Constant mean curvature surfaces in Minkowski 3-space via loop groups

David Brander

Now: Department of Mathematics Kobe University

(From August 2008: Danish Technical University)

Geometry, Integrability and Quantization - Varna 2008

Outline

CMC Surfaces in Euclidean Space

Outline

CMC Surfaces in Euclidean Space

CMC surfaces in Minkowski 3-Space
The loop group construction

Constant Mean Curvature Surfaces in Euclidean 3-space

- Soap films are CMC surfaces.
- Air pressure on both sides of surface the same
 → mean curvature H = 0, minimal surface

Minimal Surfaces: H = 0

 Gauss map of a minimal surface is holomorphic.

Figure: Costa's surface

Minimal Surfaces: H = 0

Figure: Costa's surface

- Gauss map of a minimal surface is holomorphic.

CMC $H \neq 0$ Surfaces

Figure: A constant non-zero mean curvature surface

 Gauss map is a harmonic (not holomorphic) map into

$$S^2 = SU(2)/K,$$

 $K = \{ diagonal matrices \}.$

CMC $H \neq 0$ Surfaces

Figure: A constant non-zero mean curvature surface

 Gauss map is a harmonic (not holomorphic) map into

$$S^2 = SU(2)/K$$

 $K = \{ diagonal matrices \}.$

• Loop group frame F_{λ} .

CMC $H \neq 0$ Surfaces

Figure: A constant non-zero mean curvature surface

 Gauss map is a harmonic (not holomorphic) map into

$$S^2 = SU(2)/K,$$

 $K = \{ \text{diagonal matrices} \}.$

- Loop group frame F_λ.
- Can recover f from the loop group map F_λ via a simple formula.

- $\Lambda G^{\mathbb{C}} = \{ \gamma : \mathbb{S}^1 \to G^{\mathbb{C}} \mid \gamma \text{ smooth} \}$
- $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of *connection order* (a, b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

- $\Lambda G^{\mathbb{C}} = \{ \gamma : \mathbb{S}^1 \to G^{\mathbb{C}} \mid \gamma \text{ smooth} \}$
- $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of connection order (a, b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

• Example: flat surfaces in S³.

$$F_{\lambda}^{-1}dF_{\lambda} = egin{pmatrix} \omega & \lambda eta & \lambda heta \ -\lambda eta^t & 0 & 0 \ -\lambda heta^t & 0 & 0 \end{pmatrix} = a_0 + a_1 \lambda,$$

order (0, 1).

 $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of connection order (a,b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

1. AKS theory:

- 2. KDPW Method:
- 3. Dressing:

 $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of connection order (a,b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

- AKS theory: Constructs order (0, b) maps, b > 0, by solving ODE's.
 Related to inverse scattering.
- 2. KDPW Method:
- 3. Dressing:

 $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of *connection order* (a, b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

- AKS theory: Constructs order (0, b) maps, b > 0, by solving ODE's. Related to inverse scattering.
- 2. **KDPW Method:** Constructs order (a, b) maps, a < 0 < b, from a pair of (a, 0) and (0, b) maps.
- 3. Dressing:

 $F_{\lambda}: M \to \Lambda G^{\mathbb{C}}$ is of *connection order* (a, b) if

$$F_{\lambda}^{-1}dF_{\lambda}=\sum_{a}^{b}a_{i}\lambda^{i}.$$

- AKS theory: Constructs order (0, b) maps, b > 0, by solving ODE's.
 Related to inverse scattering.
- 2. **KDPW Method:** Constructs order (a, b) maps, a < 0 < b, from a pair of (a, 0) and (0, b) maps.
- 3. **Dressing:** Any kind of connection order (a, b) maps. Produces families of new solutions from a given solution.

Need Birkhoff factorization:

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda^+ G^{\mathbb{C}} \cdot \Lambda^- G^{\mathbb{C}}$,

where $\Lambda^{\pm} G^{\mathbb{C}}$ consists of loops which extend holomorphically to \mathbb{D} and $\hat{\mathbb{C}} \setminus \mathbb{D}$ resp.

Need Birkhoff factorization:

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda^+ G^{\mathbb{C}} \cdot \Lambda^- G^{\mathbb{C}}$,

where $\Lambda^{\pm} G^{\mathbb{C}}$ consists of loops which extend holomorphically to \mathbb{D} and $\hat{\mathbb{C}} \setminus \mathbb{D}$ resp.

