Biharmonic Curves, Surfaces and Hypersurfaces in Sasakian Space Forms

Dorel Fetcu and Cezar Oniciuc
"Gh. Asachi" Technical University of laşi \& "Al.I. Cuza" University of laşi

Varna, June 2008

Explicit formulas for biharmonic submanifolds in non-Euclidean 3-spheres

Abh. Math. Semin. Univ. Hamburg, 77(2007), 179-190
Explicit formulas for biharmonic submanifolds in Sasakian space forms
arXiv:math.DG/0706.4160v1

Biharmonic hypersurfaces in Sasakian space forms
Preprint, 2008

The energy functional

Harmonic maps $f:(M, g) \rightarrow(N, h)$ are critical points of the energy

$$
E(f)=\frac{1}{2} \int_{M}|d f|^{2} v_{g}
$$

and they are solutions of the Euler-Lagrange equation

$$
\tau(f)=\operatorname{trace}_{g} \nabla d f=0
$$

If f is an isometric immersion, with mean curvature vector field \mathbf{H}, then:

$$
\tau(f)=m \mathbf{H} .
$$

The bienergy functional

The bienergy functional (proposed by Eells - Sampson in 1964) is

$$
E_{2}(f)=\frac{1}{2} \int_{M}|\tau(f)|^{2} v_{g} .
$$

Critical points of E_{2} are called biharmonic maps and they are solutions of the Euler-Lagrange equation (Jiang - 1986):

$$
\tau_{2}(f)=-\Delta^{f} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d f, \tau(f)) d f=0,
$$

where Δ^{f} is the Laplacian on sections of $f^{-1} T N$ and R^{N} is the curvature operator on N.

Biharmonic submanifolds

If $\varphi: M \rightarrow N$ is an isometric immersion then

$$
\tau_{2}(f)=-m \Delta^{f} \mathbf{H}-m \operatorname{trace} R^{N}(d f, \mathbf{H}) d f
$$

thus f is biharmonic iff

$$
\Delta^{f} \mathbf{H}=-\operatorname{trace} R^{N}(d f, \mathbf{H}) d f .
$$

Biharmonic submanifolds of a space form $N(c)$

If $f: M \rightarrow N(c)$ is an isometric immersion then

$$
\tau(f)=m \mathbf{H}, \quad \tau_{2}(\varphi)=-m \Delta \Delta^{f} \mathbf{H}+m^{2} \mathbf{H}
$$

thus φ is biharmonic iff

$$
\Delta^{f} \mathbf{H}=m c \mathbf{H} .
$$

Biharmonic submanifolds of a space form $N(c)$

If $f: M \rightarrow N(c)$ is an isometric immersion then

$$
\tau(f)=m \mathbf{H}, \quad \tau_{2}(\varphi)=-m \Delta^{f} \mathbf{H}+c m^{2} \mathbf{H}
$$

thus φ is biharmonic iff

$$
\Delta^{f} \mathbf{H}=m c \mathbf{H} .
$$

Case $c=0$ - Chen's definition
Let $f: M \rightarrow \mathbb{R}^{n}$ be an isometric immersion. Set $f=\left(f_{1}, \ldots, f_{n}\right)$ and $\mathbf{H}=\left(H_{1}, \ldots, H_{n}\right)$. Then $\Delta^{f} \mathbf{H}=\left(\Delta H_{1}, \ldots, \Delta H_{n}\right)$, where Δ is the Beltrami-Laplace operator on M, and φ is biharmonic iff

$$
\Delta^{f} \mathbf{H}=\Delta\left(\frac{-\Delta f}{m}\right)=-\frac{1}{m} \Delta^{2} f=0 .
$$

Non-existence results

Theorem (Jiang - 1986)
Let $f:(M, g) \rightarrow(N, h)$ be a smooth map. If M is compact, orientable and Riem ${ }^{N} \leq 0$ then f is biharmonic if and only if it is minimal.

Non-existence results

Theorem (Jiang - 1986)
Let $f:(M, g) \rightarrow(N, h)$ be a smooth map. If M is compact, orientable and Riem ${ }^{N} \leq 0$ then f is biharmonic if and only if it is minimal.

