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V.1 The symplectic a

e

Let V be a PHJTS, and D the associated bo CLaehjmrrM C

domain, G = Hol(D)°. Recall D has a G-invariant m ~
Bergman metric). The asso ,afd Kahler f ,r-m cv-r"'rr e d Ntie

form of degree 2 defined by ‘ '

o,(E. 1) =0, d,m), zinD, &, nin
The Kahler form o is G-invariant and closed.




form of degree 2 defined by

®,(€,M)=9,E,Jd,m), zinD, &, ninV.
The Kahler form o is G-invariant and closed.

Let z,, z, be two points in D. There is a unique geodesic arc from
z, to z, (a consequence of the negative curvature).
Let z,, z,, z; be three points in D. Form the geodesic triangle
T (z4,2,, z3). Then let
Az1,2,,23)= |y o
where X is any surface with 60X =T (z,, z,, ;).
The integral does not depend on X and is called the symplectic
area-of-the-triangle:
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The symplectic area has the following properties

) Agz), g(zz);.'.g Z1, Zg,. 4) for J-m-“““

i) A (Z 1) Z:(2) Zy(a)) = SIG n(_..)..,\f' 12,2

for T any permutatior ef—-‘i 2,3

i) ~ (cocycle property) for all z,,z,,z;, z, in D,
A(Z1,25,23) = AZ4,25,24) + A(Z5,25,24) + A(Z3,24,24)
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The symplectic area has the following| pre e
) A(9(z), 9(z2), 9(z5)) = AZy, 25, Z5), for any g 'M

i) A (Z, (1) Z 1y Zyny) = SIAN(T) A(Z4, 25, Z5)
for T any permutation of 1,2,3
iii)  (cocycle property) for all z,,z,,z5, z, in D,
A (24, 25, Z3) = A (24, 25, 24) + A (25, 23, 24) + A (23, 24, Z4)

Theorem (Domic-Toledo ‘87, Oersted-JLC ‘03)
A (Z'I’ ZZa 23) == (arg k(z1’22) + arg k(ZZaZS) + arg k(ZS’Z'I))

where k(z,w) = ky(z,w)?? (k, the Bergman kernel), and p is an
explicit integer (called the genus of D).

Observations : D is simply connected, k(z,w) # 0 on DxD and
k(z;z)>-0-forz-in-D;-so-that-there-is-a-unique-continuous
determination of arg k(z,w) which takes value 0 on the diagonal.



For the unit disc in C with the Poincar

equivalent to the formula for the area of ai¢
A(a o) = 17 - (o+[3 F'z

where o, 3,y are the angles at the summits a,b,? ofi the triangle. e

-
o

Consequence of the formula :
-rn< Az, 2,,2;) <rm
for all z,,z,,z;in D, where r is the rank of the symmetric space.




V-2 Passing to the limi==

Theorem (Oersted-JLC ‘03, J

Forany c,,c,,03inSxSxS, le

-
=

i(cy,0,,03)=

as z;tends to ; (j=1,2,3).
~ The limit exists with no restriction on the way z approaches o; if the
o; are mutually tranverse. If not, some restriction is needed
(" kind of “ radial approach).
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Theorem The function i satisfies the follewing pp@fe ties

-
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) i(d(oy), g(oy), 9los)) = i(c ,-*"'"—;r any. g/in G
i) i is skew-symmetric w.r.t. permi utations of the 6, ‘s.
i)  Forall oy, 0y, 65, 6,In S, : =

i (04, 65, 03) =i (04, 0y, G3) +1(0y, 03, 64) +1 (03, G4, Oy)
(cocycle relation)
iv) -r<i(oq, 0y 03) ST

and these inequalities are optimal (bounds attained).

J“




V-3 Elie Cartan’s invariant :
for the non-tube type case.

In 1932 E. Cartan constructed an in\}afiant
sphere S in C?under the action of the “co

PU(2,1). Another realization of S is needed. ﬁ

Consider C® with the Hermitian form
h((z,x,y), (z,x,y)) = 1zI% - IxI? - |yl

Thenthe map (x,y) > C (1,x,y) Is a 1-to-1 correspon-
dance of S with the space of complex isotropic lines in C°. Then
G = PU(h) = PU(2,1,C) acts naturally on this space, yielding an
action of G on S. Consider three distinct isotropic lines L., L,,L,
and for v, in L,, v,in L,, v5in L, let

J (V4,V5,v5) = h(vy, V) h(v,, vg ) (v, vy) .
Now  J (A Vy, Ay Vo, AgVy) =N I2IAL12 10512 J(V, vV, ,V5)
hence arg J (v,,V,,V;) defines a function on SxSxS, which is, by
construction, invariant under G. This invariant coincides with ours
(up-to-normalization).



