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1. Introduction

• In 1691, Jakob Bernoulli posed the problem of
the elastic beam. Three years later, he pub-
lished his own solution.

• In 1694, Huygens criticized Jakob for not
showing all the solutions.

• In 1742, Daniel Bernoulli proposed to mini-
mize the squared radius of curvature in order
to determine the shape of an elastic rod sub-
ject to pressure at both ends.
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Introduction

• Following the D. Bernoulli’s simple geometric
model, an elastic curve is a minimizer of the
bending energy:

F 2
λ (γ) =

∫
γ

(κ2 + λ)ds, (1.1)

κ being the curvature of γ .

λ corresponds to a constraint on the length.

λ = 0: free elastica.
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Introduction

I. Mladenov et all
have recently obtained
explicit expressions for
the plane elastic curves.
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Introduction

• In 1743, L. Euler determined the plane elastic
curves.

• J. Radon (1910) and R. Irrgang (1933) ana-
lyzed the free elastic curves in R3.

• More recently, in 1982-3 Bryant and Griffiths
studied related variational problems in real
space forms.'

&

$
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REMARK

The study of the closed elastic curves is a

problem of special geometric significance.
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Introduction

• J. Langer and D. Singer in 1987 and Koiso en
1993, showed by different methods that there
exist closed elastic curves of a given length in
a compact Riemannian manifold.

• J. Langer and D. Singer classified the closed
free elastic curves in 2-dimensional space
forms (1984); They showed also that there ex-
ist a countable family of closed elastic curves
in R3, (1985)

• Closed elasticae in S3 were studied by J. A-
rroyo, O.J. Garay and J.J. Menćıa in
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Introduction

More generally, we consider the following:'

&
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PROBLEM

existence and classification of critical points

and minimizers of the generalized Euler-
Bernoulli energy functional

F(γ) =

∫
γ

P(κ). (1.2)

acting on spaces of curves in a Riemannian mani
fold (P (t) is a C∞ function)
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Introduction

They include:

• geodesics;

• classical elasticae;

• elasticae with constant length;

• elasticae circular at rest;

• closed elasticae enclosing a fixed area;

• etc...
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Introduction

Some applications:

• models of relativistic particles (massive or
massless);

• models of p-branes;

• models of membranes and vesicles;

• construction of Chen-Willmore submanifolds;

• etc...
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2. Order one functionals

We consider two cases:

• dP ′

ds
= 0. Order one functionals

• dP ′

ds
6= 0. Higher order functionals.

• Techniques are different.
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2.1. Notation

• Mn, n-dimensional Riemannian manifold with
metric <,>.

• Mn(G), n-dimensional real space form with
constant curvature G.

• Levi-Civita connection ∇.

• curvature tensor R .

• H ≡ a certain space of curves, γ : I = [0, 1] →
Mn, satisfying suitable boundary conditions.
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Notation

• H ≡ will satisfy at least:

1. γ ∈ C4(I),

2. γ is immersed in Mn, that is, ∂γ
∂t
6= 0 and

3. there is a well defined normal vector on γ
(for instance, n = 2 and M2 is orientable or
∂2γ
∂t2
6= 0).

• Ω ≡ space of closed curves.
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Notation

• V(t) = ∂γ
∂t

= γ ′(t) is the tangent vector to the
curve.

• v(t) =< V,V >
1
2 the speed of γ.

• Frenet Frame


T(t) unit tangent to γ.

N(t) unit normal.

B(t) unit binormal.

• κ(t) = ‖∇TT‖ the curvature (κ denotes the ori-
ented curvature if γ is a curve in an oriented
surface M2).



JJ II J I \ x �
⊗

Notation

• γw(t) = γ(w, t) : (−ε, ε) × I → Mn denotes a vari-
ation of γ(t) = γ (0, t)

• W = W(t) = ∂γ
∂w

(0, t) variational vector field
along the curve γ

• s ∈ [0, L] denotes the arclength parameter of
γ(s) (L is the length of γ)
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Notation

A vector field W defined on regular curve γ im-
mersed in M3(G), is called a Killing field along γ ,
if for any variation in the direction of W , we have

∂v

∂w
=
∂κ

∂w
=
∂τ

∂w
= 0. (2.3)

(Langer-Singer) A Killing field along γ is the re-
striction of a Killing field defined on M3(G).
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2.2. A useful tool I: Hopf Cylinders

• We recall that the Hopf map, π : S3(1) → S2(1
2)

is a Riemannian submersion when the base
space S2(1

2) is chosen to have radius 1
2 .

• If β is a curve in the two sphere, then β̄
will denote a horizontal lift of β in the three
sphere.

