# Tenth International Conference on Geometry, Integrability and Quantization. June 6-11, 2008, Varna, Bulgaria. 

## Pseudo-fermionic coherent states.

Cherbal Omar

Theoretical Physics Laboratory, Faculty of Physics, USTHB University Algiers, Algeria.
O. Cherbal, M. Drir, M. Maamache and D.A Trifonov, Fermionic coherent states for pseudo-Hermitian two-level Systems, J. Phys. A: Math. Theor. 40 (2007) 1835-1థ44.

## 1. Introduction

- Until 1998 Hermiticity of the Hamiltonian was supposed to be the necessary condition for having real spectrum.
- 1998 C.M. Bender and S. Boettcher [1] have shown that with properly defined boundary conditions the spectrum of the non-Hermitian Hamiltonian :

$$
H_{v}=p^{2}+x^{2}(i x)^{v},(v \geq 0)
$$

is real and positive

- As consequence, since this year the condition of the Hermiticity to have a real spectrum is relaxed and replaced by a more physical condition which is the PT-symmetry.
- 2002 A. Mostafazadeh [2] introduced the notion of pseudo-Hermiticity in order to establish the mathematical relation with the notion of PT-symmetry. He pointed out that all the PT-symmetric non-Hermitian Hamiltonians belonging to the class of pseudo-Hermitian Hamiltonians.
- By definition [2], a Hamiltonian $H$ is called pseudo-Hermitian if it satisfies the relation:

$$
H^{+}=\eta H \eta^{-1}
$$

Where $\eta$ is a linear Hermitian and invertible operator.

- One can also express this relation in the form: $H^{\#}=H$

Where $H^{\#}=\eta^{-1} H^{+} \eta$ is the pseudo-adjoint of $H$.

- An interesting area where the pseudo-Hermiticity is illustrated is in the study of non-Hermitian two-level Hamiltonians (a two-level atom in interaction with an electromagnetic field with damping effects). The present work deals with this system.
- These simple Hamiltonian systems models accurately many physical systems in condensed matter, atomic physics, and quantum optics.
- Quantum optics provides a beautiful implementation of the coherent states formalism.
* Our goal is to extend the fermionic coherent states approach to two-level nonHermitian Hamiltonians which are pseudo-Hermitian. The underlying number system is Grassmann algebra.
- Our system is described by the Following non-Hermitian Hamiltonian:

$$
H=\frac{1}{2}\left(\begin{array}{cc}
-i \delta & \omega^{*} \\
\omega & i \delta
\end{array}\right)
$$

- Where $\delta$ is a real constant which describes the damping effects.
- The complex quantity $\omega$ describes the radiation-atom interaction matrix element between the levels.


Pseudo-Hermitian properties of $H$.

## 2. Pseudo-Hermitian properties of $H$ :

- The trace of $H$ is vanishing, and the determinant of $H$ is real.
- Therefore $H$ is pseudo-Hermitian according to the reference [3], "every $2 \times 2$ traceless matrix with real determinant is pseudo-Hermitian".
- Indeed, the Hamiltonian $H$ satisfies the pseudo-Hermiticity relation: $\mathrm{H}^{+}=\eta \mathrm{H}^{-1}$, with $\eta$ given explicitly by:

$$
\eta=\left(\begin{array}{cc}
1 & \frac{i \delta \omega^{*}}{|\omega|^{2}} \\
-\frac{i \delta \omega}{|\omega|^{2}} & 1
\end{array}\right)
$$

