Prequantization of super symplectic manifolds

Gijs Tuynman Université de Lille I

Super geometry

The idea: Create a manifold with local coordinates $(x_1, \ldots, x_p, \xi_1, \ldots, \xi_q)$, the x_i commuting, the ξ_j anti-commuting: $\xi_i \xi_j = -\xi_j \xi_i$.

How to realize : Replace R by a graded commutative ring $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ and take $x_i \in \mathcal{A}_0$ and $\xi_j \in \mathcal{A}_1$.

Basic example:
$$
A = \bigwedge E = \left(\bigoplus_{k=0}^{\infty} \bigwedge {}^{2k}E\right) \oplus \left(\bigoplus_{k=0}^{\infty} \bigwedge {}^{2k+1}E\right)
$$
 with *E* an infinite dimensional vector space.

Smooth functions: In the x_i just ordinary smooth functions of real variables, in the ξ_i just polynomials of dergee at moost one in each ξ_i separately:

$$
C^{\infty}(\mathcal{A}_0^p\times\mathcal{A}_1^q)\cong C^{\infty}(\mathbf{R}^p)\otimes\bigwedge\mathbf{R}^q\ .
$$

Super geometry

Problems with the definition of a derivative : In the super context we can't speak of a difference quotient because of nilpotent elements, nor can we speak of limits because the natural topology on A is not separable.

The idea beahind an intrinsic definition of smooth functions : Let $f: \mathbf{R} \to \mathbf{R}$ be of class C^1 , then the function $g: \mathbf{R}^2 \to \mathbf{R}$ defined by

$$
g(x, y) = \int_0^1 f'(sx + (1 - s)y) ds
$$

is continuous and satisfies $\forall x, y \in \mathbf{R} : f(x) - f(y) = g(x, y) \cdot (x - y)$.

Proposition : Let $f : \mathbf{R} \to \mathbf{R}$ be any function. If there exists a continuous function $g: \mathbf{R}^2 \to \mathbf{R}$ satisfying

$$
\forall x, y \in \mathbf{R} : f(x) - f(y) = g(x, y) \cdot (x - y) ,
$$

then f is of class C^1 with $f'(x) = g(x, x)$.

An example : On $M = \mathcal{A}_0^2 \times \mathcal{A}_1^2 \ni (x, y, \xi, \eta)$ consider the 2-form

 $\omega = dx \wedge dy + d\xi \wedge d\eta + dx \wedge d\xi$.

Consider the vector fields

$$
X = 2y \frac{\partial}{\partial x} - 2y \frac{\partial}{\partial \eta} \quad \text{and} \quad Y = -\xi \frac{\partial}{\partial \xi} + \eta \frac{\partial}{\partial \eta} + \xi \frac{\partial}{\partial y}.
$$

They satisfy $\iota(X)\omega = d(y^2)$ and $\iota(Y)\omega = d(\eta\xi)$.

Their commutator is given as $[X, Y] = -2\xi \frac{\partial}{\partial x} - 2y \frac{\partial}{\partial \eta} - 2\xi \frac{\partial}{\partial \eta}$.

But $\iota([X, Y])\omega = d(y\xi) + 2\xi d\xi$ is not even closed.

Definition : A closed 2-form $\omega = \omega_0 + \omega_1$ on M is said to be symplectic if

$$
\ker(\omega_0: T_m \to T_m^*) \cap \ker(\omega_1: T_m \to T_m^*) = \{0\} .
$$

Remark: If a closed 2-form satisfies $\ker(\omega : T_m \to T_m^*) = \{0\}$, then it is symplectic.

Definition : A vector field X on a symplectic manifold (M, ω) is locally/globally hamiltonian if

 $\iota(X)\omega_0 \qquad \text{and} \qquad \iota(X)\omega_1$

are closed/exact.

Definition : The Poisson algebra P of a symplectic manifold is given by

$$
\mathcal{P} = \{ (f_0, f_1) \in C^{\infty}(M)^2 \mid \exists X : \iota(X)\omega_0 = -df_0 \text{ and } \iota(X)\omega_1 = -df_1 \}.
$$

A trick : To avoid the separation in even and odd parts, consider all forms (and thus functions) as forms in a vector space of dimension 1|1 for which ω_0 and ω_1 are the "coefficients" with respect to a basis.

