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• 1998 C.M. Bender and S. Boettcher [1] have shown that with properly defined 
boundary conditions the spectrum of the non-Hermitian Hamiltonian :

is real and positive

• As consequence, since this year the condition of the Hermiticity to have a real 
spectrum is relaxed and replaced  by a more physical condition which is the 
PT-symmetry.

• 2002 A. Mostafazadeh [2] introduced the notion of pseudo-Hermiticity in order to 
establish the mathematical relation with the notion of PT-symmetry. He pointed out 
that all the PT-symmetric non-Hermitian Hamiltonians belonging to the class of 
pseudo-Hermitian Hamiltonians. 

• Until 1998 Hermiticity of the Hamiltonian was supposed to be the necessary 
condition for having real spectrum.

1. Introduction

H  p2  x2ix, ≥ 0
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• By definition [2], a Hamiltonian      is called pseudo-Hermitian if it satisfies the 
relation:

Where is a linear Hermitian and invertible operator.

• One can also express this relation in the form:   

Where                          is the pseudo-adjoint of       . 

• An interesting area where the pseudo-Hermiticity is illustrated is in the study of 
non-Hermitian two-level Hamiltonians (a two-level atom in interaction with an 
electromagnetic field with damping effects). The present work deals with this 
system. 

H  H−1 ,

• These simple Hamiltonian systems models accurately many physical systems in 
condensed matter, atomic physics, and quantum optics.

• Quantum optics provides a beautiful implementation of the coherent states 
formalism.
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Our goal is to extend the fermionic coherent states approach to two-level non-

Hermitian Hamiltonians which are pseudo-Hermitian. The underlying number 

system is Grassmann algebra.

• Our system is described by the Following non-Hermitian Hamiltonian:

• Where      is a real constant which describes the damping effects.

• The complex quantity      describes the radiation-atom interaction matrix element 
between the levels.

H  1
2
−i ∗
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Pseudo-Hermitian properties of    . H
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2. Pseudo-Hermitian properties of    :

• The trace of is vanishing, and the determinant of     is real. 

• Therefore      is pseudo-Hermitian according to the reference [3], “every       
traceless matrix with real determinant is pseudo-Hermitian”.

• Indeed, the Hamiltonian     satisfies the pseudo-Hermiticity relation:
with     given explicitly by:  
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• The eigenvalues of     and the related complete biorthonormal system are given         
by: 

Where 

E1  − 2 , E2  
2
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• This complete biorthonormal system satisfies the following relations:

• We point out here that we have two cases for the eigenvalues of    , namely: 

• Case 1: real eigenvalues :                corresponding to the case where the dipole 
interaction is large compared to the damping effects. This case is very 
interesting in quantum optics [4].

• Case 2: pure imaginary eigenvalues :               . The Hamiltonian     is still 

pseudo-Hermitian [4].

In the present work we shall consider the case of the real eigenvalues (for 

physical reasons).

||2 ≥ 2

||2 2 H

H

H | 1 ,2   E 1 ,2 | 1 ,2  , H  | 1 ,2   E 1 ,2
∗ | 1 ,2 

〈 1 | 1   〈 2 | 2   1 ,

〈 1 | 2   〈 2 | 1   0

| 1  〈 1 | | 2  〈 2 | 1 ,

| 1 〈 1 | | 2 〈 2 | 1.
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After having diagonalized our pseudo-Hermitian Hamltonian . We now 
embark on the construction of the pseudo-fermionic coherent states 
(PFCS) for . The underlying number system is the Grassmann algebra. H

H

Step 1:
Creation and annihilation operators for    .     H

3. Pseudo-fermionic coherent states. 
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3.1 Creation and annihilation operators for   . 

• Now, let us introduce the annihilation operator b associated to the Hamiltonian H

b  1
2

• Its adjoint operator reads (     is real) 

• And its pseudo-Hermitian adjoint , is defined by 

−|| −∗i
||

−i
|| ||

b  1
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• takes the form

b#  1
2

−|| ∗−i
||

−i
|| ||

.  

b#

• and     realize a pseudo-Hermitian generalization of the fermion algebra, namely,bb #

b2  b#2  0, b,b#  bb#  b#b  1

• One can verify that they raise and lower the eigenvalues of      by a quantity                H   2E
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• They act on the eigenstates of     as follows:|i

b|1   0, b|2   |1 ,

b#|2  0, b#|1  |2,

H

• The operator     annihilates the lowest eigenstate , and      brings this stateb
onto the upper eigenstate .

b#|1

|2
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• Moreover, the Hamiltonian      is factorized in terms of the operators    and  

to a form, similar to that of the free (boson) harmonic oscillator,

H b b#

H   b#b − 1
2 .

