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Constant Mean Curvature Surfaces in Euclidean
3-space

e Soap films are CMC
surfaces.

o Air pressure on both sides
of surface the same
< mean curvature H = 0,
minimal surface
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CMC surfaces in Minkowski 3-Space
Minimal Surfaces: H=10

e Gauss map of a minimal
surface is holomorphic.

Figure: Costa’s surface
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Minimal Surfaces: H=0

e Gauss map of a minimal
surface is holomorphic.

¢ Weierstrass representation:
pair of holomorphic functions
< minimal surface

Figure: Costa’s surface
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CMC H +# 0 Surfaces

e Gauss map is a harmonic
(not holomorphic) map into

S? = SU(2)/K,

K = {diagonal matrices}.

Figure: A constant non-zero
mean curvature surface
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CMC H +# 0 Surfaces

e Gauss map is a harmonic
(not holomorphic) map into

S? = SU(2)/K,

K = {diagonal matrices}.
e Loop group frame F,.

Figure: A constant non-zero
mean curvature surface
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CMC H +# 0 Surfaces

e Gauss map is a harmonic
(not holomorphic) map into

S? = SU(2)/K,

K = {diagonal matrices}.
e Loop group frame F,.

e Can recover f from the loop
group map F) via a simple
formula.

Figure: A constant non-zero
mean curvature surface
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Loop Group Methods

e AG® = {y:S" — G* | v smooth}
e F\: M — AGE is of connection order (a, b) if

b
FldR =D aN
a
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Loop Group Methods

e AG® = {y:S" — G* | v smooth}
e F\: M — AGE is of connection order (a, b) if

b
FldR =D aN
a

o Example: flat surfaces in S°.
w A3 A0
FildRa=[-A80 0 0| =ay+a),
-0 0
order (0,1).
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Loop Group Methods

Fy : M — NG is of connection order (a, b) if
b .
FldFR =) aN.
a

1. AKS theory:

2. KDPW Method:

3. Dressing:
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Related to inverse scattering.
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Loop Group Methods

Fy : M — NG is of connection order (a, b) if
b .
FldFR =) aN.
a

1. AKS theory: Constructs order (0, b) maps, b > 0, by
solving ODE’s.
Related to inverse scattering.

2. KDPW Method: Constructs order (a, b) maps, a < 0 < b,
from a pair of (a,0) and (0, b) maps.

3. Dressing: Any kind of connection order (a, b) maps.
Produces families of new solutions from a given solution.
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Krichever-Dorfmeister-Pedit-Wu (KDPW) Method

e Need Birkhoff factorization:
AGE “=" AtGC. A GE,

where A*G" consists of loops which extend
holomorphically to D and C \ D resp.
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Krichever-Dorfmeister-Pedit-Wu (KDPW) Method

e Need Birkhoff factorization:
AGE “=" AtGC. A GE,

where A*G" consists of loops which extend
holomorphically to D and C \ D resp.
e If F) is of order (a, b), a < 0 < b, decompose

F:F+szFfG+.
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Krichever-Dorfmeister-Pedit-Wu (KDPW) Method

e Need Birkhoff factorization:
AGE “=" AtGC. A GE,

where A*G" consists of loops which extend
holomorphically to D and C \ D resp.

e If F\ is of order (a, b), a < 0 < b, decompose
F:F+67:F,G+.
e Then F, is of order (0, b) and F_ is of order (a,0):
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Krichever-Dorfmeister-Pedit-Wu (KDPW) Method

e Need Birkhoff factorization:
AGE “=" AtGC. A GE,

where A*G" consists of loops which extend
holomorphically to D and C \ D resp.

e If F) is of order (a, b), a < 0 < b, decompose
F=F.G_.=F_G,.
e Then F. is of order (0, b) and F_ is of order (a,0):
FI'dF, G_ (F*1dF)G‘1 + G_dG™!