- The eigenvalues of $H$ and the related complete biorthonormal system are given by:

$$
E_{1}=-\frac{\Omega}{2}, \quad E_{2}=\frac{\Omega}{2}
$$

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2 \Omega}}\binom{\frac{-\omega^{*} \sqrt{\Omega+i \delta}}{|\omega|}}{\sqrt{\Omega-i \delta}}, \quad\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2 \Omega}}\binom{\frac{\omega^{*} \sqrt{\Omega i \delta}}{| | \omega \mid}}{\sqrt{\Omega+i \delta}}
$$

$$
\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2 \Omega^{*}}}\binom{\frac{-\sigma^{*} \sqrt{\Omega^{*}-i \delta}}{|\sigma|}}{\sqrt{\Omega^{*}+i \delta}}, \quad\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2 \Omega^{*}}}\binom{\frac{\omega^{*} \sqrt{\Omega^{*}+i \delta}}{|\sigma|}}{\sqrt{\Omega^{*}-i \delta}}
$$

Where $\Omega=\sqrt{|\omega|^{2}-\delta^{2}}$

- This complete biorthonormal system satisfies the following relations:

$$
\begin{gathered}
H\left|\psi_{1,2}\right\rangle=E_{1,2}\left|\psi_{1,2}\right\rangle, \quad H^{+}\left|\phi_{1,2}\right\rangle=E_{1,2}^{*}\left|\phi_{1,2}\right\rangle \\
\left\langle\phi_{1} \mid \psi_{1}\right\rangle=\left\langle\phi_{2} \mid \psi_{2}\right\rangle=1, \\
\left\langle\phi_{1} \mid \psi_{2}\right\rangle=\left\langle\phi_{2} \mid \psi_{1}\right\rangle=0 \\
\left|\phi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\phi_{2}\right\rangle\left\langle\psi_{2}\right|=1, \\
\left|\psi_{1}\right\rangle\left\langle\phi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\phi_{2}\right|=1 .
\end{gathered}
$$

- We point out here that we have two cases for the eigenvalues of $H$, namely:
- Case 1: real eigenvalues: $|\omega|^{2} \geq \delta^{2}$ corresponding to the case where the dipole interaction is large compared to the damping effects. This case is very interesting in quantum optics [4].
- Case 2: pure imaginary eigenvalues : $|\omega|^{2}<\delta^{2}$. The Hamiltonian $H$ is still pseudo-Hermitian [4].
* In the present work we shall consider the case of the real eigenvalues (for physical reasons).
* After having diagonalized our pseudo-Hermitian Hamltonian H. We now embark on the construction of the pseudo-fermionic coherent states (PFCS) for $H$. The underlying number system is the Grassmann algebra.


## 3. Pseudo-fermionic coherent states.



### 3.1 Creation and annihilation operators for $H$.

- Now, let us introduce the annihilation operator b associated to the Hamiltonian H

$$
b=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{-\omega^{*}(\Omega+i \delta)}{|\omega|} \\
\frac{\omega(\Omega-i \delta)}{|\omega|} & |\omega|
\end{array}\right)
$$

- Its adjoint operator reads ( $\Omega$ is real)

$$
b^{+}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{\omega^{*}(\Omega+i \hat{})}{|c|} \\
\frac{-\sigma(\Omega-i \hat{}}{|\omega|} & |\omega|
\end{array}\right)
$$

- And its pseudo-Hermitian adjoint $b^{\#}$, is defined by

$$
b^{\#}=\eta^{-1} b^{+} \eta
$$

- $b^{\#}$ takes the form

$$
b^{\#}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{\omega^{*}(\Omega-i \delta)}{|\omega|} \\
\frac{-\omega(\Omega+i \delta)}{|\omega|} & |\omega|
\end{array}\right)
$$

- $b^{\#}$ and $b$ realize a pseudo-Hermitian generalization of the fermion algebra, namely,

$$
b^{2}=b^{\# 2}=0, \quad\left\{b, b^{\#}\right\}=b b^{\#}+b^{\#} b=1
$$

- One can verify that they raise and lower the eigenvalues of $H$ by a quantity $\Omega=2 E$
- They act on the eigenstates $\left|\psi_{i}\right\rangle$ of $H$ as follows:

$$
\begin{array}{ll}
b\left|\psi_{1}\right\rangle=0, & b\left|\psi_{2}\right\rangle=\left|\psi_{1}\right\rangle, \\
b^{\#}\left|\psi_{2}\right\rangle=0, & b^{\#}\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle,
\end{array}
$$

- The operator $b$ annihilates the lowest eigenstate $\left|\psi_{1}\right\rangle$, and $b^{\#}$ brings this state onto the upper eigenstate $\left|\psi_{2}\right\rangle$.