• If F_{λ} is of order (a, b), a < 0 < b, decompose

$$F = F_+ G_- = F_- G_+$$
.

Need Birkhoff factorization:

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda^+ G^{\mathbb{C}} \cdot \Lambda^- G^{\mathbb{C}}$,

where $\Lambda^{\pm} G^{\mathbb{C}}$ consists of loops which extend holomorphically to \mathbb{D} and $\hat{\mathbb{C}} \setminus \mathbb{D}$ resp.

• If F_{λ} is of order (a, b), a < 0 < b, decompose

$$F = F_{+}G_{-} = F_{-}G_{+}$$
.

• Then F_+ is of order (0, b) and F_- is of order (a, 0):

Need Birkhoff factorization:

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda^+ G^{\mathbb{C}} \cdot \Lambda^- G^{\mathbb{C}}$,

where $\Lambda^{\pm} G^{\mathbb{C}}$ consists of loops which extend holomorphically to \mathbb{D} and $\hat{\mathbb{C}} \setminus \mathbb{D}$ resp.

• If F_{λ} is of order (a, b), a < 0 < b, decompose

$$F = F_+ G_- = F_- G_+$$
.

• Then F_+ is of order (0, b) and F_- is of order (a, 0):

$$F_{+}^{-1}dF_{+} = G_{-}(F^{-1}dF)G_{-}^{-1} + G_{-}dG_{-}^{-1}$$
$$= G_{-}(\sum_{a}^{b} a_{i}\lambda^{i})G_{-}^{-1} + G_{-}dG_{-}^{-1}$$

Need Birkhoff factorization:

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda^+ G^{\mathbb{C}} \cdot \Lambda^- G^{\mathbb{C}}$,

where $\Lambda^{\pm} G^{\mathbb{C}}$ consists of loops which extend holomorphically to \mathbb{D} and $\hat{\mathbb{C}} \setminus \mathbb{D}$ resp.

• If F_{λ} is of order (a, b), a < 0 < b, decompose

$$F = F_+ G_- = F_- G_+$$
.

• Then F_+ is of order (0, b) and F_- is of order (a, 0):

$$F_{+}^{-1}dF_{+} = G_{-}(F^{-1}dF)G_{-}^{-1} + G_{-}dG_{-}^{-1}$$

$$= G_{-}(\sum_{a}^{b} a_{i}\lambda^{i})G_{-}^{-1} + G_{-}dG_{-}^{-1}$$

$$= C_{0} + ... + C_{b}\lambda^{b}.$$

KDPW Method

- Conversely, given order (0, b) and (a, 0) maps, F₊ and F₋, we can construct an order (a, b) map F.
- After a normalization, both directions unique:

$$\begin{array}{ccc}
F & \longleftrightarrow & \left\{ \begin{array}{c} F_+ \\ F_- \end{array} \right\} \\
(a,b) & (a,0)
\end{array}$$

Specific Case

Harmonic Maps into Symmetric Spaces

- G/K symmetric space, $K = G_{\sigma}$.
- On $\Lambda G^{\mathbb{C}}$, define involution $\hat{\sigma}$:

$$(\hat{\sigma}\gamma)(\lambda) := \sigma(\gamma(-\lambda)).$$

Specific Case

Harmonic Maps into Symmetric Spaces

- G/K symmetric space, $K = G_{\sigma}$.
- On $\Lambda G^{\mathbb{C}}$, define involution $\hat{\sigma}$:

• Fixed point subgroup $\Lambda G_{\hat{\sigma}} \subset \Lambda G_{\hat{\sigma}}^{\mathbb{C}} \subset \Lambda G^{\mathbb{C}}$.

- $F_{\lambda}(z)$ a connection order (-1,1) map, $\mathbb{C} \to \Lambda G_{\hat{\sigma}}$.
- KDPW:

- $F_{\lambda}(z)$ a connection order (-1,1) map, $\mathbb{C} \to \Lambda G_{\hat{\sigma}}$.
- KDPW: $F \leftrightarrow \{F_+, F_-\}$
- In this case, F₊ determined by F₋, so

$$F \leftrightarrow F_{-}$$

- $F_{\lambda}(z)$ a connection order (-1,1) map, $\mathbb{C} \to \Lambda G_{\hat{\sigma}}$.
- KDPW:

$$F \leftrightarrow F_{-}$$

• Fix $\lambda \in S^1$: then $F_{\lambda} : \mathbb{C} \to G$.