Proposition (Chen - Caddeo, Montaldo, Oniciuc)
If $c \leq 0$, there exists no proper biharmonic isometric immersion $f: M \rightarrow N^{3}(c)$.

Generalized Chen's Conjecture

Conjecture (Caddeo, Montaldo, Oniciuc - 2001)
Biharmonic submanifolds of $N^{n}(c), n>3, c \leq 0$, are minimal.

Generalized Chen's Conjecture

Conjecture (Caddeo, Montaldo, Oniciuc - 2001)
Biharmonic submanifolds of $N^{n}(c), n>3, c \leq 0$, are minimal.
Conjecture (Balmuş, Montaldo, Oniciuc - 2007)
The only proper biharmonic hypersurfaces in \mathbb{S}^{m+1} are the open parts of hyperspheres $\mathbb{S}^{m}\left(\frac{1}{\sqrt{2}}\right)$ or of generalized Clifford tori $\mathbb{S}^{m_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{m_{2}}\left(\frac{1}{\sqrt{2}}\right), m_{1}+m_{2}=m, m_{1} \neq m_{2}$.

Proper-biharmonic curves in spheres

Theorem (Caddeo, Montaldo, Piu - 2001)
The proper-biharmonic curves γ of \mathbb{S}^{2} are circles with radius $\frac{1}{\sqrt{2}}$.

Proper-biharmonic curves in spheres

Theorem (Caddeo, Montaldo, Piu - 2001)
The proper-biharmonic curves γ of \mathbb{S}^{2} are circles with radius $\frac{1}{\sqrt{2}}$.
Theorem (Caddeo, Montaldo, Oniciuc - 2001)
The proper-biharmonic curves γ of \mathbb{S}^{3} are either circles
$\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$ or geodesics of the Clifford torus
$\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$ with slope different from ± 1.

Proper-biharmonic curves in spheres

Theorem (Caddeo, Montaldo, Piu - 2001)
The proper-biharmonic curves γ of \mathbb{S}^{2} are circles with radius $\frac{1}{\sqrt{2}}$.
Theorem (Caddeo, Montaldo, Oniciuc - 2001)
The proper-biharmonic curves γ of \mathbb{S}^{3} are either circles
$\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$ or geodesics of the Clifford torus
$\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$ with slope different from ± 1.
Theorem (Caddeo, Montaldo, Oniciuc - 2002)
The proper-biharmonic curves γ of $\mathbb{S}^{n}, n>3$ are those of \mathbb{S}^{3} up to a totally geodesic embedding.

Since odd dimensional spheres $\mathbb{S}^{2 n+1}$ are Sasakian space forms with constant φ-sectional curvature 1 , the next step is to study the biharmonic submanifolds of Sasakian space forms.

Sasakian manifolds

A contact metric structure on a manifold $N^{2 m+1}$ is given by (φ, ξ, η, g), where φ is a tensor field of type $(1,1)$ on N, ξ is a vector field on N, η is an 1 -form on N and g is a Riemannian metric, such that

$$
\begin{gathered}
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1 \\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \varphi Y)=d \eta(X, Y),
\end{gathered}
$$

for any $X, Y \in C(T N)$.
A contact metric structure (φ, ξ, η, g) is Sasakian if it is normal. The contact distribution of a Sasakian manifold $(N, \varphi, \xi, \eta, g)$ is defined by $\{X \in T N: \eta(X)=0\}$, and an integral curve of the contact distribution is called Legendre curve.

Sasakian space forms

Let $(N, \varphi, \xi, \eta, g)$ be a Sasakian manifold. The sectional curvature of a 2-plane generated by X and φX, where X is an unit vector orthogonal to ξ, is called φ-sectional curvature determined by X. A Sasakian manifold with constant φ-sectional curvature c is called a Sasakian space form and it is denoted by $N(c)$.