- Moreover, the Hamiltonian $H$ is factorized in terms of the operators $b$ and $b^{\#}$ to a form, similar to that of the free (boson) harmonic oscillator,

$$
H=\Omega\left(b^{\#} b-\frac{1}{2}\right) .
$$

- Taking the Hermitian conjugate of both sides of this last expression of $H$ we confirm the pseudo-Hermiticity of $H$ (according to the definition $H^{+}=\eta H \eta^{-1}$ ):

$$
\begin{aligned}
H^{+} & =\Omega\left(b^{+} \eta b \eta^{-1}-\frac{1}{2}\right) \\
& =\Omega \eta \eta^{-1}\left(b^{+} \eta b \eta^{-1}-\frac{1}{2}\right) \eta \eta^{-1} \\
& =\eta H \eta^{-1}
\end{aligned}
$$

* The above relations confirm that $b^{\#}$ and $b$ are respectively the creation and annihilation operators of one degree of freedom of pseudo-Hermitian fermions [5].
- This result is confirmed in the Hermitian limit $\delta=0, \eta=1$ corresponding to a Hermitian Hamiltonian, as follow:

$$
\begin{array}{ll}
H^{+}=\eta H \eta^{-1} & \eta=1 \\
b^{\#}=\eta^{-1} b^{+} \eta \quad \eta=1 & b^{\#}=b^{+}
\end{array}
$$

* The pseudo-Hermitian generalization of the fermion algebra reduces to the usual fermion algebra.

Having introduced the creation and annihilation operators, we now define the displacement operator.

## 1

## Step 2:

The displacement operator.

### 3.2 The displacement operator

- First, we define the displacement operator $D(\xi)$ for any set of complex Grassmannian variables $\xi$ in the following way:

$$
\begin{aligned}
D(\xi) & =\exp \left(b^{\#} \xi-\xi^{*} b\right) \\
& =1+b^{\#} \xi-\xi^{*} b+\left(b^{\#} b-\frac{1}{2}\right) \xi^{*} \xi
\end{aligned}
$$

- The pseudo-Hermitian adjoint $D^{\#}$ is given by

$$
\begin{aligned}
D^{\#}(\xi) & =\exp \left(\xi^{*} b-b^{\#} \xi\right) \\
& =1+\xi^{*} b-b^{\#} \xi+\left(b^{\#} b-\frac{1}{2}\right) \xi^{*} \xi
\end{aligned}
$$

- These two operators satisfies the following displacement relations,

$$
\begin{gathered}
D^{\#}(\xi) b D(\xi)=b+\xi \mathbf{1}, \\
D^{\#}(\xi) b^{\#} D(\xi)=b^{\#}+\xi^{*} \mathbf{1}
\end{gathered}
$$

- Using the explicit formulas of $D$ and $D^{\#}$, and the anticommutation relations between operators $b, b^{\#}$ and Grassmann variable $\xi$ we establish that $D(\xi)$ are pseudo-unitary:

$$
D^{\#}(\xi) D(\xi)=1=D(\xi) D^{\#}(\xi)
$$

* Having introduced all the ingredients, we define now our coherent states.



## Step 3:

Definition of pseudo-fermionic coherent states.

### 3.3 Definition of the pseudo-fermionic coherent states

- Now we define the pseudo-fermionic coherent states $|\xi\rangle$ as eigenstates of the annihilation operator $b$,

$$
b|\xi\rangle=\xi|\xi\rangle .
$$

The eigenvalue $\xi$ is a complex Grassmannian variable.

