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1. Introduction

Until 1998 Hermiticity of the Hamiltonian was supposed to be the necessary
condition for having real spectrum.

1998 C.M. Bender and S. Boettcher [1] have shown that with properly defined
boundary conditions the spectrum of the non-Hermitian Hamiltonian :

H, = p? +x2(ix)", (v > 0)

IS real and positive

As consequence, since this year the condition of the Hermiticity to have a real
spectrum is relaxed and replaced by a more physical condition which is the
PT-symmetry.

2002 A. Mostafazadeh [2] introduced the notion of pseudo-Hermiticity in order to
establish the mathematical relation with the notion of PT-symmetry. He pointed out
that all the PT-symmetric non-Hermitian Hamiltonians belonging to the class of

pseudo-Hermitian Hamiltonians. ,




By definition [2], a Hamiltonian H is called pseudo-Hermitian if it satisfies the
relation:

H* = nHp,

Where 1) is a linear Hermitian and invertible operator.

One can also express this relation in the form: H# = H

Where H# = n~1H*n is the pseudo-adjoint of H .

An interesting area where the pseudo-Hermiticity is illustrated is in the study of
non-Hermitian two-level Hamiltonians (a two-level atom in interaction with an
electromagnetic field with damping effects). The present work deals with this
system.

These simple Hamiltonian systems models accurately many physical systems in
condensed matter, atomic physics, and quantum optics.

Quantum optics provides a beautiful implementation of the coherent states
formalism.



s Our goal is to extend the fermionic coherent states approach to two-level non-
Hermitian Hamiltonians which are pseudo-Hermitian. The underlying number

system is Grassmann algebra.

® Qur system is described by the Following non-Hermitian Hamiltonian:

—10 o*

H=1
2\ o is

* Where () is areal constant which describes the damping effects.

®* The complex quantity () describes the radiation-atom interaction matrix element
between the levels.

Pseudo-Hermitian properties of H.




. Pseudo-Hermitian properties of H :

The trace of H is vanishing, and the determinant of H is real.

Therefore H is pseudo-Hermitian according to the reference [3], “every 2x2
traceless matrix with real determinant is pseudo-Hermitian”.

Indeed, the Hamiltonian H satisfies the pseudo-Hermiticity relation: H* = nHnt
with 7] given explicitly by:

idw*
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®* The eigenvalues of H and the related complete biorthonormal system are given

by:
Ei=—3, E=%
—w* JOHS o JOH6
. o . o
1) = Nl o fw2) = 5
Q-1 JOQ+I6
—0* Q-6 o* JO+5
@] @
p1) = ng— , lp2) = Jzi:_
NOENT) O —10

Where Q = [l — &7 6



®* This complete biorthonormal system satisfies the following relations:

Hly 12) = E1z2ly12), HY|¢12) = Ef,|p1.2)
(Pp1ly 1) = (d2ly2) = 1,

(p1ly2) = (p2ly1) =0

[0 1) w1+ 2 )y 2= 1,
v 1) {91+ 2)(p2|= 1.

* We point out here that we have two cases for the eigenvalues of H, namely:

® (ase 1:real eigenvalues : |0)|2 > §° corresponding to the case where the dipole
interaction is large compared to the damping effects. This case is very
Interesting in quantum optics [4].

e Case 2: pure imaginary eigenvalues : |@|°< 8. The Hamiltonian H is still
pseudo-Hermitian [4].

L)

% In the present work we shall consider the case of the real eigenvalues (for

*

physical reasons).



< After having diagonalized our pseudo-Hermitian Hamltonian H. We now
embark on the construction of the pseudo-fermionic coherent states
(PFCS) for H. The underlying number system is the Grassmann algebra.

:

3. Pseudo-fermionic coherent states.

:

Step 1.

Creation and annihilation operators for H.




3.1 Creation and annihilation operators for H.

®* Now, let us introduce the annihilation operator b associated to the Hamiltonian H

®* |ts adjoint operator reads (Q is real)

*  And its pseudo-Hermitian adjoint b, is defined by

b* = n—1b+]7




e b takes the form

—|o|
20 —(Q+i5)
]

]

 b*and D realize a pseudo-Hermitian generalization of the fermion algebra, namely,

b2 =p*2 =0, {b,b*} =bb*+b*b =1

* One can verify that they raise and lower the eigenvalues of H by a quantity Q = 2E

10



* They act on the eigenstates [/i) of H as follows:
bly1) =0, bly2) = ly1),

bPly2) =0,  by1) = lw2),

* The operator [) annihilates the lowest eigenstate |v1), and b¥ brings this state

onto the upper eigenstate [y 2).

