Biharmonic Curves, Surfaces and Hypersurfaces in Sasakian Space Forms

Dorel Fetcu and Cezar Oniciuc

"Gh. Asachi" Technical University of Iaşi & "Al.I. Cuza" University of Iaşi

Varna, June 2008

Explicit formulas for biharmonic submanifolds in non-Euclidean 3-spheres

Abh. Math. Semin. Univ. Hamburg, 77(2007), 179–190

Explicit formulas for biharmonic submanifolds in Sasakian space forms

arXiv:math.DG/0706.4160v1

Biharmonic hypersurfaces in Sasakian space forms

Preprint, 2008

Harmonic maps $f: (M,g) \rightarrow (N,h)$ are critical points of the energy

$$E(f) = \frac{1}{2} \int_M |df|^2 v_g$$

and they are solutions of the Euler-Lagrange equation

$$\tau(f) = \operatorname{trace}_g \nabla df = 0.$$

If f is an isometric immersion, with mean curvature vector field \mathbf{H} , then:

$$\tau(f)=m\mathbf{H}.$$

The bienergy functional (proposed by Eells - Sampson in 1964) is

$$E_2(f) = \frac{1}{2} \int_M |\tau(f)|^2 v_g.$$

Critical points of E_2 are called biharmonic maps and they are solutions of the Euler-Lagrange equation (Jiang - 1986):

$$\tau_2(f) = -\Delta^f \tau(\varphi) - \operatorname{trace}_g R^N(df, \tau(f)) df = 0,$$

where Δ^{f} is the Laplacian on sections of $f^{-1}TN$ and R^{N} is the curvature operator on *N*.

If $\varphi: M \to N$ is an isometric immersion then

$$\tau_2(f) = -m\Delta^f \mathbf{H} - m \operatorname{trace} R^N(df, \mathbf{H}) df$$

thus f is biharmonic iff

$$\Delta^f \mathbf{H} = -\operatorname{trace} R^N(df, \mathbf{H}) df.$$

Biharmonic submanifolds of a space form N(c)

If $f: M \to N(c)$ is an isometric immersion then

$$\tau(f) = m\mathbf{H}, \quad \tau_2(\boldsymbol{\varphi}) = -m\Delta^f \mathbf{H} + cm^2 \mathbf{H}$$

thus φ is biharmonic iff

$$\Delta^f \mathbf{H} = mc \mathbf{H}.$$

If $f: M \to N(c)$ is an isometric immersion then

$$\tau(f) = m\mathbf{H}, \quad \tau_2(\boldsymbol{\varphi}) = -m\Delta^f \mathbf{H} + cm^2 \mathbf{H}$$

thus φ is biharmonic iff

$$\Delta^{f}\mathbf{H}=mc\mathbf{H}.$$

Case c = 0 - Chen's definition Let $f : M \to \mathbb{R}^n$ be an isometric immersion. Set $f = (f_1, \ldots, f_n)$ and $\mathbf{H} = (H_1, \ldots, H_n)$. Then $\Delta^f \mathbf{H} = (\Delta H_1, \ldots, \Delta H_n)$, where Δ is the Beltrami-Laplace operator on M, and φ is biharmonic iff

$$\Delta^{f}\mathbf{H} = \Delta(\frac{-\Delta f}{m}) = -\frac{1}{m}\Delta^{2}f = 0.$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Jiang - 1986) Let $f: (M,g) \rightarrow (N,h)$ be a smooth map. If M is compact, orientable and $Riem^N \leq 0$ then f is biharmonic if and only if it is minimal.

(ロ > < 母 > < 亘 > < 亘 > の < ⊙

Theorem (Jiang - 1986) Let $f: (M,g) \rightarrow (N,h)$ be a smooth map. If M is compact, orientable and $Riem^N \leq 0$ then f is biharmonic if and only if it is minimal.

Proposition (Chen - Caddeo, Montaldo, Oniciuc) If $c \le 0$, there exists no proper biharmonic isometric immersion $f: M \to N^3(c)$. Generalized Chen's Conjecture

Conjecture (Caddeo, Montaldo, Oniciuc - 2001) Biharmonic submanifolds of $N^n(c)$, n > 3, $c \le 0$, are minimal. Generalized Chen's Conjecture

Conjecture (Caddeo, Montaldo, Oniciuc - 2001) Biharmonic submanifolds of $N^n(c)$, n > 3, $c \le 0$, are minimal.