- Similarly to the cases of Glauber bosonic coherent states [6] and of fermionic coherent states, our coherent states $|\xi\rangle$ can be constructed from the lowest (ground) eigenstate $\left|\psi_{1}\right\rangle$ of the Hamiltonian $H$, acting on it by the pseudo-unitary operator $D(\xi)$ :

$$
|\xi\rangle=D(\xi)\left|\psi_{1}\right\rangle
$$

- By using the expression of the displacement operator $D(\xi)$, we may write the state $|\xi\rangle$ in the form:

$$
\begin{aligned}
|\xi\rangle & =D(\xi)\left|\psi_{1}\right\rangle \\
& =e^{\left(b^{*} \xi-\xi^{*} b\right)}\left|\psi_{1}\right\rangle \\
& =e^{-\frac{1}{2} \xi^{*} \xi} e^{b^{*} \xi}\left|\psi_{1}\right\rangle \\
& =e^{-\frac{1}{2} \xi^{*} \xi}\left(\left|\psi_{1}\right\rangle-\xi\left|\psi_{2}\right\rangle\right) .
\end{aligned}
$$

- The Hermitian adjoint of $|\xi\rangle$ is

$$
\langle\xi|=e^{-\frac{1}{2} \xi^{*} \xi}\left(\left\langle\psi_{1}\right|+\xi^{*}\left\langle\psi_{2}\right|\right),
$$

- By using the expression $D^{\#}(\xi) b D(\xi)=b+\xi 1$, we show that the coherent states $|\xi\rangle$ are eigenstates of the annihilation operator $b$,

$$
\begin{aligned}
b|\xi\rangle & =b D(\xi)\left|\psi_{1}\right\rangle \\
& =D(\xi) D^{\#}(\xi) b D(\xi)\left|\psi_{1}\right\rangle \\
& =D(\xi)(b+\xi)\left|\psi_{1}\right\rangle=D(\xi) \xi\left|\psi_{1}\right\rangle \\
& =\xi D(\xi)\left|\psi_{1}\right\rangle \\
& =\xi|\xi\rangle
\end{aligned}
$$

- And the inner product $\langle\xi \mid \xi\rangle$ is

$$
\langle\xi \mid \xi\rangle=\left\langle\psi_{1} \mid \psi_{1}\right\rangle+\left(\left\langle\psi_{2} \mid \psi_{2}\right\rangle-\left\langle\psi_{1} \mid \psi_{1}\right\rangle\right) \xi^{*} \xi-2 i \operatorname{Im}\left(\xi\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right) \neq 1 .
$$

* So that the states $|\xi\rangle$ are not normalized.


### 3.3.1 The Overcompleteness property

- For the Overcompleteness property, we have :
$\int d \xi^{*} d \xi|\xi\rangle\langle\xi|=\int d \xi^{*} d \xi\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|-\xi\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|+\xi^{*}\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|-\xi^{*} \xi\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right)\right.$
$=\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\right) \neq \mathbf{1}$,

So the Overcompleteness property of the coherent states $|\xi\rangle$ is not verified.

* c/c: The family of coherent states $|\xi\rangle$ constructed forms just one subset of the coherent states.
* The task is how to construct an overcomplete set of pseudo-fermionic coherent states for our system ?

$$
1
$$

## Step 4:

Construction of the second subset of coherent states.