• Taking the Hermitian conjugate of both sides of this last expression of  

we confirm the pseudo-Hermiticity of      (according to the definition                     ):

H
H

H  bb−1 − 1
2 

 −1bb−1 − 1
2 

−1

 H−1 .

H  H−1 ,  
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• This result is confirmed in the Hermitian limit ,              corresponding to 
a Hermitian Hamiltonian, as follow:                               

The above relations confirm that      and     are respectively the creation and 
annihilation operators of one degree of freedom of pseudo-Hermitian fermions [5].

bb#

  0   1

H  H

b#  −1b

H  H−1 ,

b#  b  1

  1

The pseudo-Hermitian generalization of the fermion algebra reduces to the 
usual fermion algebra.
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Having introduced the creation and annihilation operators, we now define 
the displacement operator.

Step 2:
The displacement operator.
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3.2 The displacement operator 

• The pseudo-Hermitian adjoint is given by



D  expb# − ∗b

 1  b# − ∗b  b#b − 1
2 ∗ .

• First, we define the displacement operator for any set of complex 
Grassmannian variables in the following way:

D #

D#  exp∗b − b#

 1  ∗b − b#  b#b − 1
2 ∗ .

• Using the explicit formulas of     and     , and the anticommutation relations
between operators            and Grassmann variable     we establish that        are 
pseudo-unitary:

D D#

b, b#  D

D#D  1  DD#.

• These two operators satisfies the following displacement relations,
D #    b D     b   1 ,

D #  b # D    b #   ∗ 1

D
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Having introduced all the ingredients, we define now our coherent states. 

Step 3:
Definition of pseudo-fermionic coherent states. 
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• Now we define the pseudo-fermionic coherent states as eigenstates of the 
annihilation operator     b,

b|   |  .

The eigenvalue is a complex Grassmannian variable.

• Similarly to the cases of Glauber bosonic coherent states [6] and of fermionic
coherent states, our coherent states       can be constructed from the lowest 
(ground) eigenstate of the Hamiltonian    , acting on it by the pseudo-unitary 
operator :

|1 H

|   D| 1 

• By using the expression of the displacement operator , we may write the 
state      in the form: 

D

|   D| 1 

 e b #− ∗b  | 1 

 e − 1
2 

∗ e b # | 1 

 e −
1
2 

∗ | 1  −  | 2   .

3.3 Definition of the pseudo-fermionic coherent states 

| 

| 

| 

D
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• The Hermitian adjoint of       is

• And the inner product is〈 | 

So that the states       are not normalized.

〈 |  e − 1
2 

∗  〈 1 |  ∗ 〈 2 | ,

• By using the expression                                  we show that the coherent states
are eigenstates of the annihilation operator

D#bD  b  1 ,
b,

b |   bD   | 1 

 D  D #  bD   | 1 

 D  b    | 1   D   | 1 

 D   | 1 

  | 

〈|  〈1|1  〈2|2 − 〈1|1∗ − 2iIm〈1|2 ≠ 1.

| 

| 

| 
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3.3.1 The Overcompleteness property 

• For the Overcompleteness property, we have :

So the Overcompleteness property of the coherent states      is not verified.| 

c/c : The family of coherent states constructed forms just one subset
of the coherent states. 

 d ∗d |〈 |  d ∗d | 1 〈 1 | −  | 2 〈 1 |  ∗ | 1 〈 2 |− ∗| 1 〈 1 |  | 2 〈 2 |

 |1 〈1 |  |2〈2| ≠ 1,

| 
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The task is how to construct an overcomplete set of pseudo-fermionic coherent 
states for our system ?

Step 4:
Construction of the second subset of coherent states.
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3.4 Construction of the second subset of coherent states.

The main idea to approach this problem is the use of the known transition from 
'orthonormal system' of eigenstates of Hermitian Hamiltonian to the 'biorthonormal
system' of states of pseudo-Hermitian Hamiltonians. 

