Jean-Louis Clerc Institut Élie Cartan, Nancy-Université, CNRS, INRIA.

Geometry of the Shilov boundary of bounded symmetric domains

Varna, June 2008.

Contents

- I. Hermitian symmetric spaces.
- **II.** Bounded symmetric domains and Jordan triple systems
- **III.** The Shilov boundary
- **IV.** Construction of an invariant for triples
- **V.** The Maslov index

II Bounded symmetric domains

II.1 Bergman metrics

 ${\mathcal D}$ a domain in ${\mathbb E}$

$$\mathcal{H}(\mathcal{D}) = \{ f : \mathcal{D} \longrightarrow \mathbb{C}, fholomorphic, \int_{\mathcal{D}} |f(z)|^2 d\lambda(z) < \infty \}$$

For w in \mathcal{D} , consider $\mathcal{H}(\mathcal{D}) \ni f \longmapsto f(w)$.

This is a continuous linear form on $\mathcal{H}(\mathcal{D})$. Hence

$$f(w) = \int_{\mathcal{D}} f(z) \overline{K_w(z)} d\lambda(z) = \int_{\mathcal{D}} f(z) \overline{k(z,w)} d\lambda(z)$$

The kernel k(z, w) is called the *Bergman kernel* of the domain \mathcal{D} . It satisfies :

k(z,w) is holomorphic in z and conjugate holomorphic in w

k(w, z) = k(z, w)

 $k(z,w) = J_{\Phi}(z) \ k(\Phi(z), \Phi(w)) \ \overline{J_{\Phi}(w)}$

for Φ a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}(.)$ is its Jacobian.

The kernel k(z, w) is called the *Bergman kernel* of the domain \mathcal{D} . It satisfies :

k(z,w) is holomorphic in z and conjugate holomorphic in w

k(w,z) = k(z,w)

$$k(z,w) = J_{\Phi}(z) \ k(\Phi(z), \Phi(w)) \ J_{\Phi}(w)$$

for Φ a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}(.)$ is its Jacobian. Fact : for all z in \mathcal{D} , k(z, z) > 0 and the formula

$$h_z(\xi,\eta) = \partial_{\xi}\partial_{\eta}\log k(u,w)_{u=z,w=z}$$

defines a Hermitian metric on \mathcal{D} (the *Bergmann metric*). The metric is invariant under holomorphic diffeomorphisms of \mathcal{D} .

The kernel k(z, w) is called the *Bergman kernel* of the domain \mathcal{D} . It satisfies :

k(z,w) is holomorphic in z and conjugate holomorphic in w

k(w,z) = k(z,w)

$$k(z,w) = J_{\Phi}(z) \ k(\Phi(z), \Phi(w)) \ J_{\Phi}(w)$$

for Φ a holomorphic diffeomorphism of \mathcal{D} and $J_{\Phi}(.)$ is its Jacobian. Fact : for all z in \mathcal{D} , k(z, z) > 0 and the formula

$$h_z(\xi,\eta) = \partial_{\xi}\partial_{\eta}\log k(u,w)_{u=z,w=z}$$

defines a Hermitian metric on \mathcal{D} (the *Bergmann metric*). The metric is invariant under holomorphic diffeomorphisms of \mathcal{D} .

II.2 Bounded symmetric domain

A bounded domain \mathcal{D} is said to be symmetric (\mathcal{D} is also called a Cartan domain) if, for every z in \mathcal{D} , there exists an involutive biholomorphic diffeomorphism s_z of \mathcal{D} such that z is an isolated fixed point of s_z .

Use of Bergman metric implies : \mathcal{D} is a Hermitian symmetric space, and $\mathcal{D} \simeq G/K$, where G is the neutral component of the group of holomorphic diffeo. of \mathcal{D} , and K the stabilizer of some fixed origin o.

 \mathcal{D} is said to be *circled* if 0 is in \mathcal{D} , and \mathcal{D} is stable by $z \mapsto e^{i\theta} z$.

Theorem 1. (JP Vigué) Any bounded symmetric space is holomorphically equivalent to a (bounded symetric) circled domain.

Let \mathcal{D} be a bounded circled symmetric domain. Choose 0 as origin in \mathcal{D} . Then the stabilizer K of 0 in G acts by linear transforms on \mathbb{E} , and preserves the inner product h_0 . Hence K can be viewed as a closed subgroup of $\mathbb{U}(\mathbb{E}, h_0)$. The symmetry s_0 is given by $z \mapsto -z = e^{i\pi}z$ and belongs to K. The map $g \mapsto s_0 \circ g \circ s_0$ is a Cartan involution of G, with K as set of fixed points.

Let \mathcal{D} be a bounded circled symmetric domain. Choose 0 as origin in \mathcal{D} . Then the stabilizer K of 0 in G acts by linear transforms on \mathbb{E} , and preserves the inner product h_0 . Hence K can be viewed as a closed subgroup of $\mathbb{U}(\mathbb{E}, h_0)$. The symmetry s_0 is given by $z \mapsto -z = e^{i\pi}z$ and belongs to K. The map $g \mapsto s_0 \circ g \circ s_0$ is a Cartan involution of G, with K as set of fixed points.