Proposition : The commutator of two locally hamiltonian vector fields is globally hamiltonian.

Definition : For an element $f = (f_0, f_1) \in \mathcal{P}$, the unique vector field X satisfying $\iota(X)\omega_{\alpha} = -df_{\alpha}$ is called the hamiltonian vector field of f and denoted as X_f . The Poisson bracket $\{f, g\}$ of two elements $f, g \in \mathcal{P}$ is defined as $\{f, g\}_{\alpha} = X_{f}g_{\alpha}$.

Proposition :

- The Poisson bracket satisfies the conditions of a super Lie algebra structure.
- The map $f \mapsto X_f$ is an even homomorphism of (super) Lie algebras.

Definition : A momentum map for a symmetry group G with Lie algebra \mathfrak{g} of a symplectic manifold (M, ω) is a map $J : M \to \mathfrak{g}^*$ satisfying the condition

$$
\forall v \in \mathfrak{g} \; : \; \iota(v^M)\omega_\alpha = -d\langle v | J_\alpha \rangle \; .
$$

It is said to be strongly hamiltonian if the map $g \to \mathcal{P}, v \mapsto \langle v|J\rangle$ is a Lie algebra morphism.

Proposition : Let G be a Lie group with Lie algebra \mathfrak{g} , let $\mu_o \in \mathfrak{g}^*$ be a fixed dual element, let \mathcal{O}_{μ_o} be its Coadjoint orbit and let ω^{KKS} be the Kirillov-Kostant-Souriau 2-form on \mathcal{O}_{μ_o} defined by

$$
-\iota(v^*)\iota(w^*)\omega_{\mu}^{KKS} = \langle [v, w] | \mu \rangle.
$$

Then ω^{KKS} is symplectic but not necessarily non-degenerate and the identity map $J: \mathcal{O}_{\mu_o} \to \mathfrak{g}^*,$ $J(\mu) = \mu$ is a strongly hamiltonian momentum map.

Non-super prequantization

The stage: a symplectic manifold (M, ω) .

Prequantization according to Kostant: a complex line bundle $\pi : L \to M$ over M with a connection ∇ whose curvature is the symplectic form:

$$
curv(\nabla) = \frac{-i\,\omega}{\hbar} \; .
$$

Prequantization according to Souriau : a principal $\mathbf{S}^1\text{-bundle } \pi : Y \to M$ over M equipped with a 1-form α satisfying three conditions:

(i)
$$
\alpha
$$
 is invariant under the S^1 -action;

(ii)
$$
d\alpha = \pi^*\omega
$$
;
(iii) $\int_{\mathbf{S}^1\text{-orbit}} \alpha = 2\pi\hbar$.

Non-super prequantization

Relation : L is the C-line bundle associated to the principal S^1 -bundle Y by the tautological representation of $S^1 \subset \mathbb{C}$ on \mathbb{C} .

Condition for existence : ω/\hbar represents an integral class in cohomology.

An equivalent condition : $Per(\omega) \subset 2\pi\hbar Z$, with

$$
Per(\omega) = \{ \int_{\gamma} \omega \mid \gamma \text{ a 2-cycle on } M \} .
$$

Connection 1-forms for principal S^1 -bundles

Proposition : Let $d > 0$ be a fixed positive real number, let M be a manifold, let θ be a 1-form on M, let $G = \mathbb{R}/d\mathbb{Z}$ be the real line modulo d and let x be a coordinate (modulo d) on G. Then ∂_x is a left-invariant vector field on G and

$$
\alpha=\big(\theta+dx\big)\otimes\partial_x
$$

is a connection 1-form on the pricipal G-bundle $M \times G \to M$. Its curvature is given by

$$
\operatorname{curv}(\alpha)=\mathrm{d} \theta\otimes \partial_x\,\,.
$$

Proposition : Let ω be a closed 2-form on M whose group of periods is contained in dZ. Then there exists a principal $\mathbf{R}/d\mathbf{Z}$ -bundle with connection 1-form α whose curvature is $\omega \otimes \partial_x$.

