Jean-Louis Clerc
 Institut Élie Cartan, Nancy-Université, CNRS, INRIA.

Geometry of the Shilov boundary of bounded symmetric domains

Varna, June 2008.

Contents

I. Hermitian symmetric spaces.
II. Bounded symmetric domains and Jordan triple systems
III. The Shilov boundary
IV. Construction of an invariant for triples
V. The Maslov index

II Bounded symmetric domains

II. 1 Bergman metrics

D a domain in \mathbb{E}

$$
\mathcal{H}(\mathcal{D})=\left\{f: \mathcal{D} \longrightarrow \mathbb{C}, \text { fholomorphic, } \int_{\mathcal{D}}|f(z)|^{2} d \lambda(z)<\infty\right\}
$$

For w in \mathcal{D}, consider $\mathcal{H}(\mathcal{D}) \ni f \longmapsto f(w)$.
This is a continuous linear form on $\mathcal{H}(\mathcal{D})$. Hence

$$
f(w)=\int_{\mathcal{D}} f(z) \overline{K_{w}(z)} d \lambda(z)=\int_{\mathcal{D}} f(z) \overline{k(z, w)} d \lambda(z)
$$

The kernel $k(z, w)$ is called the Bergman kernel of the domain \mathcal{D}. It satisfies :
$k(z, w)$ is holomorphic in z and conjugate holomorphic in w
$k(w, z)=\overline{k(z, w)}$
$k(z, w)=J_{\Phi}(z) k(\Phi(z), \Phi(w)) \overline{J_{\Phi}(w)}$
for Φ a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}($.$) is its Jacobian.$

The kernel $k(z, w)$ is called the Bergman kernel of the domain \mathcal{D}. It satisfies :
$k(z, w)$ is holomorphic in z and conjugate holomorphic in w
$k(w, z)=\overline{k(z, w)}$
$k(z, w)=J_{\Phi}(z) k(\Phi(z), \Phi(w)) \overline{J_{\Phi}(w)}$
for Φ - a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}($.$) is its Jacobian.$
Fact: for all z in $\mathcal{D}, k(z, z)>0$ and the formula

$$
h_{z}(\xi, \eta)=\partial_{\xi} \overline{\partial_{\eta}} \log k(u, w)_{u=z, w=z}
$$

defines a Hermitian metric on \mathcal{D} (the Bergmann metric). The metric is invariant under holomorphic diffeomorphisms of \mathcal{D}.

The kernel $k(z, w)$ is called the Bergman kernel of the domain \mathcal{D}. It satisfies :
$k(z, w)$ is holomorphic in z and conjugate holomorphic in w
$k(w, z)=\overline{k(z, w)}$
$k(z, w)=J_{\Phi}(z) k(\Phi(z), \Phi(w)) \overline{J_{\Phi}(w)}$
for Φ a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}($.$) is its Jacobian.$
Fact: for all z in $\mathcal{D}, k(z, z)>0$ and the formula

$$
h_{z}(\xi, \eta)=\partial_{\xi} \overline{\partial_{\eta}} \log k(u, w)_{u=z, w=z}
$$

defines a Hermitian metric on \mathcal{D} (the Bergmann metric). The metric is invariant under holomorphic diffeomorphisms of \mathcal{D}.

II. 2 Bounded symmetric domain

A bounded domain \mathcal{D} is said to be symmetric (\mathcal{D} is also called a Cartan domain) if, for every z in \mathcal{D}, there exists an involutive biholomorphic diffeomorphism s_{z} of \mathcal{D} such that z is an isolated fixed point of s_{z}.

Use of Bergman metric implies: \mathcal{D} is a Hermitian symmetric space, and $\mathcal{D} \simeq G / K$, where G is the neutral component of the group of holomorphic diffeo. of \mathcal{D}, and K the stabilizer of some fixed origin o.
\mathcal{D} is said to be circled if 0 is in \mathcal{D}, and \mathcal{D} is stable by $z \mapsto e^{i \theta} z$.
Theorem 1. (JP Vigué) Any bounded symmetric space is holomorphically equivalent to a (bounded symetric) circled domain.

Let \mathcal{D} be a bounded circled symmetric domain. Choose 0 as origin in \mathcal{D}. Then the stabilizer K of 0 in G acts by linear transforms on \mathbb{E}, and preserves the inner product h_{0}. Hence K can be viewed as a closed subgroup of $\mathbb{U}\left(\mathbb{E}, h_{0}\right)$. The symmetry s_{0} is given by $z \mapsto-z=e^{i \pi} z$ and belongs to K. The map $g \mapsto s_{0} \circ g \circ s_{0}$ is a Cartan involution of G, with K as set of fixed points.

Let \mathcal{D} be a bounded circled symmetric domain. Choose 0 as origin in \mathcal{D}. Then the stabilizer K of 0 in G acts by linear transforms on \mathbb{E}, and preserves the inner product h_{0}. Hence K can be viewed as a closed subgroup of $\mathbb{U}\left(\mathbb{E}, h_{0}\right)$. The symmetry s_{0} is given by $z \mapsto-z=e^{i \pi} z$ and belongs to K. The map $g \mapsto s_{0} \circ g \circ s_{0}$ is a Cartan involution of G, with K as set of fixed points.