Conjecture (Balmuş, Montaldo, Oniciuc - 2007) The only proper biharmonic hypersurfaces in \mathbb{S}^{m+1} are the open parts of hyperspheres $\mathbb{S}^{m}(\frac{1}{\sqrt{2}})$ or of generalized Clifford tori $\mathbb{S}^{m_{1}}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_{2}}(\frac{1}{\sqrt{2}}), m_{1} + m_{2} = m, m_{1} \neq m_{2}.$ Theorem (Caddeo, Montaldo, Piu - 2001) The proper-biharmonic curves γ of \mathbb{S}^2 are circles with radius $\frac{1}{\sqrt{2}}$. Theorem (Caddeo, Montaldo, Piu - 2001) *The proper-biharmonic curves* γ of \mathbb{S}^2 are circles with radius $\frac{1}{\sqrt{2}}$. Theorem (Caddeo, Montaldo, Oniciuc - 2001) *The proper-biharmonic curves* γ of \mathbb{S}^3 are either circles $\mathbb{S}^1(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^3$ or geodesics of the Clifford torus $\mathbb{S}^1(\frac{1}{\sqrt{2}}) \times \mathbb{S}^1(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^3$ with slope different from ±1. Theorem (Caddeo, Montaldo, Piu - 2001) The proper-biharmonic curves γ of \mathbb{S}^2 are circles with radius $\frac{1}{\sqrt{2}}$. Theorem (Caddeo, Montaldo, Oniciuc - 2001) The proper-biharmonic curves γ of \mathbb{S}^3 are either circles $\mathbb{S}^{1}(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^{3}$ or geodesics of the Clifford torus $\mathbb{S}^{1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{1}(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^{3}$ with slope different from ± 1 . Theorem (Caddeo, Montaldo, Oniciuc - 2002) The proper-biharmonic curves γ of \mathbb{S}^n , n > 3 are those of \mathbb{S}^3 up to a totally geodesic embedding.

Since odd dimensional spheres \mathbb{S}^{2n+1} are Sasakian space forms with constant φ -sectional curvature 1, the next step is to study the biharmonic submanifolds of Sasakian space forms. A contact metric structure on a manifold N^{2m+1} is given by (φ, ξ, η, g) , where φ is a tensor field of type (1,1) on N, ξ is a vector field on N, η is an 1-form on N and g is a Riemannian metric, such that

$$\varphi^2 = -I + \eta \otimes \xi, \ \eta(\xi) = 1,$$

 $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \ g(X, \varphi Y) = d\eta(X, Y),$

for any $X, Y \in C(TN)$.

A contact metric structure (φ, ξ, η, g) is Sasakian if it is normal. The contact distribution of a Sasakian manifold $(N, \varphi, \xi, \eta, g)$ is defined by $\{X \in TN : \eta(X) = 0\}$, and an integral curve of the contact distribution is called Legendre curve. Let $(N, \varphi, \xi, \eta, g)$ be a Sasakian manifold. The sectional curvature of a 2-plane generated by *X* and φX , where *X* is an unit vector orthogonal to ξ , is called φ -sectional curvature determined by *X*. A Sasakian manifold with constant φ -sectional curvature *c* is called a Sasakian space form and it is denoted by N(c).

Biharmonic equation for Legendre curves in Sasakian space forms

Biharmonic equation for Legendre curves in Sasakian space forms

The definition of Frenet curves of osculating order r

Definition

Let (N^n, g) be a Riemannian manifold and $\gamma: I \to N$ a curve parametrized by arc length. Then γ is called a Frenet curve of osculating order r, $1 \le r \le n$, if there exists orthonormal vector fields $E_1, E_2, ..., E_r$ along γ such that $E_1 = \gamma' = T$, $\nabla_T E_1 =$ $\kappa_1 E_2$, $\nabla_T E_2 = -\kappa_1 E_1 + \kappa_2 E_3, ..., \nabla_T E_r = -\kappa_{r-1} E_{r-1}$, where $\kappa_1, ..., \kappa_{r-1}$ are positive functions on *I*.

A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet curve of osculating order 2 with $\kappa_1 = \text{constant}$; a helix of order r, $r \ge 3$, is a Frenet curve of osculating order r with $\kappa_1, ..., \kappa_{r-1}$ constants; a helix of order 3 is called, simply, helix.

Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a Sasakian space form with constant φ -sectional curvature c and $\gamma: I \to N$ a Legendre Frenet curve of osculating order r. Then γ is biharmonic iff

$$\begin{aligned} F_{2}(\gamma) &= \nabla_{T}^{3}T - R(T, \nabla_{T}T)T \\ &= (-3\kappa_{1}\kappa_{1}')E_{1} + \left(\kappa_{1}'' - \kappa_{1}^{3} - \kappa_{1}\kappa_{2}^{2} + \frac{(c+3)\kappa_{1}}{4}\right)E_{2} \\ &+ (2\kappa_{1}'\kappa_{2} + \kappa_{1}\kappa_{2}')E_{3} + \kappa_{1}\kappa_{2}\kappa_{3}E_{4} + \frac{3(c-1)\kappa_{1}}{4}g(E_{2}, \varphi T)\varphi T \\ &= 0. \end{aligned}$$

Proper-biharmonic Legendre curves in Sasakian space forms

Case I (c = 1)

Theorem (Fetcu and Oniciuc - 2007) If c = 1 and $n \ge 2$ then γ is proper-biharmonic if and only if either γ is a circle with $\kappa_1 = 1$ or γ is a helix with $\kappa_1^2 + \kappa_2^2 = 1$.

Proper-biharmonic Legendre curves in Sasakian space forms

Case I (c = 1)

Theorem (Fetcu and Oniciuc - 2007) If c = 1 and $n \ge 2$ then γ is proper-biharmonic if and only if either γ is a circle with $\kappa_1 = 1$ or γ is a helix with $\kappa_1^2 + \kappa_2^2 = 1$.

Case II ($c \neq 1$ and $\nabla_T T \perp \varphi T$)

Theorem (Fetcu and Oniciuc - 2007) Assume that $c \neq 1$ and $\nabla_T T \perp \varphi T$. We have 1) if $c \leq -3$ then γ is biharmonic if and only if it is a geodesic; 2) if c > -3 then γ is proper-biharmonic if and only if either a) $n \geq 2$ and γ is a circle with $\kappa_1^2 = \frac{c+3}{4}$, or b) $n \geq 3$ and γ is a helix with $\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4}$. Case III ($c \neq 1$ and $\nabla_T T \parallel \varphi T$)

Theorem (Inoguchi - 2004 (n = 1); Fetcu and Oniciuc - 2007) If $c \neq 1$ and $\nabla_T T \parallel \varphi T$, then $\{T, \varphi T, \xi\}$ is the Frenet frame field of γ and we have 1) if c < 1 then γ is biharmonic if and only if it is a geodesic; 2) if c > 1 then γ is proper-biharmonic if and only if it is a helix with $\kappa_1^2 = c - 1$ (and $\kappa_2 = 1$).

Case IV ($c \neq 1$, $n \geq 2$ and $g(E_2, \varphi T)$ is not constant 0,1 or -1)

Theorem (Fetcu and Oniciuc - 2007)

Let $c \neq 1$, $n \geq 2$ and γ a Legendre Frenet curve of osculating order $r \geq 4$ such that $g(E_2, \varphi T)$ is not constant 0, 1 or -1. We have

a) if $c \leq -3$ then γ is biharmonic if and only if it is a geodesic; b) if c > -3 then γ is proper-biharmonic if and only if $\varphi T = \cos \alpha_0 E_2 + \sin \alpha_0 E_4$ and

$$\kappa_1 = \text{constant} > 0, \quad \kappa_2 = \text{constant},$$

$$\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4} + \frac{3(c-1)}{4}\cos^2 \alpha_0, \ \ \kappa_2 \kappa_3 = -\frac{3(c-1)}{8}\sin 2\alpha_0,$$

where $\alpha_0 \in (0, 2\pi) \setminus \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ is a constant such that $c + 3 + 3(c-1)\cos^2 \alpha_0 > 0$, $3(c-1)\sin 2\alpha_0 < 0$.

Theorem (Fetcu and Oniciuc - 2007)

Let $\gamma: I \to \mathbb{S}^{2n+1}(1)$, $n \ge 2$, be a proper-biharmonic Legendre curve parametrized by arc length. Then the equation of γ in the Euclidean space $\mathbb{E}^{2n+2} = (\mathbb{R}^{2n+2}, \langle, \rangle)$, is either

$$\gamma(s) = \frac{1}{\sqrt{2}} \cos\left(\sqrt{2}s\right) e_1 + \frac{1}{\sqrt{2}} \sin\left(\sqrt{2}s\right) e_2 + \frac{1}{\sqrt{2}} e_3$$

where $\{e_i, \mathscr{I}e_j\}$ are constant unit vectors orthogonal to each other, or

$$V(s) = \frac{1}{\sqrt{2}}\cos(As)e_1 + \frac{1}{\sqrt{2}}\sin(As)e_2 + \frac{1}{\sqrt{2}}\sin(As)e_2 + \frac{1}{\sqrt{2}}\sin(As)e_3 +$$