- $F_{\lambda}(z)$ a connection order (-1,1) map, $\mathbb{C} \to \Lambda G_{\hat{\sigma}}$.
- KDPW:

$$F \leftrightarrow F_{-}$$

- Fix $\lambda \in S^1$: then $F_{\lambda} : \mathbb{C} \to G$.
- Fact: Projection of F, to G/K, is a harmonic map
 C → G/K if and only if F₋ is holomorphic in z:

- $F_{\lambda}(z)$ a connection order (-1,1) map, $\mathbb{C} \to \Lambda G_{\hat{\sigma}}$.
- KDPW:

$$F \leftrightarrow F_{-}$$

- Fix $\lambda \in S^1$: then $F_{\lambda} : \mathbb{C} \to G$.
- Fact: Projection of F, to G/K, is a *harmonic* map $\mathbb{C} \to G/K$ if and only if F_- is *holomorphic* in z:

order
$$(-1,1)$$
 $F \leftrightarrow F_{-}$ order $(-1,-1)$ harmonic holomorphic

$$\alpha = \begin{pmatrix} 0 & a(z) \\ b(z) & 0 \end{pmatrix} \lambda^{-1} dz.$$

• a(z), b(z) arbitrary holomorphic. Set

$$\alpha = \begin{pmatrix} 0 & a(z) \\ b(z) & 0 \end{pmatrix} \lambda^{-1} dz.$$

• Automatically, $d\alpha + \alpha \wedge \alpha = 0$. Integrate to get $F_-: \Sigma \to \Lambda G$, connection order (-1, -1).

$$\alpha = \begin{pmatrix} 0 & a(z) \\ b(z) & 0 \end{pmatrix} \lambda^{-1} dz.$$

- Automatically, $d\alpha + \alpha \wedge \alpha = 0$. Integrate to get $F_-: \Sigma \to \Lambda G$, connection order (-1, -1).
- Apply KDPW correspondence to get F, frame for harmonic map.

$$\alpha = \begin{pmatrix} 0 & a(z) \\ b(z) & 0 \end{pmatrix} \lambda^{-1} dz.$$

- Automatically, $d\alpha + \alpha \wedge \alpha = 0$. Integrate to get $F_-: \Sigma \to \Lambda G$, connection order (-1, -1).
- Apply KDPW correspondence to get F, frame for harmonic map.
- CMC surface obtained from F by Sym-Bobenko formula.

$$\alpha = \begin{pmatrix} 0 & a(z) \\ b(z) & 0 \end{pmatrix} \lambda^{-1} dz.$$

- Automatically, $d\alpha + \alpha \wedge \alpha = 0$. Integrate to get $F_-: \Sigma \to \Lambda G$, connection order (-1, -1).
- Apply KDPW correspondence to get F, frame for harmonic map.
- CMC surface obtained from F by Sym-Bobenko formula.
- All CMC surfaces in \mathbb{R}^3 are obtained this way.

Iwasawa Decomposition

 In fact for harmonic maps, for the ← direction of KDPW, need *lwasawa splitting*

$$\Lambda G^{\mathbb{C}}$$
 "=" $\Lambda G \cdot \Lambda^+ G^{\mathbb{C}}$.

- This holds globally if G is compact.
- F is obtained from F₋ via:

$$F_{-}=FG_{+}$$
.

More generally, for the ← direction, the holomorphic map
 F_− can be of order (-1, b) where b ≥ -1.

Figure: CMC Unduloid

Figure: CMC Nodoid

Figure: CMC 5-noid

Figure: A Smyth Surface

CMC surfaces in Minkowski space, L³

B.-, Rossman, Schmitt - "Holomorphic representation of constant mean curvature surfaces in Minkowski space" - Preprint

• Construction analogous to CMC in \mathbb{R}^3 . Change $SU(2)\mapsto SU(1,1)$.

CMC surfaces in Minkowski space, L³

B.-, Rossman, Schmitt - "Holomorphic representation of constant mean curvature surfaces in Minkowski space" - Preprint

- Construction analogous to CMC in \mathbb{R}^3 . Change $SU(2) \mapsto SU(1,1)$.
- Only difference: SU(1,1) non-compact ⇒ Iwasawa decomposition not global.
- Iwasawa defined on an open dense set (the "big cell")

CMC surfaces in Minkowski space, L³

B.-, Rossman, Schmitt - "Holomorphic representation of constant mean curvature surfaces in Minkowski space" - Preprint

- Construction analogous to CMC in \mathbb{R}^3 . Change $SU(2) \mapsto SU(1,1)$.
- Only difference: SU(1,1) non-compact ⇒ Iwasawa decomposition not global.
- Iwasawa defined on an open dense set (the "big cell")
- · Surface has singularities at boundary of this set.