### 3.4 Construction of the second subset of coherent states.

* The main idea to approach this problem is the use of the known transition from 'orthonormal system' of eigenstates of Hermitian Hamiltonian to the 'biorthonormal system' of states of pseudo-Hermitian Hamiltonians.
- With this idea in mind we introduce another continuous family of states namely the eigenstates $\widetilde{\widetilde{\xi}\rangle}$ of the operator $\tilde{b}$, that annihilates the dual state $\left|\phi_{1}\right\rangle$ of $H^{+}$,

$$
\begin{aligned}
\tilde{b}|\widetilde{\xi}\rangle & =\xi \widetilde{\tilde{\xi}\rangle}, \\
\tilde{b}\left|\phi_{1}\right\rangle & =0, \quad \tilde{b}\left|\phi_{2}\right\rangle=\left|\phi_{1}\right\rangle .
\end{aligned}
$$

- The operator $\tilde{b}$ (which is the annihilation operator of $\mathrm{H}^{+}$) is given explicitly by,

$$
\tilde{b}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{-\omega^{*}(\Omega-i \delta)}{|\omega|} \\
\frac{\omega(\Omega+i \delta)}{|\omega|} & |\omega|
\end{array}\right)
$$

- $\tilde{b}$ is related to the annihilation operator $b$ of $H$ by the relation

$$
\tilde{b}=\eta b \eta^{-1}
$$

- The creation operator $\tilde{b}^{\# \prime}$ of $H^{+}$is given explicitly by

$$
\tilde{b}^{\# \prime}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{\omega^{*}(\Omega+i \delta)}{|\omega|} \\
\frac{-\omega(\Omega-i \delta)}{|\omega|} & |\omega|
\end{array}\right)
$$

* Indeed, the pair of pseudo-fermionic operators $\tilde{b}$ and $\tilde{b}^{\# \prime}$ realize also a pseudoHermitian generalization of the fermion algebra, namely,

$$
\begin{aligned}
& \tilde{b} \tilde{b}^{\# \prime}+\tilde{b}^{\# \prime} \tilde{b}=1, \\
& \tilde{b}^{2}=\left(\tilde{b}^{\# \prime}\right)^{2}=0 .
\end{aligned}
$$

- Also, the Hamiltonian $H^{+}$is factorized in terms of the operators $\tilde{b}$ and $\tilde{b}^{\# \prime}$ in the usual form,

$$
H^{+}=\Omega\left(\tilde{b}^{\# \prime} \tilde{b}-\frac{1}{2}\right)
$$

*We follow a similar method which has been used before in the construction of the coherent states $|\xi\rangle$, to construct new subset of the coherent states $\widetilde{\xi \xi\rangle}$ associated to $H^{+}$.

- we introduce now the new displacement operators

$$
\widetilde{D}(\xi)=e^{\left(\tilde{b}^{\#^{\prime}} \xi-\xi^{*} \tilde{b}\right)},
$$

- Which satisfy the following displacement relation,

$$
\begin{aligned}
& \widetilde{D}^{\# \prime}(\xi) \widetilde{D}(\xi)=\widetilde{D}(\xi) \widetilde{D}^{\# \prime}(\xi)=1 \\
& \widetilde{D}^{\# \prime}(\xi) \tilde{b} \widetilde{D}(\xi)=\tilde{b}+\xi 1 .
\end{aligned}
$$

- We construct now the second subset of coherent states $\widetilde{|\xi\rangle}$ according to the above described scheme, which are eigenstates of the new annihilation operator $\tilde{b}$

$$
\begin{aligned}
\widetilde{\xi}\rangle & =\widetilde{D}(\xi)\left|\phi_{1}\right\rangle, \\
& =e^{\left(\tilde{b}^{* *} \xi-\xi^{*} \tilde{b}\right)}\left|\phi_{1}\right\rangle, \\
& =e^{-\frac{1}{2} \xi^{*} \xi} e^{\tilde{b}^{*+} \xi}\left|\phi_{1}\right\rangle \\
& =e^{-\frac{1}{2} \xi^{*} \xi}\left(\left|\phi_{1}\right\rangle-\xi\left|\phi_{2}\right\rangle\right) .
\end{aligned}
$$

