Jean-Louis Clerc Institut Élie Cartan, Nancy-Université, CNRS, INRIA.

Geometry of the Shilov boundary of bounded symmetric domains

Varna, June 2008.

Contents

- I. Hermitian symmetric spaces.
- **II.** Bounded symmetric domains and Jordan triple systems
- **III.** The Shilov boundary
- **IV.** Construction of an invariant for triples
- **V.** The Maslov index

I Hermitian symmetric spaces

I.1 Riemannian symmetric space

A (connected) Riemannian manifold (M, g) is a *Riemannian* symmetric space if,

for each point $m \in M$, there exists an isometry s_m of M such that $s_m \circ s_m = \mathbf{id}_M$ and m is an isolated fixed point of s_m .

I Hermitian symmetric spaces

I.1 Riemannian symmetric space

A (connected) Riemannian manifold (M,g) is a *Riemannian* symmetric space if,

for each point $m \in M$, there exists an isometry s_m of M such that $s_m \circ s_m = \mathbf{id}_M$ and m is an isolated fixed point of s_m .

The differential of s_m at $m Ds_m(m)$ is involutive, and 1 is not an eigenvalue of $Ds_m(m)$. Hence $Ds_m(m) = -id$, so that s_m has to coincide with the (locally well defined) geodesic symmetry. Hence s_m , if it exists is unique and is called the symmetry centered at m.

I Hermitian symmetric spaces

I.1 Riemannian symmetric space

A (connected) Riemannian manifold (M,g) is a *Riemannian* symmetric space if,

for each point $m \in M$, there exists an isometry s_m of M such that $s_m \circ s_m = \mathbf{id}_M$ and m is an isolated fixed point of s_m .

The differential of s_m at $m Ds_m(m)$ is involutive, and 1 is not an eigenvalue of $Ds_m(m)$. Hence $Ds_m(m) = -id$, so that s_m has to coincide with the (locally well defined) geodesic symmetry. Hence s_m , if it exists is unique and is called the symmetry centered at m.

The group Is(M) of isometries of M, with the compact-open topology is a Lie group (Myers-Steenrod). By composing symmetries, the group Is(M) is esaily shown to be *transitive* on M. Let G be the neutral component of Is(M). Then G is already transitive on M. The group Is(M) of isometries of M, with the compact-open topology is a Lie group (Myers-Steenrod). By composing symmetries, the group Is(M) is esaily shown to be *transitive* on M. Let G be the neutral component of Is(M). Then G is already transitive on M.

Fix an origin o in M, and let K be the isotropy subgroup of o in G. Then K is a closed compact subgroup of G, and $M \simeq G/K$.

Let \mathfrak{g} be the Lie algebra of G, and \mathfrak{k} the Lie algebra of K. The tangent space T_oM of M at o can be identified with $\mathfrak{g}/\mathfrak{k}$.

The map

$$\theta: G \longrightarrow G, \quad g \longmapsto s_0 \circ g \circ s_o$$

is an involutive isomorphism of G. Let $G^{\theta}=\{g\in G, \theta(g)=g\}.$ Then

 $(G^{\theta})_o \subset K \subset G^{\theta}.$

The differential of θ at the identity is a Lie algebra involution of \mathfrak{g} , still denoted by θ and yields a decomposition

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

$$\mathfrak{k} = \{ X \in \mathfrak{g}, \ \theta X = X \}, \mathfrak{p} = \{ X \in \mathfrak{g}, \ \theta X = -X \}.$$

$[\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k},\quad [\mathfrak{k},\mathfrak{p}]\subset\mathfrak{p},\quad [\mathfrak{p},\mathfrak{p}]\subset\mathfrak{k}$.

The projection from \mathfrak{g} to \mathfrak{k} along \mathfrak{k} yields an isomorphism of $\mathfrak{g}/\mathfrak{k}$ with \mathfrak{p} , and hence there is a natural identification $T_oM \simeq \mathfrak{p}$.