$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition of \mathfrak{g} .

Any X in p induces a holomorphic vector field ξ_X in \mathcal{D} , which can be regarded as a holomorphic map $\xi_X : \mathcal{D} \to \mathbb{E}$. The map $X \mapsto \xi_X(0)$ yields a (real) isomorphism of p with \mathbb{E} , which is moreover K equivariant. The *bracket* of two holomorphic vectors fields ξ and η is the holomorphic vector field $[\xi, \eta]$ defined by

 $\overline{[\xi,\eta](z)} = d\eta(z)\xi(z) - d\xi(z)\eta(z)$

. For X, Y in \mathfrak{g} , one has the relation $\xi_{[X,Y]} = -[\xi_X, \xi_Y]$.

For u in \mathbb{E} , denote by ξ_u the unique holomorphic vector field induced by some element of \mathfrak{p} such that $\xi_u(0) = u$.

Proposition 2. Let v be in \mathbb{E} . Then, for z in \mathcal{D} ,

 $\xi_v(z) = v - Q(z)v$

where Q(z) is a \mathbb{C} -conjugate linear map of \mathbb{E} , and $z \mapsto Q(z)$ is a homogeneous quadratic polynomial of degree 2.

For u, v in \mathbb{V} , set Q(u, v) = Q(u + v) - Q(u) - Q(v) (polarized symmetric form of Q, except for a factor 1/2), and for x, y, z in \mathbb{E} , let

$$\{x, y, z\} = Q(x, z)y$$

Theorem 3. The formula above defines on \mathbb{E} a structure of positive Hermitian Jordan triple system (PHJTS) isomorphic to the Jordan sytem constructed on \mathfrak{p}_+ .

II.3 The spectral norm on \mathbb{E}

Let \mathbb{E} be a PHJTS. For x, y in \mathbb{E} , let L(x, y) be the \mathbb{C} -linear operator defined on \mathbb{E} by $L(x, y)z = \{x, y, z\}$.

A real subspace W of \mathbb{E} is said to be *flat* if

$$(1) \qquad \qquad \{W, W, W\} \subset W$$

(2) for all
$$x, y \in W$$
, $\{x, y, z\} = \{y, x, z\}$

If W is flat, observe that (2) implies that the restriction of $\Re \tau(x, y)$ to W is a Euclidean inner product on W, and, for x, y in W, the

restriction L(x, y) of L(x, y) to W is a symmetric operator for this inner product. Moreover (2) implies that these restrictions mutually commute one to each other. Hence they have a common diagonalization.

An element c of \mathbb{E} is said to be a *tripotent* if it satisfies

 $\{c, c, c\} = 2c$

Two tripotents c and d are said to be *orthogonal* if L(c, d) = 0. If this is the case, then c + d is a tripotent.

If c is a tripotent, then L(c,c) is seladjoint, and its eigenvalues belong to $\{2,1,0\}$, so that there is a corresponding decomposition of \mathbb{E} as $\mathbb{E} = \mathbb{E}_2 \oplus \mathbb{E}_1 \oplus \mathbb{E}_0$ (Peirce decomposition w.r.t. c).

Theorem 4. Let c_1, c_2, \ldots, c_s a family of mutually orthogonal tripotents. Then $W = \mathbb{R}c_1 \oplus \mathbb{R}C_2 \oplus \cdots \oplus \mathbb{R}c_s$ is a flat subspace of W. Conversely, let W be a flat subspace. Then there exists a family c_1, c_2, \ldots, c_s of mutually orthogonal tripotents such that $W = \mathbb{R}c_1 \oplus \mathbb{R}c_2 \oplus \cdots \oplus \mathbb{R}c_s$. Moreover the family is unique up to order and sign.

If x is any element in \mathbb{E} , its odd powers are defined by induction : $x^{(2p+1)} = Q(x)x^{(2p-1)}$. The real vector space $\mathbb{R}[x]$ generated by the odd powers of x form a flat subspace, and hence, by the previous result, there exists a unique family c_1, c_2, c_s of mutually orthogonal tripotents, and real positive numbers $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_s$ such that $x = \lambda_1 c_1 + \lambda_2 c_2 \cdots + \lambda_s c_s$. The λ_j 's are called the *eigenvalues* of x. The spectral norm of x is by definition the tlargest eigenvalue

of x, denoted by |x|. It can be shown that $x \mapsto |x|$ is actually a (complex Banch) norm on \mathbb{E} .

Theorem 5. Let \mathcal{D} be a bounded circled symmetric domain in \mathbb{E} . Let $\{.,.,.\}$ be the induced structure of PHJTS on \mathbb{E} , and let |.| the corresponding spectral norm on \mathbb{V} . Then $\mathbb{D} = \{x \in \mathbb{E}, |x| < 1.$ Conversely, let \mathbb{E} be a PHJTS. The open unit ball for the spectral norm is a bounded symmetric domain.