Classification of surfaces with rotational symmetry

Figure: Examples from each of the eight families of surfaces with rotational symmetry in L^3 . (Images made by Nick Schmitt's XLab.)

Smyth surfaces in L³

Figure: A Smyth surface in L^3

Figure: Swallowtail singularity

Figure: Swallowtail singularity

Outline

CMC Surfaces in Euclidean Space

CMC surfaces in Minkowski 3-Space
The loop group construction

$$\bullet \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ , \ \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ , \ \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\bullet \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ , \ \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ , \ \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- $G = SU(1,1) \cup i\sigma_1 \cdot SU(1,1)$
- $G^{\mathbb{C}} = SL(2, \mathbb{C})$

$$\bullet \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ , \ \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ , \ \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- $G = SU(1,1) \cup i\sigma_1 \cdot SU(1,1)$
- $G^{\mathbb{C}} = SL(2, \mathbb{C})$
- $\Lambda G^{\mathbb{C}} = \{ \gamma : \mathbb{S}^1 \to G^{\mathbb{C}} \mid \gamma \text{ smooth} \}$

$$\bullet \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ , \ \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ , \ \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- $G = SU(1,1) \cup i\sigma_1 \cdot SU(1,1)$
- $G^{\mathbb{C}} = SL(2, \mathbb{C})$
- $\Lambda G^{\mathbb{C}} = \{ \gamma : \mathbb{S}^1 \to G^{\mathbb{C}} \mid \gamma \text{ smooth} \}$
- $\Lambda G_{\sigma}^{\mathbb{C}} := \{ x \in \Lambda G^{\mathbb{C}} | \sigma(x) = x \}$, where,

$$(\sigma(x))(\lambda) := \operatorname{Ad}_{\sigma_3} x(-\lambda).$$

• $\Lambda^{\pm} G_{\sigma}^{\mathbb{C}} := \Lambda G_{\sigma}^{\mathbb{C}} \cap \Lambda^{\pm} G^{\mathbb{C}}$

- $\Lambda G_{\sigma} := \Lambda G \cap \Lambda G_{\sigma}^{\mathbb{C}}$ "real form".
- Note: $\Lambda G_{\sigma} = \Lambda SU(1,1)_{\sigma} \cup i\sigma_1 \cdot \Lambda SU(1,1)_{\sigma}$.

- $\Lambda G_{\sigma} := \Lambda G \cap \Lambda G_{\sigma}^{\mathbb{C}}$ "real form".
- Note: $\Lambda G_{\sigma} = \Lambda SU(1,1)_{\sigma} \cup i\sigma_1 \cdot \Lambda SU(1,1)_{\sigma}$.
- Setting $x^*(\lambda) := \overline{x(\bar{\lambda}^{-1})}$, Then

$$\Lambda SU(1,1)_{\sigma} = \Big\{ \begin{pmatrix} a & b \\ b^* & a^* \end{pmatrix} \in \Lambda G_{\sigma}^{\mathbb{C}} \Big\},$$

$$i\sigma_1 \cdot \Lambda SU(1,1)_{\sigma} = \Big\{ \begin{pmatrix} a & b \\ -b^* & -a^* \end{pmatrix} \in \Lambda G_{\sigma}^{\mathbb{C}} \Big\},$$

- Σ Riemmann surface
- $F: \Sigma \to \Lambda G_{\sigma}$ of connection order (-1,1)

- Σ Riemmann surface
- $F: \Sigma \to \Lambda G_{\sigma}$ of connection order (-1,1)
- F_− : Σ → Λ[−]G^ℂ_σ of order (−1, −1), associated to F via (normalized) Birkhoff splitting:

$$F = F_-G_+$$
.

- Σ Riemmann surface
- $F: \Sigma \to \Lambda G_{\sigma}$ of connection order (-1,1)
- F_− : Σ → Λ[−]G^ℂ_σ of order (−1, −1), associated to F via (normalized) Birkhoff splitting:

$$F = F_-G_+$$
.