= Za, )G—' + G_dG”!
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Krichever-Dorfmeister-Pedit-Wu (KDPW) Method

e Need Birkhoff factorization:
AGE “=" AtGC. A GE,

where A*G" consists of loops which extend
holomorphically to D and C \ D resp.

e If F) is of order (a, b), a < 0 < b, decompose
F=F.G_.=F_G,.
e Then F. is of order (0, b) and F_ is of order (a,0):
FI'dF, G_ (F*1dF)G‘1 + G_dG™!

= Za, )G—' + G_dG”!

= Cy+ ...+ Cb/\b.
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KDPW Method

o Conversely, given order (0, b) and (a,0) maps, F; and F_,
we can construct an order (a, b) map F.

e After a normalization, both directions unique:

F—{F}

(@) @0
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Specific Case

Harmonic Maps into Symmetric Spaces

e G/K symmetric space, K = G,.
e On AGE, define involution & :

(67)(A) = a(v(=A))-
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Specific Case

Harmonic Maps into Symmetric Spaces

e G/K symmetric space, K = G,.
e On AGE, define involution & :

o Fixed point subgroup AG; C AGS C AGE.
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e F\(z) a connection order (—1,1) map, C — AG;.
o KDPW:
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e F\(z) a connection order (—1,1) map, C — AG;.
e KDPW: F « {F, ,F_}
e In this case, F,. determined by F_, so

F — F_
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e F\(z) a connection order (—1,1) map, C — AG;.
o KDPW:

e Fix\e S': thenF,:C — G.
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Fx(z) a connection order (—1,1) map, C — AG;.
KDPW:

Fix \e S': thenF,:C — G.

Fact: Projection of F, to G/K, is a harmonic map
C — G/K ifand only if F_ is holomorphicin z:
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Fx(z) a connection order (—1,1) map, C — AG;.
KDPW:

Fix \e S': thenF,:C — G.

Fact: Projection of F, to G/K, is a harmonic map
C — G/K ifand only if F_ is holomorphicin z:

order (—1,1) F < F_ order (—1,—1)
harmonic holomorphic
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“Weierstrass Representation” for CMC H # 0 Surfaces

e a(z), b(z) arbitrary holomorphic. Set

a= (b(oz) a(oz)> A Tdz.
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“Weierstrass Representation” for CMC H # 0 Surfaces

e a(z), b(z) arbitrary holomorphic. Set

a= (b(oz) a(oz)> A Tdz.

e Automatically, da + o A a = 0. Integrate to get
F_ : ¥ — AG, connection order (—1,—1).
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“Weierstrass Representation” for CMC H # 0 Surfaces

e a(z), b(z) arbitrary holomorphic. Set

a= (b(oz) a(oz)> A Tdz.

e Automatically, da + o A a = 0. Integrate to get
F_ : ¥ — AG, connection order (—1,—1).

e Apply KDPW correspondence to get F, frame for harmonic
map.
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“Weierstrass Representation” for CMC H # 0 Surfaces

e a(z), b(z) arbitrary holomorphic. Set

o= (b(oz) a(oz)) A 'dz.

Automatically, da + a A a = 0. Integrate to get
F_ : ¥ — AG, connection order (—1,—1).

Apply KDPW correspondence to get F, frame for harmonic
map.

CMC surface obtained from F by Sym-Bobenko formula.
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“Weierstrass Representation” for CMC H # 0 Surfaces

e a(z), b(z) arbitrary holomorphic. Set

o= (b(oz) a(oz)) A 'dz.

Automatically, da + a A a = 0. Integrate to get
F_ : ¥ — AG, connection order (—1,—1).

Apply KDPW correspondence to get F, frame for harmonic
map.

CMC surface obtained from F by Sym-Bobenko formula.
All CMC surfaces in R? are obtained this way.
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lwasawa Decomposition

In fact for harmonic maps, for the < direction of KDPW,
need Iwasawa splitting

AGE “=" AG - NTGE.

This holds globally if G is compact.
F is obtained from F_ via:

F_ = FG,.