Proposition 1. Let X be in \mathfrak{p} . Let $g_t = \exp tX$ be the one-parameter group of G generated by X. Then $\gamma_X(t) = g_t(o)$ is the geodesic emanating from o with tangent vector X at o. Moreover

$$g_t = s_{\gamma_X(\frac{t}{2})} \circ s_0 \ .$$

The vector space p is naturally equipped with a *Lie triple product* (LTS) , defined by

$$[X, Y, Z] = [[X, Y], Z].$$

Proposition 2. The Lie triple product on p satisfies the following identities

[X, Y, Z] = -[Y, X, Z][X, Y, Z] + [Y, Z, X] + [Z, X, Y] = 0[U, V, [X, Y, Z]] = [[U, V, X], Y, Z] + [X, [U, V, Y], Z] + [X, Y, [U, V, Z]]

This Lie triple product has a nice geometric interpretation, namely

$$R_o(X, Y)Z = -[[X, Y], Z] = -[X, Y, Z]$$

where R_o is the *curvature tensor* of M at o,

The *Ricci curvature* at o (also called the Ricci form) is the symmetric bilinear form on T_oM given by

$$r_o(X,Y) = -\operatorname{tr}(Z \longmapsto R_o(X,Z)Y)$$
.

Proposition 3. The Ricci cuvature at *o* satisfies

$$r_o(X,Y) = -\frac{1}{2}B(X,Y)$$

where $B(X,Y) = \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} X \operatorname{ad} Y)$ is the Killing form of the Lie algebra \mathfrak{g} .

A Riemannian symmetric space $M \simeq G/K$ is said to be *irreducible* if the representation of K on the tangent space $T_oM \simeq \mathfrak{p}$ is irreducible (i.e. admits no invariant subspaces except $\{0\}$ and \mathfrak{p}).

If M is irreducible, then there exists a unique (up to a positive real constant) K-invariant inner product on \mathfrak{p} , and the Ricci form r_o has to be proportional to it.

An irreducible Riemannian symmetric space is said to be

of the Euclidean type if r_o is identically 0

of the compact type if r_o is positive definite

of the noncompact type if r_o is negative definite

Any simply connected Riemannian symmetric space M is a product of irreducible Riemannian symmetric spaces. If all factors are of the compact (resp. noncompact, Euclidean) type, then M is said to be of the compact (resp. noncompact, Euclidean) type.

If M is of compact type, then G is a compact semisimple Lie group, and if M is of the noncompact type, then G is a semisimple Lie group (with no compact factors) and θ is a Cartan involution of G.

For the Riemannian symmetric spaces of the noncompact type, the infinitesimal data characterize the space. More precisely, given a semisimple Lie algebra \mathfrak{g} (with no compact factors), let G be any connected Lie group with Lie algebra \mathfrak{g} and with finite center (there always exist such groups). Let θ be a Cartan involution of \mathfrak{g} (there is hardly any choice, as two Cartan convolutions of \mathfrak{g} are conjugate unde the adjoint action of G on \mathfrak{g}). Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the corresponding Cartan decomposition of \mathfrak{g} . The Killing form B of \mathfrak{g} is negative definite on \mathfrak{k} and positive-definite on \mathfrak{p} . The involution θ can be lifted to an involutive automorphism of G, still denoted by θ . Then $K = G^{\theta}$ is a compact connected subgroup of G. Let X = G/K, and set o = eK. Then the tangent space at o is naturally isomorphic to \mathfrak{p} and $B_{|\mathfrak{p}\times\mathfrak{p}}$ is a K-invariant inner product on \mathfrak{p} .

Hence X can be equipped with a (unique) structure of Riemannian manifold, on which G acts by isometries. The space X does not depend on the choice of G (up to isomorphism), but only on \mathfrak{g} .

I.2 Hermitian symmetric spaces

Let M be a complex (connected) manifold with a Hermitian structure. M is said to be a *Hermitian symmetric space* is for each point m in M there exists an involutive *holomorphic* isometry s_m of M such that m is an isolated fixed point of s_m .

I.2 Hermitian symmetric spaces

Let M be a complex (connected) manifold with a Hermitian structure. M is said to be a *Hermitian symmetric space* is for each point m in M there exists an involutive *holomorphic* isometry s_m of M such that m is an isolated fixed point of s_m .

There are special cases of Riemannian symmetric spaces, but we demand that the symmetries be holomorphic. As G (the neutral component of Is(M) is generated by even products of symmetries, then G acts by holomorphic transformations on M. [One should however observe that G is *not* a complex Lie group].

Use same notation as before. In particular \mathfrak{p} being isomorphic to the tangent space $T_o M$, admits a complex structure, i.e. a (\mathbb{R} -linear operator) $J = J_o$ which satisfies $J^2 = -\mathbf{id}$.

Proposition 4. The complex structure operator J satisfies

 $J([T, X]) = [T, JX], \text{ for all } T \in \mathfrak{k}, X \in \mathfrak{p}$ $B(JX, JY) = B(X, Y), \text{ for all } X, Y \in \mathfrak{p}$

Use same notation as before. In particular \mathfrak{p} being isomorphic to the tangent space $T_o M$, admits a complex structure, i.e. a (\mathbb{R} -linear operator) $J = J_o$ which satisfies $J^2 = -\mathbf{id}$.