• With this idea in mind we introduce another continuous family of states namely 

the eigenstates of the operator    , that annihilates the dual state       of      ,|1

b̃ |   |,
b̃ | 1   0, b̃ | 2   | 1.

b̃ H | 
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b̃  1
2

−|| −∗−i
||

i
|| ||

• The operator      (which is the annihilation operator of ) is given explicitly by,

• is related to the annihilation operator of     by the relationb

b̃  b−1

• The creation operator of        is given explicitly byb̃#′

b̃#′  1
2

−|| ∗i
||

−−i
| | | |

b̃

b̃

H 

H 

H
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Indeed, the pair of pseudo-fermionic operators    and      realize also a pseudo-
Hermitian generalization of the fermion algebra, namely,

b̃ b̃ # ′  b̃ # ′ b̃  1 ,

b̃ 2  b̃ #′ 2  0 .

• Also, the Hamiltonian      is factorized in terms of the operators and  

in the usual form,

H 

H   b̃#′b̃ − 1
2 .

We follow a similar method which has been used before in the construction of the 
coherent states      , to construct new subset of the coherent states 

associated to     . 

|

b̃

b̃

b̃#′

b̃#′

H 

| 
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• we introduce now the new displacement operators

D    e  b̃ # ′  −  ∗ b̃  ,

• Which satisfy the following displacement relation,

D
#′
D  DD

#′
  1

D
# ′
   b̃ D     b̃   1 .

• We construct now the second subset of coherent states according to the 
above described scheme, which are eigenstates of the new annihilation operator  

|   D   | 1  ,

 e  b̃ # ′− ∗ b̃  | 1  ,

 e −
1
2 

∗  e b̃ # ′ | 1 

 e − 1
2 

∗   | 1  −  | 2   .

b̃
| 
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• The Hermitian adjoint of       is

〈  |  e −
1
2  ∗   〈  1 |  ∗ 〈  2 |  .

• By using the expression                              we show that the coherent states       

are eigenstates of the annihilation operator b̃

b̃ |   b̃ D    | 1 

 D   D
# ′
   b̃ D    | 1 

 D     b̃    | 1   D     | 1 

  D    | 1 

  |  .

D
#′
 b̃D  b̃  1.

• The scalar product between            takes the form〈 | 

〈|  〈1 |1  〈2 |2 − 〈1 |1∗ − 2iIm〈1 |2 ≠ 1,

| 

| 
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• while

〈 |   〈 1 | 1   〈 2 | 2  − 〈 1 | 1  ∗ − 2 iIm 〈 1 | 2  ,
 〈 1 | 1   1 .

• And

〈 |   〈 1 | 1   〈 2 | 2  − 〈 1 | 1  ∗ − 2 iIm  〈 1 | 2  ,
 〈 1 | 1   1 .

• This two last equations are obtained by using the biorthonormality of the system    

related to     which satisfies the relation: | 1,2 , | 1,2

〈  1 | 1   〈  2 | 2   1 ,
〈  1 | 2   〈  2 | 1   0 .

| 1  〈  1 | | 2  〈  2 | 1 ,
| 1  〈  1 | | 2  〈  2 | 1 .

H
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• We said that       and       are bi-normalized.

• And more generally,

〈 1 | 2   〈 1 | 2 

  1
∗ 2  1

4 2 −  1
∗ 1 2 −  2

∗ 2 ,

• By means of the two type of states       and        the resolution of the identity is
realized now in the following way:

 d ∗d |〈 |   d ∗d | 1 〈 1 | −  | 2 〈 1 |   ∗ | 1 〈 2 |− ∗1,

 1.

• And

 d ∗d | 〈 |   d ∗d  | 1 〈 1 | −  | 2 〈 1 |   ∗ | 1 〈 2 |− ∗1

 1.

• We said that       and       satisfies the bi-overcompleteness property.| | 

|  | 

|  | 



28

5. Conclusion 

We have obtained that the system of one-mode pseudo-fermionic coherent   

states consists of two subsets, namely          and            .|  |  

This continuous system of pseudo-fermionic coherent states                    forms

a bi-normal and bi-overcomplete system.

 |  , |  

Similarly the two sets of pseudo-unitary operators are bi-unitary:

DD

  1  D


D.

D , D 

We note finally that In the Hermitian limit of

our pseudo-fermionic coherent states and all related formulas recover standard 

fermionic coherent states obtained previously in references [7,8].

  1 H   −1H   H 
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