• For $\lambda_0 \in \mathbb{S}^1$, set

$$f^{\lambda_0} = -\frac{1}{2H} \mathcal{S}(F) \Big|_{\lambda = \lambda_0},$$

 $\mathcal{S}(F) := Fi\sigma_3 F^{-1} + 2i\lambda \partial_\lambda F \cdot F^{-1}.$

- Σ Riemmann surface
- $F: \Sigma \to \Lambda G_{\sigma}$ of connection order (-1,1)
- F_− : Σ → Λ[−]G_σ^ℂ of order (−1, −1), associated to F via (normalized) Birkhoff splitting:

$$F = F_-G_+$$
.

• For $\lambda_0 \in \mathbb{S}^1$, set

$$f^{\lambda_0} = -rac{1}{2H}\mathcal{S}(F)\Big|_{\lambda=\lambda_0},$$

 $\mathcal{S}(F) := Fi\sigma_3F^{-1} + 2i\lambda\partial_\lambda F\cdot F^{-1}.$

• F_- holomorphic if and only if $f^{\lambda_0}: \Sigma \to L^3$ has constant mean curvature H.

SU(1,1) Iwasawa decomposition

Need:

$$\omega_{\textit{m}} = \begin{pmatrix} 1 & 0 \\ \lambda^{-\textit{m}} & 1 \end{pmatrix} \;,\;\; \textit{m} \; \text{odd} \;\; ; \quad \omega_{\textit{m}} = \begin{pmatrix} 1 & \lambda^{1-\textit{m}} \\ 0 & 1 \end{pmatrix} \;,\;\; \textit{m} \; \text{even}.$$

Theorem

(SU(1,1) Iwasawa decomposition)

$$\Lambda G_{\sigma}^{\mathbb{C}} = \mathcal{B}_{1,1} \sqcup \bigsqcup_{n \in \mathbb{Z}^+} \mathcal{P}_n,$$

big cell:
$$\mathcal{B}_{1,1} := \Lambda G_{\sigma} \cdot \Lambda^+ G_{\sigma}^{\mathbb{C}}$$
, n'th small cell: $\mathcal{P}_n := \Lambda SU(1,1)_{\sigma} \cdot \omega_n \cdot \Lambda^+ G_{\sigma}^{\mathbb{C}}$.

- $\mathcal{B}_{1,1}$, is an open dense subset of $\Lambda G_{\sigma}^{\mathbb{C}}$.
- Any $\phi \in \mathcal{B}_{1,1}$ can be expressed as

$$\phi = FB, \qquad F \in \Lambda G_{\sigma}, \quad B \in \Lambda^+ G_{\sigma}^{\mathbb{C}},$$
 (1)

F unique up to right multiplication by $G_{\sigma} := \Lambda G_{\sigma} \cap G$.

• The map $\pi: \mathcal{B}_{1,1} \to \Lambda G_{\sigma}/G_{\sigma}$ given by $\phi \mapsto [F]$, derived from (1), is a real analytic projection.

Theorem

(Holomorphic rep. for spacelike CMC surfaces in L3) Let

$$\xi = \sum_{i=-1}^{\infty} A_i \lambda^i dz \in \mathit{Lie}(\Lambda G^{\mathbb{C}}_{\sigma}) \otimes \Omega^1(\Sigma)$$

be a holomorphic 1-form over a simply-connected Riemann surface Σ , with

$$a_{-1} \neq 0$$
,

on Σ , where $A_{-1}=\begin{pmatrix}0&a_{-1}\\b_{-1}&0\end{pmatrix}$. Let $\phi:\Sigma\to \Lambda G_\sigma^\mathbb{C}$ be a solution of

$$\phi^{-1}d\phi=\xi.$$

On $\Sigma^{\circ} := \phi^{-1}(\mathcal{B}_{1,1})$, G-Iwasawa split:

$$\phi = FB,$$
 $F \in \Lambda G_{\sigma}, B \in \Lambda^+ G_{\sigma}^{\mathbb{C}}.$ (2)

Then for any $\lambda_0 \in \mathbb{S}^1$, the map $f^{\lambda_0} := \hat{f}^{\lambda_0} : \Sigma^{\circ} \to L^3$, given by the Sym-Bobenko formula, is a conformal CMC H immersion, and is independent of the choice of F in (2).

