| < 1} and

dνr(z, z) :=
α0(r)− 1

π

(
1− |z|2

)α0(r)−2
d2z,

given by

Pf(z) :=
∫

C

ezζf(ζ)dµr(z, z).

Using the above formula we find that in the space L2O(D, dνr)



the operators (7)-(9) are given by

P ◦ Ir ◦A0 ◦ I−1
r ◦ P−1 = 2z

d

dz
+ α0(r)

P ◦ Ir ◦A+ ◦ I−1
r ◦ P−1 = z2 d

dz
+ α0(r)z (10)

P ◦ Ir ◦A− ◦ I−1
r ◦ P−1 =

d

dz

and they are the generators of the discrete series representation

U
α0(r)
g ϕ(z) = (bz + a)−α0(r)ϕ

(
az + b

bz + a

)

of the group SL(2,R) in L2O(D, dνr). Here we have identified

SL(2,R) with SU(1,1) using the isomorphism

SL(2,R) 3 g ←→
(

a b
b a

)
:=

1

2

(
1 −i
−i 1

)
g

(
1 i
i 1

)
∈ SU(1,1).



Ending let us remark that in L2O(C, dµr) the Hamiltonian Hµν is

represented as a second order differential operator

Ir◦Hµν◦I−1
r =

µ + ν

2

(
2ζ

d

dζ
+ α0(r)

)
+

µ− ν

2

(
ζ +

(
α0(r) + ζ

d

dζ

)
d

dζ

)

and in L2O(D, dνr) as a first order differential operator

P◦Ir◦Hµν◦I−1
r ◦P−1 =

µ + ν

2

(
2z

d

dz
+ α0(r)

)
+

µ− ν

2

(
(z2 + 1)

d

dz
+ α0(r)z

)
.



Two-mode Algebra

A0 := α0(n0,n1) A− := α−(n0,n1) a l0
0 A+ := (a∗0)l0α−(n0,n1)

B0 := β0(n0,n1) B− := β−(n0,n1) a l1
1 B+ := (a∗1)l1β−(n0,n1)

l0, l1 ∈ N

sl(2,R) commutation relations

[A−,A+] = A0, [A0,A±] = ±2A±

[B−,B+] = B0, [B0,B±] = ±2B±
symmetricity conditions

A0 ⊂ A∗
0, A− ⊂ A∗

+, A+ ⊂ A∗−

B0 ⊂ B∗0, B− ⊂ B∗+, B+ ⊂ B∗−



Solutions to these relations

A0 =
2

l0
(n0 −R0) + α0(R0,R1)

A− =

√√√√ 1

(n0 + 1)l0

(
1

l0
(n0 −R0) + α0(R0,R1)

) (
1

l0
(n0 −R0) + 1

)
a l0
0

B0 =
2

l1
(n1 −R1) + β0(R0,R1)

B− =

√√√√ 1

(n1 + 1)l1

(
1

l1
(n1 −R1) + β0(R0,R1)

) (
1

l1
(n1 −R1) + 1

)
a l1
1



Remainder operator

Rj :=
lj − 1

2
+

lj−1∑

m=1

exp(−2πim
lj

nj)

exp(2πim
lj

)− 1

Rj |n1, n2〉 = nj mod lj |n1, n2〉

α0, β0 are arbitrary positive functions on

{0, . . . , l0 − 1} × {0, . . . , l1 − 1}



[Rj,H] = 0

H⊗H =
l0−1⊕

r0=0

l1−1⊕

r1=0

Hr0,r1,

subspaces invariant with respect to H

Hr0,r1 := span
{
|k0, k1〉r0,r1

:= |k0l0 + r0, k1l1 + r1〉 | k0, k1 ∈ N∪{0}
}



Two-mode systems

H =
(a2 + b2)

4ab
A0B0 −

− στ
(a− b)2

4ab
(A+B+ + A−B−)− σ

a2 − b2

4ab
(A+B0 + A−B0) +

+ τ
a2 − b2

4ab
(A0B− + A0B+)− στ

(a + b)2

4ab
(A+B− + A−B+)

acting in two mode bosonic Hilbert space H⊗H with the ortho-

normal basis

{|n0, n1〉}∞n0,n1=0