11



* Moreover, the Hamiltonian H is factorized in terms of the operators D and b”

to a form, similar to that of the free (boson) harmonic oscillator,
_ #h _ 1
H=0qQ(b*h-1).

* Taking the Hermitian conjugate of both sides of this last expression of H

we confirm the pseudo-Hermiticity of H (according to the definition H* = nHn=1):

H* = Qb nbnt - 5)

= Qo (b*rbnt = 3t

= nHnL.
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< The above relations confirm that b and b are respectively the creation and
annihilation operators of one degree of freedom of pseudo-Hermitian fermions [5].

* This resultis confirmed in the Hermitian limit 0 = 0,77 = 1 corresponding to
a Hermitian Hamiltonian, as follow:

% The pseudo-Hermitian generalization of the fermion algebra reduces to the
usual fermion algebra.
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“ Having introduced the creation and annihilation operators, we now define
the displacement operator.

Step 2.

The displacement operator.
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3.2 The displacement operator

* First, we define the displacement operator D(¢) for any set of complex
Grassmannian variables§ in the following way:

D($) = exp(b*é — &*b)
— 1+ b*— &b+ (b#b - %)5*5.

* The pseudo-Hermitian adjoint D* is given by

D*(§) = exp(§*b - b*&)
— 1+ &b —b*E o (b#b - %)5*5.
®* These two operators satisfies the following displacement relations,
D#(&)bD (&) = b+ &1,
D#(&)b*D () = b¥ + &1
* Using the explicit formulas of D and D* and the anticommutation relations

between operators b, b* and Grassmann variablef we establish thatD(¢) are

pseudo-unitary: D*EDE) = 1 = DEDHE) 15




¢ Having introduced all the ingredients, we define now our coherent states.

Step 3:

Definition of pseudo-fermionic coherent states.
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3.3 Definition of the pseudo-fermionic coherent states

* Now we define the pseudo-fermionic coherent states |£) as eigenstates of the
annihilation operatorb,

blg) = SIS)-
The eigenvalue ¢ is a complex Grassmannian variable.

e Similarly to the cases of Glauber bosonic coherent states [6] and of fermionic
coherent states, our coherent states |£ ) can be constructed from the lowest
(ground) eigenstate |y/1) of the Hamiltonian H, acting on it by the pseudo-unitary

operator D(¢):
$) = D(Dly1)

®* By using the expression of the displacement operatorD(¢&) , we may write the
state|& ) in the form:

5y = DOy 1)
NI

—_ e_%é*geb#§|Wl>
_1 e
=e 7 (1) — Elwz)).
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The Hermitian adjoint of |£ ) is

(&l = e 25 Sy 1+ E* (v 2)),

By using the expression D*(£)bD(&) = b + £1, we show that the coherent states |&)
are eigenstates of the annihilation operator D,

blg) = bD(E)lw 1)

= D(§)D*(&)bD(E)lw 1)

= D)+ &)|wi) = D(E)Elya)
= ¢D(S)w 1)

= &)

And the inner product (¢|$) is

(EI5) = (wilw) + Cyaly2) — (wilw1))e*E — 2iIm(&yaly2)) # 1.

\/
0’0

So that the states |£ ) are not normalized. 18




3.3.1 The Overcompleteness property

®* For the Overcompleteness property, we have :

[dexdeley el [dE-de (y o) wal— Ewa)w ol + EXlw Xy al-E*Ew L)Wl + w2 )y 2])

= (w1 )Xwail+lwa)Xwel]) # 1,

< So the Overcompleteness property of the coherent states | ) is not verified.

% c/c : The family of coherent states | ) constructed forms just one subset
of the coherent states.
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% The task is how to construct an overcomplete set of pseudo-fermionic coherent
states for our system ?

Step 4.

Construction of the second subset of coherent states.
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3.4 Construction of the second subset of coherent states.