Biharmonic equation for Legendre curves in Sasakian space forms

Biharmonic equation for Legendre curves in Sasakian

 space formsThe definition of Frenet curves of osculating order r
Definition
Let $\left(N^{n}, g\right)$ be a Riemannian manifold and $\gamma: I \rightarrow N$ a curve parametrized by arc length. Then γ is called a Frenet curve of osculating order $r, 1 \leq r \leq n$, if there exists orthonormal vector fields $E_{1}, E_{2}, \ldots, E_{r}$ along γ such that $E_{1}=\gamma^{\prime}=T, \nabla_{T} E_{1}=$ $\kappa_{1} E_{2}, \quad \nabla_{T} E_{2}=-\kappa_{1} E_{1}+\kappa_{2} E_{3}, \ldots, \nabla_{T} E_{r}=-\kappa_{r-1} E_{r-1}$, where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions on I.

A geodesic is a Frenet curve of osculating order 1 ; a circle is a Frenet curve of osculating order 2 with $\kappa_{1}=$ constant; a helix of order $r, r \geq 3$, is a Frenet curve of osculating order r with $\kappa_{1}, \ldots, \kappa_{r-1}$ constants; a helix of order 3 is called, simply, helix.

Let $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a Sasakian space form with constant φ-sectional curvature c and $\gamma: I \rightarrow N$ a Legendre Frenet curve of osculating order r. Then γ is biharmonic iff

$$
\begin{aligned}
\tau_{2}(\gamma)= & \nabla_{T}^{3} T-R\left(T, \nabla_{T} T\right) T \\
= & \left(-3 \kappa_{1} \kappa_{1}^{\prime}\right) E_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}+\frac{(c+3) \kappa_{1}}{4}\right) E_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4}+\frac{3(c-1) \kappa_{1}}{4} g\left(E_{2}, \varphi T\right) \varphi T \\
= & 0 .
\end{aligned}
$$

Proper-biharmonic Legendre curves in Sasakian space forms

Case I $(c=1)$
Theorem (Fetcu and Oniciuc - 2007)
If $c=1$ and $n \geq 2$ then γ is proper-biharmonic if and only if either γ is a circle with $\kappa_{1}=1$ or γ is a hellix with $\kappa_{1}^{2}+\kappa_{2}^{2}=1$. space forms

Case I $(c=1)$
Theorem (Fetcu and Oniciuc - 2007)
If $c=1$ and $n \geq 2$ then γ is proper-biharmonic if and only if either γ is a circle with $\kappa_{1}=1$ or γ is a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=1$.

Case II $\left(c \neq 1\right.$ and $\left.\nabla_{T} T \perp \varphi T\right)$
Theorem (Fetcu and Oniciuc - 2007)
Assume that $c \neq 1$ and $\nabla_{T} T \perp \varphi T$. We have

1) if $c \leq-3$ then γ is biharmonic if and only if it is a geodesic;
2) if $c>-3$ then γ is proper-biharmonic if and only if either
a) $n \geq 2$ and γ is a circle with $\kappa_{1}^{2}=\frac{c+3}{4}$, or
b) $n \geq 3$ and γ is a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}$.

Case III ($c \neq 1$ and $\nabla_{T} T \| \varphi T$)

Theorem (Inoguchi - 2004 ($n=1$); Fetcu and Oniciuc - 2007) If $c \neq 1$ and $\nabla_{T} T \| \varphi T$, then $\{T, \varphi T, \xi\}$ is the Frenet frame field of γ and we have

1) if $c<1$ then γ is biharmonic if and only if it is a geodesic;
2) if $c>1$ then γ is proper-biharmonic if and only if it is a helix with $\kappa_{1}^{2}=c-1\left(\right.$ and $\left.\kappa_{2}=1\right)$.