I\VV-4 The Maslov triple index
for the tube-type case.

The geometry of G-orbits in SxSxS depend )
the bounded symmetric domain (tube-type vs non-tube type)

Proposition. Let D be a bounded irreducible symmetrié domain of

tube type. The action of G on S x S x S has a finite number of

orbits, and in particular (r+1) open orbits, where r is the rank of D.

If D is not of tube type, then there are infinitely many G-orbits in
S x S x S and none is open .

Fact. Assume D is of tube type. Let e be an origin in S, and let L be
the stabilizer of e in K. Then S is isomorphic to K/L and S is a
compact Riemannian symmetric space.

If D is not of tube type, then S is not a Riemannian symmetric
space.
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Proposition (KH Neeb, JLC ‘07) LeLQ - otinded'sVmmet:

domain of tube type. Fix a maximal terus T in'S. Let'c;, 65, 6 e/
in S. Then there exists g in G such that /
9(o4), 9(02), 9(o3) belong to T

Example. Normal form of a triplet of Lagrangians .

Let L(), L), L®) be three arbitrary Lagrangians in E. Then there
exists a symplectic basis (e;f) (i.e. o(e;f) = - o(e;f; ) = 1 and all
the others w(e,,f;) are 0) such that for k=1,2,3, L& has basis of the
form

cos 0,& e,+sin 6, f,, cos 6, e,+ sin 6,% f,, ..., cos 6,Ke + sin Kf




the values -r, -r+1,.
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Example. The Maslov index
Kashiwara’s definition of the Maslov: index

LetL,, L, L; three Lagrangiansin a real s
(E,»). Consider on the (abstract) product
form Q defined by :

Q((Vy,Va,V3)) = (Vy,Vy) T (Vy,V;)+o(Vs, V)
Set j (Ly, L, Ls) = signature of Q .

This defines a Sp(E)-invariant Z-valued function on S x S x S,
where S is the Lagrangian manifold.




Theorem. Let S be th‘e il
isomorphic to the Lagrangi

——

"

ov boundary‘orihe Siegelunitaisc,
‘.v_,‘—ﬁ-- == - ) . e
an manifold. TThen our Invariant

coincides with the Maslov index.

g—
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V- 5 The Maslov index f@

Originally, Maslov introduced a notion now: called .
for paths. It associates to a path in the Lagrangian manifol i.eM
1- parameter family of Lagrangians) an integer (there are soﬁm&/
restrictions on the endpoints depending on the choice of an origin

in S). Maslov's work was continued by Arnold, and later by

Leray. This approach is based on algebraic topology. In particular,

the index is invariant by homotopy. A slightly different approach
(but closely related) was introduced by Souriau.

The space S is not simply connected. In fact, n,(S) = Z. Let X be
the universal covering of S. Then Souriau constructs a Z - valued
function m on X x X, which is invariant, skew symmetric, and
such that, for any three points ¢, , 6, , o5 In X the sum

m (o, c,) + m(c,, c5) + m(c;, o4)
depends only on the projections of 5,, 6,and c; 0on S and is equal to the
corresponding Maslov index of the three projections.



= - -
/—

From this one could deduce the cocycle relatien iortiaeriViasioy

triple index. e
Cohomological interpretation : the Maslov. tripl :

cohomologically trivial on S x S x S. Lifted to £ x = x %, it becomes
trivial and can be written as the coboundary of m.

All these points of view (Maslov-Arnold-Leray and Souriau) can be
generalized in the realm of Shilov boundaries of bounded sym-
metric domains of tube-type (Koufany-JLC ‘07).
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Symm(r,R) unit ball in' Syminr mr lan. manifold

s

Herm(r,C) unit ball in Mat(r, ) U(r S
Herm(r,H) unit ball in Skew(2r,C) U(2r)/SU(m,H)

R xRd10) Lie ball in C° (U(1)xS+1) / Z,

Herm(r,0) E; 5/U(1)Es U(1)Es/ F,

(*) (A, X) - (wy) = (Ap + <x,y>, px+4y)




|V~ 7 Maslov index for begifniers
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