% The main idea to approach this problem is the use of the known transition from
‘'orthonormal system' of eigenstates of Hermitian Hamiltonian to the 'biorthonormal
system' of states of pseudo-Hermitian Hamiltonians.

® With this idea in mind we introduce another continuous family of states namely

the eigenstates ﬁof the operator b, that annihilates the dual state p1)of H,

biey = ¢&je),
blg1) = 0, blp2) = |p1).

21




® The operator b (which is the annihilation operator of H™") is given explicitly by,

—* (Q-i5)
~ _la)l - ]
5o L

o]

~

* b is related to the annihilation operator b of H by the relation
b = nbn?

®* The creation operator b# of H* is given explicitly by

b — _L ol
2Q ~o(Q-i6)
o ]
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Indeed, the pair of pseudo-fermionic operators b and b* realize also a pseudo-
Hermitian generalization of the fermion algebra, namely,

b* + b*b = 1,

(@

2 = (b*)2 = 0.

(@ N

® Also, the Hamiltonian H * is factorized in terms of the operators b and b#

in the usual form,
_ AR _ 1
H* = Q(b*b-1).

/7
0’0

We follow a similar method which has been used before in the construction of the
coherent states |£), to construct new subset of the coherent states [S)

associated to H ™,

23




®* we introduce now the new displacement operators
D(&) = e®e-¢7b),

®* Which satisfy the following displacement relation,

BB =Beb ) =1

5 ()b D(e) = b+ &1

* \We construct now the second subset of coherent states |£) according to the
above described scheme, which are eigenstates of the new annihilation operatorb~

P d

€) = D(&)|1),

= e(®"E=E"D) g ),

= e 75 Ceb )

= e T (Jg1) - Ela)).
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® The Hermitian adjoint ofl?f IS

S

(&l = e " TS S((p1l+E*(d2]) .

®* By using the expression '5#/(5)5’5(5) = b+&1. we show that the coherent states &y

are eigenstates of the annihilation operator b
bigy = BD(E)lp1)
- B(e)BT ()b B()Ip 1)
= D(&)(b + &)p1) = D(&)EIp1)
= ED (&)1 1)
i3}

® The scalar product between ZET@T takes the form

EIEY = (Dalpr) + (Pald2) — (Prlp1))E*E — 2iIm(E(Palda)) # 1,
25



while

(ELE) = (Paly 1) + (Paly 2) — (Paly 1))E*E = 2iIM(E(P 1l 2)),
= (¢1ly 1) = 1.

And

EIEY = (wald1) + (walda) — (wald))EE — 2iIm(E(y 116 2)),
= (y1lp1) = 1.

This two last equations are obtained by using the biorthonormality of the system

{lw12),1012)} related toH which satisfies the relation:

(p1ly 1) = (P2ly2) = 1,
(p1ly 2) = (92ly 1) = 0.

0 1 )y 1]+ ¢ 2)(y 2= 1,
lv 1)(d 1]+ |y 2)(d2]= 1.
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We said that |£) and |’5 are bi-normalized.

And more generally,

(E1lE2) = (E1le2)
= Ei&2+ +(2- E1ENQ2 - E582),

By means of the two type of states |5) and ET the resolution of the identity is
realized now in the following way:

[ derde1e) (@l = [derdeCiy 1)(pal— ElvaXgal+ v a)(pal-EED),
= 1.

And

[derdeienel= [derds (pu)wal= Elda)(wl+ Elp1)(wal-E7E1)
= 1.

We said that |¢) and [ satisfies the bi-overcompleteness property.

27



5. Conclusion

v We have obtained that the system of one-mode pseudo-fermionic coherent

states consists of two subsets, namely {|£)} and {|&)} .

v" This continuous system of pseudo-fermionic coherent states { |£ ), |’5} forms

a bi-normal and bi-overcomplete system.

v Similarly the two sets of pseudo-unitary operators D(¢), D(¢)  are bi-unitary:
DD (¢ =1=5(©D©).

v We note finally that In the Hermitian limitof n = 1 = H = n-1H*p = H*

our pseudo-fermionic coherent states and all related formulas recover standard

fermionic coherent states obtained previously in references [7,8]. 28
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