More generally, for the < direction, the holomorphic map
F_ can be of order (—1, b) where b > —1.
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Figure: CMC Unduloid Figure: CMC Nodoid
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Figure: CMC 5-noid Figure: A Smyth Surface
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CMC surfaces in Minkowski space, L3

B.-, Rossman, Schmitt - “Holomorphic representation of constant mean curvature
surfaces in Minkowski space” - Preprint

o Construction analogous to CMC in R3. Change
SU(2) — SU(1,1).
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CMC surfaces in Minkowski space, L3

B.-, Rossman, Schmitt - “Holomorphic representation of constant mean curvature
surfaces in Minkowski space” - Preprint

o Construction analogous to CMC in R3. Change
SU(2) — SU(1,1).

e Only difference: SU(1,1) non-compact = lwasawa
decomposition not global.

¢ lwasawa defined on an open dense set (the “big cell”)
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CMC surfaces in Minkowski space, L3

B.-, Rossman, Schmitt - “Holomorphic representation of constant mean curvature
surfaces in Minkowski space” - Preprint

Construction analogous to CMC in R3. Change
SU(2) — SU(1,1).

Only difference: SU(1, 1) non-compact = lwasawa
decomposition not global.

Iwasawa defined on an open dense set (the “big cell”)

Surface has singularities at boundary of this set.
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Classification of surfaces with rotational symmetry

- H.

\4\

Sia (3,0 Sib (2,0) S2a (—3,0)
(1,v/2) (1 4) —1,4)

Figure: Examples from each of the eight families of surfaces with
rotational symmetry in L3. (Images made by Nick Schmitt’s XLab.)
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Smyth surfaces in L3

Figure: A Smyth surface in L3

[m]

Figure: Swallowtail singularity

=
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The loop group construction
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The loop group construction

0 1 0 —i 10
"":(1 0>’02::<i o)"’s:(o —1)
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The loop group construction

0 1 0 —i 10
"":(1 0>’02::<i o)"’3:<o —1)

e G=SU(1,1) U ioy - SU(1,1)
o G =SL(2,0)
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The loop group construction

0 1 0 —i 10
"‘::(1 0>’02::<i o)"’3:<o —1)

e G=SU(1,1) U ioy - SU(1,1)
« G°=SL(2,C)
e AG® = {v:S" — G® | v smooth}
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The loop group construction

0 1 0 —i 1.0
”‘::(1 0>’02::<i o)"’3:<o —1)

G = SU(1,1) U ioy - SU(1, 1)
GC = SL(2,C)

AGC = {~:S' — G | v smooth}

AGE = {x € AG®| o(x) = x}, where,

(a(x))(A) :== Adyy X(—A).

AEGE .= A\GE N AEGE
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o AG, := AGNAGE - “real form".
e Note: AG, = ASU(1,1), U ioy - ASU(1,1),.
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o AG, := AGNAGE - “real form".
e Note: AG, = ASU(1,1), U ioq - ASU(1,1),.

e Setting x*()\) := x(A~1), Then

/\SU(1,1)U:{<; :) AGE}.

ioy - ASU(1,1), = { (-2* _{;) € /\GS},
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Loop group characterization for CMC surfaces in L3

¢ > Riemmann surface
e F:¥ — AG, of connection order (—1,1)
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Loop group characterization for CMC surfaces in L3

¢ > Riemmann surface
e F:¥ — AG, of connection order (—1,1)

e F_:¥ — A Gt of order (—1, 1), associated to F via
(normalized) Birkhoff splitting:

F=F.G,.
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Loop group characterization for CMC surfaces in L3

¢ > Riemmann surface
e F:¥ — AG, of connection order (—1,1)

e F_:¥ — A Gt of order (—1, 1), associated to F via
(normalized) Birkhoff splitting:

F=F.G,.

e For \g € S', set

fro = — —S(F
S( )A:AO,

S(F) = FlogF +2iN0NF - F71.



CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space
000e0000000000

Loop group characterization for CMC surfaces in L3

¢ > Riemmann surface
e F:¥ — AG, of connection order (—1,1)

e F_:¥ — A Gt of order (—1, 1), associated to F via
(normalized) Birkhoff splitting:

F=F.G,.

e For \g € S', set

fro = — —S(F
S( )A:AO,

S(F) = FlagF +2iN0NF - F71.

e F_ holomorphic if and only if f*o : ¥ — L3 has constant
mean curvature H.
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SU(1,1) lwasawa decomposition
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Theorem
(SU(1,1) Iwasawa decomposition)

AGS =Bi1u || P
nez+
big cell: By :=AG, - N"GE,
n’th small cell: P, :=ASU(1,1), - wp - ATGE.

* B41, is an open dense subset of AGS.
e Any ¢ € By 1 can be expressed as

¢ = FB, FeAG,, BeNl'GE, (1)

F unique up to right multiplication by G, := AG, N G.

e The map r : B11 — NG, /G, given by ¢ — [F], derived
from (1), is a real analytic projection.
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Theorem
(Holomorphic rep. for spacelike CMC surfaces in L3) Let

=) ANdz € Lie(AGS)® Q' (%)
i=—1

be a holomorphic 1-form over a simply-connected Riemann surface
Y, with

a_1#0,
onX, where A_ = <b81 ag‘). Let¢ : ¥ — NGE be a solution of

6 ldo = €.
Onx° := ¢~ '(B1,1), G-lwasawa split:
¢ = FB, F € AG,, Bec A"GE. 2)
Then for any \o € S', the map fo := % : ¥° — 3, given by the

Sym-Bobenko formula, is a conformal CMC H immersion, and is
independent of the choice of F in (2).



CMC Surfaces in Euclidean Space CMC surfaces in Minkowski 3-Space
0000000 e000000

Example 1: hyperboloid of two sheets.

0 X\ .
5(0 o)dz, >y =_C.
L 1 Z)\_1 . C
O—(O 1 >.Z—>/\GU.

Takes values in By 1 for |z| # 1. G-lwasawa:
p=F-B, F:I\S'"->AG B:x\S'—AGE,

B 1 ( e z)r‘)
(1 —|z]P) €ZA 1 ’

— 1< ! 0 >, e = sign(1 — |z]?) .

c(1—|z]2) \—¢ZX (1 —z2)
Sym-Bobenko formula gives

, 1
1 _
M@= Hoe 2=
1

two-sheeted hyperboloid {x2 + xZ — (xo — 55)? = — 72}

2y, —2x, (1 +3x® +3y?)/2],
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Hyperboloid: boundary of big cell behaviour

In a small cell precisely when |z| = 1:
There, have ¢ € ASU(1,1), - wp - AT GE:

(1 z>\‘> [ pVZ AT q\f (p+ q)f 0
o 1) Vv pvz ) avz (p-q)vz
where p> —g> =1and p, g € R.

Thatis: ¢ € P, for |z| = 1.
Note: Surface blows up as |z| — 1.
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Example 2: numerical experiment

T 0 1
=2 '(1002 o)dZ’

Numerically:
1. Integrate with i.c. $(0) = w1, to get ¢ : ¥ — AGE.
2. lwasawa splitto get F : ¥ — AG,.
3. Compute Sym-Bobenko formula to get f!' : ¥ — L3.
4. Use XLab to view the surface.
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e Looks like Shcherbak surface singularity at z = 0.
e Since ¢(0) = wy, the singularity occurs at P;.
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Results on boundary of big cell behaviour

e Proved:
1. The map f* : ¥ — L® always well defined (and real
analytic) at zy € ¢~ '(P;), but not immersed at such a point.
2. The map f* : ¥ — L3 always blows up as
z—2zp€ ¢ (P2).



CMC surfaces in Minkowski 3-Space
00000000000 e00

Results on boundary of big cell behaviour

e Proved:
1. The map f* : ¥ — L® always well defined (and real
analytic) at zy € ¢~ '(P;), but not immersed at such a point.
2. The map f* : ¥ — L3 always blows up as
z—2zp€ ¢ (P2).

e Expect (have not proved yet):
e generic holomorphic data does not encounter P, for n > 2.
e Therefore: generic singularities of CMC surfaces occur only
at points in P;.
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