$$\frac{1}{\sqrt{2}}\cos(Bs)e_3 + \frac{1}{\sqrt{2}}\sin(Bs)e_4,$$

《ロ》《母》《言》《言》 言 めえの

where

$$A = \sqrt{1+\kappa_1}, \quad B = \sqrt{1-\kappa_1}, \quad \kappa_1 \in (0,1),$$

and $\{e_i\}$ are constant unit vectors orthogonal to each other, with

$$egin{aligned} &\langle e_1,\mathscr{I}e_3
angle = \langle e_1,\mathscr{I}e_4
angle = \langle e_2,\mathscr{I}e_3
angle = \langle e_2,\mathscr{I}e_4
angle = 0, \ &A\langle e_1,\mathscr{I}e_2
angle + B\langle e_3,\mathscr{I}e_4
angle = 0. \end{aligned}$$

where

$$A = \sqrt{1+\kappa_1}, \quad B = \sqrt{1-\kappa_1}, \quad \kappa_1 \in (0,1),$$

and $\{e_i\}$ are constant unit vectors orthogonal to each other, with

$$\langle e_1, \mathscr{I}e_3 \rangle = \langle e_1, \mathscr{I}e_4 \rangle = \langle e_2, \mathscr{I}e_3 \rangle = \langle e_2, \mathscr{I}e_4 \rangle = 0,$$

$$A\langle e_1, \mathscr{I}e_2\rangle + B\langle e_3, \mathscr{I}e_4\rangle = 0.$$

We also obtained the explicit equations of proper-biharmonic Legendre curves in odd dimensional spheres endowed with a deformed Sasakian structure, given by Cases II and III of the classification.

Proper-biharmonic Legendre curves in $N^5(c)$

Theorem (Fetcu and Oniciuc - 2007) Let γ be a proper-biharmonic Legendre curve in $N^5(c)$. Then c > -3 and γ is a helix of order r with $2 \le r \le 5$.

Theorem (Fetcu and Oniciuc - 2007)

Let $(N^{2m+1}, \varphi, \xi, \eta, g)$ be a strictly regular Sasakian space form with constant φ -sectional curvature c and let $\mathbf{i} : M \to N$ be an r-dimensional integral submanifold of N. Consider

$$F: \widetilde{M} = I \times M \to N, \quad F(t,p) = \phi_t(p) = \phi_p(t),$$

where $I = \mathbb{S}^1$ or $I = \mathbb{R}$ and $\{\phi_t\}_{t \in \mathbb{R}}$ is the flow of the vector field ξ . Then $F : (\widetilde{M}, \widetilde{g} = dt^2 + \mathbf{i}^* g) \to N$ is a Riemannian immersion and it is proper-biharmonic if and only if M is a proper-biharmonic submanifold of N.

The previous Theorem provide a classification result for proper-biharmonic surfaces in a Sasakian space form, which are invariant under the action of the flow of ξ .

The previous Theorem provide a classification result for proper-biharmonic surfaces in a Sasakian space form, which are invariant under the action of the flow of ξ .

Theorem (Fetcu and Oniciuc - 2007)

Let M^2 be a surface of $N^{2n+1}(c)$ invariant under the flow of the Reeb vector field ξ . Then M is proper-biharmonic if and only if, locally, it is given by $x(t,s) = \phi_t(\gamma(s))$, where γ is a proper-biharmonic Legendre curve.

Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a strictly regular Sasakian manifold and $\mathbf{i} : \overline{M} \to \overline{N}$ a submanifold of \overline{N} . Then $M = \pi^{-1}(\overline{M})$ is the Hopf cylinder over \overline{M} , where $\pi : M \to \overline{N} = N/\xi$ is the Boothby-Wang fibration.

Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a strictly regular Sasakian manifold and $\mathbf{i} : \overline{M} \to \overline{N}$ a submanifold of \overline{N} . Then $M = \pi^{-1}(\overline{M})$ is the Hopf cylinder over \overline{M} , where $\pi : M \to \overline{N} = N/\xi$ is the Boothby-Wang fibration.

Theorem (Inoguchi - 2004)

Let $S_{\bar{\gamma}}$ be a Hopf cylinder, where $\bar{\gamma}$ is a curve in the orbit space of $N^3(c)$, parametrized by arc length. We have a) if $c \leq 1$, then $S_{\bar{\gamma}}$ is biharmonic if and only if it is minimal; b) if c > 1, then $S_{\bar{\gamma}}$ is proper-biharmonic if and only if the curvature $\bar{\kappa}$ of $\bar{\gamma}$ is constant $\bar{\kappa}^2 = c - 1$. We obtained a geometric characterization of biharmonic Hopf cylinders of any dimension in a Sasakian space form. A special case of our result is the case when \overline{M} is a hypersurface.