Proposition 4. The complex structure operator J satisfies

 $J([T, X]) = [T, JX], \text{ for all } T \in \mathfrak{k}, X \in \mathfrak{p}$ $B(JX, JY) = B(X, Y), \text{ for all } X, Y \in \mathfrak{p}$

Proposition 5. There exists a unique element H in the center of \mathfrak{k} such that $J = \operatorname{ad}_{\mathfrak{p}} H$.

Proposition 6. Let \mathfrak{g} be a simple Lie algebra of the noncompact type, with Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. The associated Riemannian symmetric space $M \simeq G/K$ is a Hermitian symmetric space if and only if the center of \mathfrak{k} is $\neq \{0\}$. Then there exists a unique (up to ± 1) element H in the center of \mathfrak{k} such that $\operatorname{ad} H$ induces a complex structure operator on \mathfrak{p} and G/K is, in a natural way a Hermitian symmetric space of the noncompact type.

I.3 Jordan triple system

Let $M \simeq G/K$ be a Hermitian symmetric of the noncompact type. Then $\mathfrak{p} \simeq T_o M$ is equipped with its natural structure of Lie triple system, which coincides with the curvature tensor at o. The behaviour of the curvature tensor under the action of J the complex structure at o is rather intricate. It leads to the following definition. Let, for X,Y,Z in \mathfrak{p} $\{X,Y,Z\} = \frac{1}{2}\big([[X,Y],Z] + J[[X,JY,Z]\big)$

Let, for
$$X, Y, Z$$
 in \mathfrak{p}
 $\{X, Y, Z\} = \frac{1}{2} ([[X, Y], Z] + J[[X, JY, Z]])$

Theorem 7. The triple product defined by the formula above satisfies the following identities, for X, Y, Z, U, V in \mathfrak{p} :

 $(JT1) \quad J\{X, Y, Z\} = \{JX, Y, Z\} = -\{X, JY, Z\} = \{X, Y, JZ\}$

 $(JT2) {X, Y, Z} = \{Z, Y, X\}$

 $(JT3) \\ \{U, V \{X, Y, Z\}\} = \{\{U, V, X\}, Y, Z\} - \{X, \{V, U, Y\}, Z\} + \{X, Y, \{U, V, Y\}, Z\} + \{X, Y, \{U, Y, Y\}, Z\} + \{X, Y, \{Y, Y\}, Z\} + \{X, Y, \{Y, Y\}, Z\} + \{X, Y, Y\} + \{X, Y, Y\}, Z\} + \{X, Y, Y\} + \{Y, Y, Y\} + \{X, Y, Y\} + \{Y, Y, Y\} + \{X, Y, Y\} + \{Y, Y\} + \{X, Y, Y\} + \{Y, Y, Y\} + \{Y, Y\} +$

Moreover, it satisfies

 $[[X,Y],Z] = \{X,Y,Z\} - \{Y,X,Z\} .$

A complex vector space \mathbb{V} together with a triple product $\{X, Y, Z\}$ which is \mathbb{C} -linear in X and Z, conjugate linear in Y, and satisfy (JT2) and (JT3) is called a (complex) *Jordan triple system*.

Let L(X, Y) be the (\mathbb{C} -linear) operator on \mathbb{V} defined by $L(X, Y)Z = \{X, Y, Z\}$, and consider the sesquilinear form

 $\tau(X,Y) = \operatorname{tr} L(X,Y)$

If the form τ is nondegenerate, then τ is Hermitian $(\tau(X,Y) = \overline{\tau(Y,X)})$. The triple is said to be a *positive Hermitian* Jordan triple system (PHJTS) if the from τ is positive definite.

Theorem 8. Let $M \simeq G/K$ be a Hermitian symmetric space of the noncompact type. Then (\mathfrak{p}, J) (considered as a complex vector space) with its natural Jordan triple product is a PHJTS.

Theorem 8. Let $M \simeq G/K$ be a Hermitian symmetric space of the noncompact type. Then (\mathfrak{p}, J) (considered as a complex vector space) with its natural Jordan triple product is a PHJTS.

Summary

Riemannian symmetric spaces of the NC type \equiv LTS with negative Ricci form

Hermitian symmetric spaces of the NC type \equiv PHJTS

This correspondances can be extended to morphisms.

20