Case IV $\left(c \neq 1, n \geq 2\right.$ and $g\left(E_{2}, \varphi T\right)$ is not constant 0,1 or -1$)$
Theorem (Fetcu and Oniciuc - 2007)
Let $c \neq 1, n \geq 2$ and γ a Legendre Frenet curve of osculating order $r \geq 4$ such that $g\left(E_{2}, \varphi T\right)$ is not constant 0,1 or -1 . We have
a) if $c \leq-3$ then γ is biharmonic if and only if it is a geodesic;
b) if $c>-3$ then γ is proper-biharmonic if and only if
$\varphi T=\cos \alpha_{0} E_{2}+\sin \alpha_{0} E_{4}$ and

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0, \kappa_{2}=\text { constant } \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3}{4}+\frac{3(c-1)}{4} \cos ^{2} \alpha_{0}, \quad \kappa_{2} \kappa_{3}=-\frac{3(c-1)}{8} \sin 2 \alpha_{0}
\end{gathered}
$$

where $\alpha_{0} \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$ is a constant such that
$c+3+3(c-1) \cos ^{2} \alpha_{0}>0,3(c-1) \sin 2 \alpha_{0}<0$.

Proper-biharmonic Legendre curves in $\mathbb{S}^{2 n+1}(1)$

Theorem (Fetcu and Oniciuc - 2007)

Let $\gamma: I \rightarrow \mathbb{S}^{2 n+1}(1), n \geq 2$, be a proper-biharmonic Legendre curve parametrized by arc length. Then the equation of γ in the Euclidean space $\mathbb{E}^{2 n+2}=\left(\mathbb{R}^{2 n+2},\langle\rangle,\right)$, is either

$$
\gamma(s)=\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) e_{1}+\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) e_{2}+\frac{1}{\sqrt{2}} e_{3}
$$

where $\left\{e_{i}, \mathscr{I} e_{j}\right\}$ are constant unit vectors orthogonal to each other, or

$$
\begin{aligned}
\gamma(s)= & \frac{1}{\sqrt{2}} \cos (A s) e_{1}+\frac{1}{\sqrt{2}} \sin (A s) e_{2}+ \\
& \frac{1}{\sqrt{2}} \cos (B s) e_{3}+\frac{1}{\sqrt{2}} \sin (B s) e_{4},
\end{aligned}
$$

where

$$
A=\sqrt{1+\kappa_{1}}, \quad B=\sqrt{1-\kappa_{1}}, \quad \kappa_{1} \in(0,1)
$$ and $\left\{e_{i}\right\}$ are constant unit vectors orthogonal to each other, with

$$
\begin{gathered}
\left\langle e_{1}, \mathscr{I} e_{3}\right\rangle=\left\langle e_{1}, \mathscr{I} e_{4}\right\rangle=\left\langle e_{2}, \mathscr{I} e_{3}\right\rangle=\left\langle e_{2}, \mathscr{I} e_{4}\right\rangle=0, \\
A\left\langle e_{1}, \mathscr{I} e_{2}\right\rangle+B\left\langle e_{3}, \mathscr{I} e_{4}\right\rangle=0 .
\end{gathered}
$$

where

$$
A=\sqrt{1+\kappa_{1}}, \quad B=\sqrt{1-\kappa_{1}}, \quad \kappa_{1} \in(0,1)
$$

and $\left\{e_{i}\right\}$ are constant unit vectors orthogonal to each other, with

$$
\begin{gathered}
\left\langle e_{1}, \mathscr{I} e_{3}\right\rangle=\left\langle e_{1}, \mathscr{I} e_{4}\right\rangle=\left\langle e_{2}, \mathscr{I} e_{3}\right\rangle=\left\langle e_{2}, \mathscr{I} e_{4}\right\rangle=0, \\
A\left\langle e_{1}, \mathscr{I} e_{2}\right\rangle+B\left\langle e_{3}, \mathscr{I} e_{4}\right\rangle=0
\end{gathered}
$$

We also obtained the explicit equations of proper-biharmonic Legendre curves in odd dimensional spheres endowed with a deformed Sasakian structure, given by Cases II and III of the classification.

Proper-biharmonic Legendre curves in $N^{5}(c)$

Theorem (Fetcu and Oniciuc - 2007)
Let γ be a proper-biharmonic Legendre curve in $N^{5}(c)$. Then $c>-3$ and γ is a helix of order r with $2 \leq r \leq 5$.