Proposition (Fetcu and Oniciuc - 2008) If \overline{M} is a hypersurface of \overline{N} , then $M = \pi^{-1}(\overline{M})$ is biharmonic iff

$$\begin{cases} \Delta^{\perp} \mathbf{H} = \left(-|B|^2 + \frac{c(n+1)+3n-1}{2} \right) \mathbf{H} \\ 2 \operatorname{trace} A_{\nabla^{\perp} \mathbf{H}}(\cdot) + n \operatorname{grad}(|\mathbf{H}|^2) = 0. \end{cases}$$

Proposition (Fetcu and Oniciuc - 2008) If \overline{M} is a hypersurface and $|\overline{\mathbf{H}}| = \text{constant} \neq 0$, then $M = \pi^{-1}(\overline{M})$ is proper-biharmonic if and only if

$$|B|^2 = \frac{c(n+1) + 3n - 1}{2}$$

Proposition (Fetcu and Oniciuc - 2008) If $|\mathbf{\bar{H}}| = \text{constant} \neq 0$, then $M = \pi^{-1}(\bar{M})$ is proper-biharmonic if and only if

$$|\bar{B}|^2 = \frac{c(n+1) + 3n - 5}{2}$$

From the last result we see that there exist no proper-biharmonic hypersurfaces $M = \pi^{-1}(\overline{M})$ in N(c) if $c \leq \frac{5-3n}{n+1}$, which implies that such hypersurfaces do not exist if $c \leq -3$, whatever the dimension of *N* is.

Takagi's classification of homogeneous real hypersurfaces in $\mathbb{C}P^n$, n > 1

Takagi classified all homogeneous real hypersurfaces in the complex projective space $\mathbb{C}P^n$, n > 1, and found five types of such hypersurfaces.

We shall consider $u \in (0, \frac{\pi}{2})$ and r a positive constant given by $\frac{1}{r^2} = \frac{c+3}{4}$.

Theorem (Takagi - 1973)

The geodesic spheres (Type A1) in complex projective space $\mathbb{C}P^n(c+3)$ have two distinct principal curvatures: $\lambda_2 = \frac{1}{r}\cot u$ of multiplicity 2n-2 and $a = \frac{2}{r}\cot 2u$ of multiplicity 1.

Theorem (Takagi - 1973)

The hypersurfaces of Type A2 in complex projective space $\mathbb{C}P^n(c+3)$ have three distinct principal curvatures: $\lambda_1 = -\frac{1}{r} \tan u$ of multiplicity 2p, $\lambda_2 = \frac{1}{r} \cot u$ of multiplicity 2q, and $a = \frac{2}{r} \cot 2u$ of multiplicity 1, where p > 0, q > 0, and p + q = n - 1.

Biharmonic hypersurfaces in Sasakian space forms with φ -sectional curvature c > -3

Theorem (Fetcu and Oniciuc - 2008)

Let $M = \pi^{-1}(\bar{M})$ be the Hopf cylinder over \bar{M} .

If M̄ is of Type A1, then M is proper-biharmonic if and only if either

□
$$c = 1$$
 and $(\tan u)^2 = 1$, or
□ $c \in \left[\frac{-3n^2 + 2n + 1 + 8\sqrt{2n - 1}}{n^2 + 2n + 5}, +\infty\right) \setminus \{1\}$ and

$$(\tan u)^2 = n + \frac{2c - 2 \pm \sqrt{c^2(n^2 + 2n + 5) + 2c(3n^2 - 2n - 1) + 9n^2 - 30n + 13}}{c + 3}$$

■ If \overline{M} is of Type A2, then M is proper-biharmonic if and only if either

$$c = 1, (\tan u)^2 = 1 \text{ and } p \neq q, \text{ or}$$

$$c \in \left[\frac{-3(p-q)^2 - 4n + 4 + 8\sqrt{(2p+1)(2q+1)}}{(p-q)^2 + 4n + 4}, +\infty\right) \setminus \{1\} \text{ and}$$

$$(\tan u)^2 = \frac{n}{2p+1} + \frac{2c-2}{(c+3)(2p+1)}$$

・ロト・四ト・ヨト・ヨト 戸 のへの

As for the other four types of hypersurfaces we have:

Theorem (Fetcu and Oniciuc - 2008) There are no proper-biharmonic hypersurfaces $M = \pi^{-1}(\bar{M})$, where \bar{M} is a hypersurface of Type B, C, D or E in complex projective space $\mathbb{C}P^n(c+3)$.

Bibliography

The bibliography of biharmonic maps

http://beltrami.sc.unica.it/biharmonic/