Example 1: hyperboloid of two sheets.

$$\begin{split} & \xi = \begin{pmatrix} 0 & \lambda^{-1} \\ 0 & 0 \end{pmatrix} dz, \qquad \quad \Sigma = \mathbb{C}. \\ & \phi = \begin{pmatrix} 1 & z\lambda^{-1} \\ 0 & 1 \end{pmatrix} : \Sigma \to \Lambda G_{\sigma}^{\mathbb{C}}. \end{split}$$

Takes values in $\mathcal{B}_{1,1}$ for $|z| \neq 1$. *G*-lwasawa:

$$\phi = F \cdot B$$
, $F : \Sigma \setminus \mathbb{S}^1 \to \Lambda G$, $B : \Sigma \setminus \mathbb{S}^1 \to \Lambda^+ G_{\sigma}^{\mathbb{C}}$,

$$F = \frac{1}{\sqrt{\varepsilon(1-|z|^2)}} \begin{pmatrix} \varepsilon & z\lambda^{-1} \\ \varepsilon \overline{z}\lambda & 1 \end{pmatrix},$$

$$B = \frac{1}{\sqrt{\varepsilon(1-|z|^2)}} \begin{pmatrix} 1 & 0 \\ -\varepsilon \overline{z}\lambda & \varepsilon(1-z\overline{z}) \end{pmatrix}, \qquad \varepsilon = \text{sign}(1-|z|^2).$$

Sym-Bobenko formula gives

$$\hat{f}^{1}(z) = \frac{1}{H(x^{2} + y^{2} - 1)} \cdot [2y, -2x, (1 + 3x^{2} + 3y^{2})/2],$$

two-sheeted hyperboloid $\{x_1^2 + x_2^2 - (x_0 - \frac{1}{2H})^2 = -\frac{1}{H^2}\}$.

Hyperboloid: boundary of big cell behaviour

- In a small cell precisely when |z| = 1:
- There, have $\phi \in \Lambda SU(1,1)_{\sigma} \cdot \omega_2 \cdot \Lambda^+ G_{\sigma}^{\mathbb{C}}$:

$$\begin{pmatrix} 1 & z\lambda^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p\sqrt{z} & \lambda^{-1}q\sqrt{z} \\ \lambda q\sqrt{z}^{-1} & p\sqrt{z}^{-1} \end{pmatrix} \cdot \omega_2 \cdot \begin{pmatrix} (p+q)\sqrt{z}^{-1} & 0 \\ -\lambda q\sqrt{z}^{-1} & (p-q)\sqrt{z} \end{pmatrix}$$

where $p^2 - q^2 = 1$ and $p, q \in \mathbb{R}$.

- That is: $\phi \in \mathcal{P}_2$ for |z| = 1.
- Note: Surface blows up as $|z| \rightarrow 1$.

Example 2: numerical experiment

$$\xi = \lambda^{-1} \cdot \begin{pmatrix} 0 & 1 \\ 100 z & 0 \end{pmatrix} dz,$$

Numerically:

- 1. Integrate with i.c. $\phi(0) = \omega_1$, to get $\phi : \Sigma \to \Lambda G_{\sigma}^{\mathbb{C}}$.
- 2. Iwasawa split to get $F : \Sigma \to \Lambda G_{\sigma}$.
- 3. Compute Sym-Bobenko formula to get $f^1: \Sigma \to L^3$.
- 4. Use XLab to view the surface.

- Looks like *Shcherbak surface* singularity at z = 0.
- Since $\phi(0) = \omega_1$, the singularity occurs at \mathcal{P}_1 .

Results on boundary of big cell behaviour

• Proved:

- 1. The map $f^{\lambda_0}: \Sigma \to L^3$ always well defined (and real analytic) at $z_0 \in \phi^{-1}(\mathcal{P}_1)$, but *not immersed* at such a point.
- 2. The map $f^{\lambda_0}: \Sigma \to L^3$ always blows up as $z \to z_0 \in \phi^{-1}(\mathcal{P}_2)$.

Results on boundary of big cell behaviour

• Proved:

- 1. The map $f^{\lambda_0}: \Sigma \to L^3$ always well defined (and real analytic) at $z_0 \in \phi^{-1}(\mathcal{P}_1)$, but *not immersed* at such a point.
- 2. The map $f^{\lambda_0}: \Sigma \to L^3$ always blows up as $z \to z_0 \in \phi^{-1}(\mathcal{P}_2)$.
- Expect (have not proved yet):
 - *generic* holomorphic data does not encounter \mathcal{P}_n for n > 2.
 - Therefore: generic singularities of CMC surfaces occur only at points in \mathcal{P}_1 .