A method to obtain biharmonic submanifolds in a Sasakian space form

Theorem (Fetcu and Oniciuc - 2007)
Let $\left(N^{2 m+1}, \varphi, \xi, \eta, g\right)$ be a strictly regular Sasakian space form with constant φ-sectional curvature c and let $\boldsymbol{i}: M \rightarrow N$ be an r-dimensional integral submanifold of N. Consider

$$
F: \widetilde{M}=I \times M \rightarrow N, \quad F(t, p)=\phi_{t}(p)=\phi_{p}(t)
$$

where $I=\mathbb{S}^{1}$ or $I=\mathbb{R}$ and $\left\{\phi_{t}\right\}_{t \in \mathbb{R}}$ is the flow of the vector field ξ. Then $F:\left(\widetilde{M}, \widetilde{g}=d t^{2}+\tilde{i}^{*} g\right) \rightarrow N$ is a Riemannian immersion and it is proper-biharmonic if and only if M is a proper-biharmonic submanifold of N.

The previous Theorem provide a classification result for proper-biharmonic surfaces in a Sasakian space form, which are invariant under the action of the flow of ξ.

The previous Theorem provide a classification result for proper-biharmonic surfaces in a Sasakian space form, which are invariant under the action of the flow of ξ.

Theorem (Fetcu and Oniciuc - 2007)
Let M^{2} be a surface of $N^{2 n+1}(c)$ invariant under the flow of the Reeb vector field ξ. Then M is proper-biharmonic if and only if, locally, it is given by $x(t, s)=\phi_{t}(\gamma(s))$, where γ is a proper-biharmonic Legendre curve.

Biharmonic Hopf cylinders in a Sasakian space form

Let $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a strictly regular Sasakian manifold and $\mathbf{i}: \bar{M} \rightarrow \bar{N}$ a submanifold of \bar{N}. Then $M=\pi^{-1}(\bar{M})$ is the Hopf cylinder over \bar{M}, where $\pi: M \rightarrow \bar{N}=N / \xi$ is the Boothby-Wang fibration.

Biharmonic Hopf cylinders in a Sasakian space form

Let $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a strictly regular Sasakian manifold and $\mathbf{i}: \bar{M} \rightarrow \bar{N}$ a submanifold of \bar{N}. Then $M=\pi^{-1}(\bar{M})$ is the Hopf cylinder over \bar{M}, where $\pi: M \rightarrow \bar{N}=N / \xi$ is the Boothby-Wang fibration.

Theorem (Inoguchi - 2004)
Let $S_{\bar{\gamma}}$ be a Hopf cylinder, where $\bar{\gamma}$ is a curve in the orbit space of $N^{3}(c)$, parametrized by arc length. We have
a) if $c \leqslant 1$, then $S_{\bar{\gamma}}$ is biharmonic if and only if it is minimal;
b) if $c>1$, then $S_{\bar{\gamma}}$ is proper-biharmonic if and only if the curvature $\bar{\kappa}$ of $\bar{\gamma}$ is constant $\bar{\kappa}^{2}=c-1$.

Biharmonic hypersurfaces in a Sasakian space form

We obtained a geometric characterization of biharmonic Hopf cylinders of any dimension in a Sasakian space form. A special case of our result is the case when \bar{M} is a hypersurface.
Proposition (Fetcu and Oniciuc - 2008) If \bar{M} is a hypersurface of \bar{N}, then $M=\pi^{-1}(\bar{M})$ is biharmonic iff

$$
\left\{\begin{array}{l}
\Delta^{\perp} \mathbf{H}=\left(-|B|^{2}+\frac{c(n+1)+3 n-1}{2}\right) \mathbf{H} \\
2 \operatorname{trace} A_{\nabla \cdot \mathbf{H}}(\cdot)+n \operatorname{grad}\left(|\mathbf{H}|^{2}\right)=0 .
\end{array}\right.
$$