- The Hermitian adjoint of $\widetilde{(\vec{\xi}\rangle}$ is

$$
\widetilde{\langle\xi|}=e^{-\frac{1}{2} \xi^{*} \xi}\left(\left\langle\phi_{1}\right|+\xi^{*}\left\langle\phi_{2}\right|\right) .
$$

- By using the expression $\tilde{D}^{\# \prime}(\xi) \tilde{b} \tilde{D}(\xi)=\tilde{b}+\xi$ 1. we show that the coherent states $\widetilde{\xi \zeta\rangle}$ are eigenstates of the annihilation operator $\tilde{b}$

$$
\begin{aligned}
\tilde{b} \mid \widetilde{\xi\rangle} & =\tilde{b} \widetilde{D}(\xi)\left|\phi_{1}\right\rangle \\
& =\widetilde{D}(\xi) \widetilde{D}^{\# \prime}(\xi) \tilde{b} \widetilde{D}(\xi)\left|\phi_{1}\right\rangle \\
& =\widetilde{D}(\xi)(\tilde{b}+\xi)\left|\phi_{1}\right\rangle=\widetilde{D}(\xi) \xi\left|\phi_{1}\right\rangle \\
& =\xi \widetilde{D}(\xi)\left|\phi_{1}\right\rangle \\
& =\xi \widetilde{\xi}\rangle .
\end{aligned}
$$

- The scalar product between $\widetilde{\langle\xi \mid \widetilde{\xi}\rangle}$ takes the form

$$
\widetilde{\langle\xi \mid \widetilde{\xi}\rangle}=\left\langle\phi_{1} \mid \phi_{1}\right\rangle+\left(\left\langle\phi_{2} \mid \phi_{2}\right\rangle-\left\langle\phi_{1} \mid \phi_{1}\right\rangle\right) \xi^{*} \xi-2 i \operatorname{Im}\left(\xi\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right) \neq 1,
$$

- while

$$
\begin{aligned}
\widetilde{\langle\xi}|\xi\rangle & =\left\langle\phi_{1} \mid \psi_{1}\right\rangle+\left(\left\langle\phi_{2} \mid \psi_{2}\right\rangle-\left\langle\phi_{1} \mid \psi_{1}\right\rangle\right) \xi^{*} \xi-2 i \operatorname{Im}\left(\xi\left\langle\phi_{1} \mid \psi_{2}\right\rangle\right), \\
& =\left\langle\phi_{1} \mid \psi_{1}\right\rangle=1
\end{aligned}
$$

- And

$$
\begin{aligned}
\langle\xi \mid \widetilde{\xi}\rangle & =\left\langle\psi_{1} \mid \phi_{1}\right\rangle+\left(\left\langle\psi_{2} \mid \phi_{2}\right\rangle-\left\langle\psi_{1} \mid \phi_{1}\right\rangle\right) \xi^{*} \xi-2 i \operatorname{Im}\left(\xi\left\langle\psi_{1} \mid \phi_{2}\right\rangle\right), \\
& =\left\langle\psi_{1} \mid \phi_{1}\right\rangle=1 .
\end{aligned}
$$

- This two last equations are obtained by using the biorthonormality of the system
$\left\{\left|\psi_{1,2}\right\rangle,\left|\phi_{1,2}\right\rangle\right\}$ related to $H$ which satisfies the relation:

$$
\begin{aligned}
& \left\langle\phi_{1} \mid \psi_{1}\right\rangle=\left\langle\phi_{2} \mid \psi_{2}\right\rangle=1, \\
& \left\langle\phi_{1} \mid \psi_{2}\right\rangle=\left\langle\phi_{2} \mid \psi_{1}\right\rangle=0 . \\
& \left|\phi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\phi_{2}\right\rangle\left\langle\psi_{2}\right|=1, \\
& \left|\psi_{1}\right\rangle\left\langle\phi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\phi_{2}\right|=1 .
\end{aligned}
$$