$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \quad$ Cartan decomposition of \mathfrak{g}.

Any X in \mathfrak{p} induces a holomorphic vector field ξ_{X} in \mathcal{D}, which can be regarded as a holomorphic map $\xi_{X}: \mathcal{D} \rightarrow \mathbb{E}$. The map
$X \mapsto \xi_{X}(0)$ yields a (real) isomorphism of \mathfrak{p} with \mathbb{E}, which is
moreover K equivariant. The bracket of two holomorphic vectors fields ξ and η is the holomorphic vector field $[\xi, \eta]$ defined by

$$
[\xi, \eta](z)=d \eta(z) \xi(z)-d \xi(z) \eta(z)
$$

For X, Y in \mathfrak{g}, one has the relation $\xi_{[X, Y]}=-\left[\xi_{X}, \xi_{Y}\right]$.
For u in \mathbb{E}, denote by ξ_{u} the unique holomorphic vector field induced by some element of \mathfrak{p} such that $\xi_{u}(0)=u$.

Proposition 2. Let v be in \mathbb{E}. Then, for z in \mathcal{D},

$$
\xi_{v}(z)=v-Q(z) v
$$

where $Q(z)$ is a \mathbb{C}-conjugate linear map of \mathbb{E}, and $z \mapsto Q(z)$ is a homogeneous quadratic polynomial of degree 2 .

For u, v in \mathbb{V}, set $Q(u, v)=Q(u+v)-Q(u)-Q(v)$ (polarized symmetric form of Q, except for a factor $1 / 2$), and for x, y, z in \mathbb{E}, let

$$
\{x, y, z\}=Q(x, z) y
$$

Theorem 3. The formula above defines on \mathbb{E} a structure of positive Hermitian Jordan triple system (PHJTS) isomorphic to the Jordan sytem constructed on \mathfrak{p}_{+}.

II. 3 The spectral norm on \mathbb{E}

Let \mathbb{E} be a PHJTS. For x, y in \mathbb{E}, let $L(x, y)$ be the \mathbb{C}-linear operator defined on \mathbb{E} by $L(x, y) z=\{x, y, z\}$.

A real subspace W of \mathbb{E} is said to be flat if for all $\mathrm{x}, \mathrm{y} \in W, \quad\{x, y, z\}=\{y, x, z\}$

If W is flat, observe that (2) implies that the restriction of $\Re \tau(x, y)$ to W is a Euclidean inner product on W, and, for x, y in W, the
restriction $L(x, y)$ of $L(x, y)$ to W is a symmetric operator for this inner product. Moreover (2) implies that these restrictions mutually commute one to each other. Hence they have a common diagonalization.

An element c of \mathbb{E} is said to be a tripotent if it satisfies

$$
\{c, c, c\}=2 c
$$

Two tripotents c and d are said to be orthogonal if $L(c, d)=0$. If this is the case, then $c+d$ is a tripotent.

If c is a tripotent, then $L(c, c)$ is seladjoint, and its eigenvalues belong to $\{2,1,0\}$, so that there is a corresponding decomposition of \mathbb{E} as $\mathbb{E}=\mathbb{E}_{2} \oplus \mathbb{E}_{1} \oplus \mathbb{E}_{0}$ (Peirce decomposition w.r.t. c).

Theorem 4. Let $c_{1}, c_{2}, \ldots, c_{s}$ a family of mutually orthogonal tripotents. Then $W=\mathbb{R} c_{1} \oplus \mathbb{R} C_{2} \oplus \cdots \oplus \mathbb{R} c_{s}$ is a flat subspace of W. Conversely, let W be a flat subspace. Then there exists a family $c_{1}, c_{2}, \ldots, c_{s}$ of mutually orthogonal tripotents such that $W=\mathbb{R} c_{1} \oplus \mathbb{R} c_{2} \oplus \cdots \oplus \mathbb{R} c_{s}$. Moreover the family is unique up to order and sign.

If x is any element in \mathbb{E}, its odd powers are defined by induction : $x^{(2 p+1)}=Q(x) x^{(2 p-1)}$. The real vector space $\mathbb{R}[x]$ generated by the odd powers of x form a flat subspace, and hence, by the previous result, there exists a unique family c_{1}, c_{2}, c_{s} of mutually orthogonal tripotents, and real positive numbers $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{s}$ such that $x=\lambda_{1} c_{1}+\lambda_{2} c_{2} \cdots+\lambda_{s} c_{s}$. The λ_{j} 's are called the eigenvalues of x. The spectral norm of x is by definition the tlargest eigenvalue
of x, denoted by $|x|$. It can be shown that $x \mapsto|x|$ is actually a (complex Banch) norm on \mathbb{E}.

Theorem 5. Let \mathcal{D} be a bounded circled symmetric domain in \mathbb{E}. Let $\{., .,$.$\} be the induced structure of PHJTS on \mathbb{E}$, and let |.| the corresponding spectral norm on \mathbb{V}. Then $\mathbb{D}=\{x \in \mathbb{E},|x|<1$. Conversely, let \mathbb{E} be a PHJTS. The open unit ball for the spectral norm is a bounded symmetric domain.