Proposition (Fetcu and Oniciuc - 2008)
If \bar{M} is a hypersurface and $|\overline{\mathbf{H}}|=$ constant $\neq 0$, then $M=\pi^{-1}(\bar{M})$ is proper-biharmonic if and only if

$$
|B|^{2}=\frac{c(n+1)+3 n-1}{2} .
$$

Proposition (Fetcu and Oniciuc - 2008)
If $|\overline{\mathbf{H}}|=$ constant $\neq 0$, then $M=\pi^{-1}(\bar{M})$ is proper-biharmonic if and only if

$$
|\bar{B}|^{2}=\frac{c(n+1)+3 n-5}{2} .
$$

From the last result we see that there exist no proper-biharmonic hypersurfaces $M=\pi^{-1}(\bar{M})$ in $N(c)$ if $c \leq \frac{5-3 n}{n+1}$, which implies that such hypersurfaces do not exist if $c \leq-3$, whatever the dimension of N is.

Takagi's classification of homogeneous real hypersurfaces in $\mathbb{C} P^{n}, n>1$

Takagi classified all homogeneous real hypersurfaces in the complex projective space $\mathbb{C} P^{n}, n>1$, and found five types of such hypersurfaces.
We shall consider $u \in\left(0, \frac{\pi}{2}\right)$ and r a positive constant given by $\frac{1}{r^{2}}=\frac{c+3}{4}$.
Theorem (Takagi - 1973)
The geodesic spheres (Type A1) in complex projective space $\mathbb{C} P^{n}(c+3)$ have two distinct principal curvatures: $\lambda_{2}=\frac{1}{r} \cot u$ of multiplicity $2 n-2$ and $a=\frac{2}{r} \cot 2 u$ of multiplicity 1 .

Theorem (Takagi - 1973)
The hypersurfaces of Type A2 in complex projective space $\mathbb{C} P^{n}(c+3)$ have three distinct principal curvatures: $\lambda_{1}=-\frac{1}{r} \tan u$ of multiplicity $2 p, \lambda_{2}=\frac{1}{r} \cot u$ of multiplicity $2 q$, and $a=\frac{2}{r} \cot 2 u$ of multiplicity 1 , where $p>0, q>0$, and $p+q=n-1$.

Biharmonic hypersurfaces in Sasakian space forms with φ-sectional curvature $c>-3$

Theorem (Fetcu and Oniciuc - 2008)
Let $M=\pi^{-1}(\bar{M})$ be the Hopf cylinder over \bar{M}.

- If \bar{M} is of Type A1, then M is proper-biharmonic if and only if either

$$
\begin{aligned}
& c=1 \text { and }(\tan u)^{2}=1 \text {, or } \\
& c \in\left[\frac{-3 n^{2}+2 n+1+8 \sqrt{2 n-1}}{n^{2}+2 n+5},+\infty\right) \backslash\{1\} \text { and }
\end{aligned}
$$

$$
(\tan u)^{2}=n+\frac{2 c-2 \pm \sqrt{c^{2}\left(n^{2}+2 n+5\right)+2 c\left(3 n^{2}-2 n-1\right)+9 n^{2}-30 n+13}}{c+3}
$$

- If \bar{M} is of Type $A 2$, then M is proper-biharmonic if and only if either

$$
\begin{aligned}
& c=1,(\tan u)^{2}=1 \text { and } p \neq q, \text { or } \\
& c \in\left[\frac{-3(p-q)^{2}-4 n+4+8 \sqrt{(2 p+1)(2 q+1)}}{(p-q)^{2}+4 n+4},+\infty\right) \backslash\{1\} \text { and } \\
& \quad(\tan u)^{2}=\frac{n}{2 p+1}+\frac{2 c-2}{(c+3)(2 p+1)}
\end{aligned}
$$

As for the other four types of hypersurfaces we have:
Theorem (Fetcu and Oniciuc - 2008)
There are no proper-biharmonic hypersurfaces $M=\pi^{-1}(\bar{M})$, where \bar{M} is a hypersurface of Type B, C, D or E in complex projective space $\mathbb{C} P^{n}(c+3)$.

Bibliography

$B i_{b}^{h}$

The bibliography of biharmonic maps
http://beltrami.sc.unica.it/biharmonic/