- We said that $|\xi\rangle$ and $\widetilde{\xi \xi\rangle}$ are bi-normalized.
- And more generally,

$$
\begin{aligned}
\left\langle\xi_{1} \widetilde{\left.\xi_{2}\right\rangle}\right. & =\widetilde{\left\langle\xi_{1} \mid \xi_{2}\right\rangle} \\
& =\xi_{1}^{*} \xi_{2}+\frac{1}{4}\left(2-\xi_{1}^{*} \xi_{1}\right)\left(2-\xi_{2}^{*} \xi_{2}\right),
\end{aligned}
$$

- By means of the two type of states $|\xi\rangle$ and $\widetilde{|\xi\rangle}$ the resolution of the identity is realized now in the following way:

$$
\begin{aligned}
\int d \xi^{*} d \xi|\xi\rangle \widetilde{\xi} \mid & =\int d \xi^{*} d \xi\left(\left|\psi_{1}\right\rangle\left\langle\phi_{1}\right|-\xi\left|\psi_{2}\right\rangle\left\langle\phi_{1}\right|+\xi^{*}\left|\psi_{1}\right\rangle\left\langle\phi_{2}\right|-\xi^{*} \xi \mathbf{1}\right), \\
& =1 .
\end{aligned}
$$

- And

$$
\begin{aligned}
\left.\int d \xi^{*} d \xi \widetilde{\xi}\right\rangle\langle\xi| & =\int d \xi^{*} d \xi\left(\left|\phi_{1}\right\rangle\left\langle\psi_{1}\right|-\xi\left|\phi_{2}\right\rangle\left\langle\psi_{1}\right|+\xi^{*}\left|\phi_{1}\right\rangle\left\langle\psi_{2}\right|-\xi^{*} \xi \mathbf{1}\right) \\
& =1 .
\end{aligned}
$$

- We said that $|\xi\rangle$ and $\widetilde{|\xi\rangle}$ satisfies the bi-overcompleteness property.


## 5. Conclusion

$\checkmark$ We have obtained that the system of one-mode pseudo-fermionic coherent states consists of two subsets, namely $\{|\xi\rangle\}$ and $\{\widetilde{|\zeta|}\rangle\}$.
$\checkmark$ This continuous system of pseudo-fermionic coherent states $\{|\xi\rangle, \widetilde{|\xi\rangle}\}$ forms a bi-normal and bi-overcomplete system.
$\checkmark$ Similarly the two sets of pseudo-unitary operators $D(\xi), \widetilde{D}(\xi) \quad$ are bi-unitary:

$$
D(\xi) \widetilde{D}^{+}(\xi)=1=\widetilde{D}^{+}(\xi) D(\xi) .
$$

$\checkmark$ We note finally that In the Hermitian limit of $\eta=1 \Rightarrow H=\eta^{-1} H^{+} \eta=H^{+}$ our pseudo-fermionic coherent states and all related formulas recover standard fermionic coherent states obtained previously in references $[7,8]$.

## References

[1] C. M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243-5246 (1998).
[2] A. Mostafazadeh, J. Math. Phys. 43, 205-214 (2002).
[3] A. Mostafazadeh, J. Math. Phys. 43, 6343-6352 (2002).
[4] Y. Ben-Aryeh, A. Mann, I. Yaakov, J. Phys. A: Math. Gen. 37, 12059-12066 (2004).
[5] A. Mostafazadeh, J. Phys. A: Math. Gen. 37, 10193-10207 (2004).
[6] R. J. Glauber, Phys. Rev. Lett. 10, 84-86 (1963)., R. J. Glauber, Phys. Rev. 130, 2529-2539 (1963)., R. J. Glauber, Phys. Rev. 131, 2766-2788 (1963).
[7] K. E. Cahill, R J. Glauber, Phys. Rev. A 59, 1538-1555 (1999).
[8] C. J. Lee, Phys. Rev. A 46, 6049-6051 (1992).