The classical part of Prequantization

The stage: A symplectic manifold (M, ω) such that the group of periods of ω is discrete. This is a necessary and sufficient condition for the existence of a principal $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ -bundle $\pi : Y \to M$ with a 1-form α satisfying the following three conditions:

\n- (i)
$$
\alpha
$$
 is invariant under the $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ -action;
\n- (ii) $d\alpha = \pi^*\omega$;
\n- (iii) $\int_{\mathcal{A}_0/d\mathbf{Z}$ -orbit} \alpha = d is a non-zero constant.
\n

The classical part of Prequantization

The stage: A symplectic manifold (M, ω) such that the group of periods of ω is discrete. This is a necessary and sufficient condition for the existence of a principal $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ -bundle $\pi : Y \to M$ with a 1-form α satisfying the following three conditions:

\n- (i)
$$
\alpha
$$
 is invariant under the $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ -action;
\n- (ii) $d\alpha = \pi^*\omega$;
\n- (iii) $\int_{\mathcal{A}_0/d\mathbf{Z}$ -orbit} \alpha = d is a non-zero constant.
\n

Remark 1 : Condition (iii) implies that the group of periods is included in $d\mathbf{Z}$.

 ${\bf Remark~2:\, If\,}e_0,e_1\text{ is the appropriate basis for the Lie algebra of }({\cal A}_0/d{\bf Z})\!\times\! {\cal A}_1,$ then $\alpha_0 \otimes e_0 + \alpha_1 \otimes e_1$ is a connection 1-form with curvature $\omega_0 \otimes e_0 + \omega_1 \otimes e_1$.

Remark 3: All quotients of Y by $\mathbf{Z}/n\mathbf{Z} \subset \mathbf{S}^1$ satisfy the same conditions!

Remark 4 : The bundle Y is not necessarily unique.

The classical part of Prequantization

Proposition : The bundle $\pi: Y \to M$ has the following property.

For each $f \in \mathcal{P}$ there exists a unique vector field η_f on Y preserving α and projecting to the Hamiltonian vector field X_f of H on M. It (thus) satisfies

$$
\mathcal{L}(\eta_f)\alpha = 0
$$
, $\iota(\eta_f)\alpha = \pi^*f$ and $\pi_*\eta_f = X_f$.

This correspondence is a Lie algebra *isomorphism* form the Poisson algebra P to the α -preserving vector fields on Y.

What about line bundle prequantization?

There is no representation of $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ on a finite dimensional vector space that is not trivial on the A_1 -part. This means that the best we can do is:

Look for a "line" bundle $L \to M$ with a connection ∇ whose curvature is $-i\omega_0/\hbar$.

Question : The absence of the odd part of the symplectic form in line bundle prequantization, has it serious repercussions?

What about line bundle prequantization?

There is no representation of $(\mathcal{A}_0/d\mathbf{Z}) \times \mathcal{A}_1$ on a finite dimensional vector space that is not trivial on the A_1 -part. This means that the best we can do is:

Look for a "line" bundle $L \to M$ with a connection ∇ whose curvature is $-i\omega_0/\hbar$.

Question : The absence of the odd part of the symplectic form in line bundle prequantization, has it serious repercussions?

Answer : I don't know!

Remark : The bundle $\pi : Y \to M$ is not just a mathematical construction, it also has physical content.

The space $Q = \mathbb{R}^{3N}/\mathfrak{S}_N$ represents the configuration space of N identical particles in \mathbb{R}^3 . For $M = T^*Q$ there exist two (inequivalent) choices for the principal S^1 -bundle $\pi: Y \to M$, corresponding to the two characters for the permutation group \mathfrak{S}_N : the identity and the signature.

Suppose we have an infinitely thin and infinitely long solenoid along the z -axis in \mathbb{R}^3 through which a current passes. This produces a magnetic field inside the solenoid, but no field outside. Assuming that a charged particle is not allowed in the solenoid, we thus have a configuration space $Q = \mathbb{R}^3 \setminus z$ -axis. The inequivalent principal S^1 -bundles Y over the phase space $M = T^*Q$ are classified by a circle $\mathbf{R}/q\mathbf{Z}$. The Aharonov-Bohm experiment shows that, depending upon the current through the solenoid, there exists inequivalent physical situations, classified by a circle $\mathbf{R}/g\mathbf{Z}$ with the same g as above.