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Aim
The aim of the present note is determination of analytic ex-

pressions for the embedding of the plane curves with curvatures
κ = f(x, y) of form

f(x, y) = ux2 + 2wxy + vy2 + kx+my + n

where u, v, w, k, m and n are real numbers and (x, y) are Carte-
sian coordinates in the plane. This task is a specialization of the
general case given in the lecture Integrable Dynamical Systems
Associated with Plane Curves by the same authors that was pre-
sented by Dr. Vassilev yesterday.



Approach
It is well known that each such curve is associated with a

dynamical system of form

ẍ+ f(x, y)ẏ = 0, ÿ − f(x, y)ẋ = 0

describing motions of a particle of unit mass. Hence, the determi-
nation of analytic expressions for the embedding of the foregoing
curves reduces to the problem of integrability of this system.
On the other hand, the integrability of a system of diferential

equations is associated with the existense of variational symme-
tries (conservation laws) of this system.
An obvoious conservation law of the system reads

ẋ2 + ẏ2 = const.

Therefore, our aim reduces to determination of an additional
conservation law.



Recall from the preceding lecture

The Lagrangian, associated with this system is
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The condition for existence of additional conservation law, de-
rived in the preceding lecture is

(ay + b)
∂

∂x
f (x, y)− (ax+ c) ∂

∂y
f (x, y) = 0

where a, b and c are arbitrary real numbers.



Two kinds of integrable systems
Let us recall here that given three real numbers a, b and c, two

sets of coefficients such that the corresponding dynamical system
admits an additional conservation law are identified in the lecture
in question, namely
a = 0 (Euler elastica)

u = v = w = 0, k = c, m = b

κ = f(x, y) = cx+ by + n

a 6= 0 (Levy’s elastica)

u = v = q, w = 0, k =
2c

a
q, m =

2b

a
q

κ = f(x, y) = q
¡
x2 + y2¢+ 2q

a
(cx+ by) + n.



Conservation laws

Omitting the details, the curvature and the corresponding two
conservation laws for the case of Levy’s elastica can be written in
the form

κ =
σ2 ¡x2 + y2¢− λ

4σ

ẋ2 + ẏ2 = 1

(yẋ− xẏ) +
Ã
σ2 ¡x2 + y2¢− 2λ

16σ

!¡
x2 + y2¢ = C

where σ, λ and C are real constants (σ 6= 0).
Therefore, the embedding of the curves of curvatire can be

obtained in analytic form.



Determination of analytic expressions

Change of the dependent variables

x = r cos θ, y = r sin θ.

In terms of the new dependent variables the two conservation
laws read

r2θ̇2 + ṙ2 = 1

θ̇ − σ2r2 − 2λ
16σ

+
1

r2C = 0

These constitute a system of two equations for determination of
the functions θ(s) and r (s).



Determination of the analytic expressions

Substituting θ̇ from the second equation into the first one
yields
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On the other hand let us note that in the new variables the
expression for the curvature is

κ =
σ2r2 − λ
4σ

implying that

κ̇ =
σ

2
rṙ.



Determination of analytic expressions

Solving the last two relations for r and ṙ and substituting the
result in the first equation on the previous slide gives

κ̇2 = 2E − 1
4
κ4 +
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where
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The foregoing equation is a first integral of the differential equa-
tion

2κ̈+ κ3 − μκ− σ = 0.



Explicit expressions for the solutions of the obtained equation

Case I: two real (α < β) and two complex (γ = δ̄ = −®+ ¯
2 +iη)

roots of the polynomial:
Periodic solution

κ1 (s) =
(Aβ +Bα)− (Aβ −Bα) cn(us, k)
(A+B)− (A−B) cn(us, k)

Aperiodic solution

κ2 (s) = ζ − 4ζ

1 + ζ2s2



Explicit expressions for the solutions of the obtained equation

Case II: four real roots (α < β < γ < δ) of the polynomial:

κ3 (s) = δ − (δ − α) (δ − β)
(δ − β) + (β − α) sn2 (us, k)

κ4 (s) = β +
(γ − β) (δ − β)

(δ − β)− (δ − γ) sn2 (us, k)

where

u =
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