• For any curve β(s) in S2, its complete lift

Tβ = π−1(β) = {eit. β(s) : (s, t) ∈ R2}

is called the Hopf Cylinder shaped on β .
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A useful tool I: Hopf Cylinders

• They are flat surfaces with the induced metric
from S3.

• A Hopf cylinder Tβ is embedded in S3 if β is
a simple curve in S2.

• If β is a closed curve, then the Hopf tube Tβ

is a flat torus, whose isometry type depends
on the length and enclosed area of β .

• The whole extrinsic geometry of Tβ is gov-
erned by the curvature function of β in S2.
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A useful tool I: Hopf Cylinders

• The map φ = φ(z, t) : R2 → Tβ , defined by

φ(z, t) = eizβ̄(t) = cos zβ̄(t) + sin zη(t),

works as a covering map.

• Tβ = π−1(β) is isometric to R2/R, where R is
the lattice in R2 span by (2A,L) and (2π, 0).

• Here L denotes the length of β and A ∈ (−π, π)
the oriented area enclosed by β in the two
sphere.
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Examples of Hopf Tori
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2.3. A useful tool II: Lancret’s curves

• A generalized helix (or Lancret’s curve) in R3

is a curve which makes a constant angle with
a fixed straight line (the axis of the general
helix).

• Algebraic characterization: the ratio of tor-
sion to curvature is constant (M.A. Lancret,
1802; B. de Saint Venant, 1845.)

• Geometric characterization: A curve in R3 is
a Lancret’s one if and only if it is a geodesic
of a right cylinder shaped on a plane curve.

Ordinary helices (constant curvature and torsion)
are called trivial Lancret’s curves.
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A useful tool II: Lancret’s curves

A curve unit γ(s) in M3(G) will be called a gene-
ral helix if there exists a Killing vector field V (s)
with constant length along γ (the axis), such that
the angle between V and γ ′ is a non-zero constant
along γ .

Obvious examples of general helices are:

• Any curve in M3(G) with τ ≡ 0. In this case
just take V = B to have an axis.

• Ordinary helices. In this case V (s) = cos θ ·
T (s) + sin θ · B(s) with cot θ = τ2−c

τκ
works as an

axis.
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A useful tool II: Lancret’s curves

(The Lancret theorem in 3-space forms)
M. Barros proved the following:

• A curve γ in H3(−1) is a general helix if and
only if either (1) τ ≡ 0 and γ is a curve in
some hyperbolic plane, or (2) γ is an ordinary
helix.

• A curve γ in S3(1) is a general helix if and only
if either (1) τ ≡ 0 and γ is a curve in some unit
2-sphere, or (2) there exists a constant b such
that

τ = bκ± 1.
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A useful tool II: Lancret’s curves

'
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Lancret’s curves and Hopf Cylinders

The geometric integration of natural equa-

tions is obtained as follows:

• A curve in S3(1) is a general helix if and
only if it is a geodesic of a Hopf cylinder.

• A curve in S3(1) is an ordinary helix if
and only if it is a geodesic of a Hopf torus
shaped on a circle.



JJ II J I \ x �
⊗

2.4. Total curvature functional

Closed critical points of the total curvature func-
tional

F(γ) =

∫
γ

(κ + λ)ds (2.4)

in space forms

{
λ = 0 : free model;

λ 6= 0 : constrained model.

The Euler-Lagrange equations are:

R(N, T )T = (τ 2 + λκ)N − τsB + τΥ, (2.5)

where Υ belongs to the Frenet frame normal bun-
dle
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Total curvature functional

Solutions to the free model: λ = 0.
1. The Gaussian curvature vanishes on critical

points γ lying on surfaces.

2. In a real space form Mn(G) , trajectories actu-
ally lie in M3(G).

3. If γ is a critical point for F which is fully
immersed in M3(G), then:

• τ 2 = G > 0. .

We only need to consider S3(1). Critical points for
F are horizontal lifts via the Hopf map of curves
in S2(1

2)).
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Total curvature functional: free model

Closed solution to the free model: λ = 0.

Let β be an immersed closed curve in S3(1), then
β is a critical point for F , if and only if, there
exists a natural number, say m, such that'

&

$

%

β is a horizontal lift, via the Hopf map, of the
m-fold cover of an immersed closed curve γ in
S2(1

2), whose enclosed oriented area A is a ratio-
nal multiple of π

A = p
m
π , where p and m are relative primes.
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Total curvature functional: Examples

The spherical elliptic lemniscate: In spherical
coordinates (φ, θ) on S2(1

2),

γ :
1

4

(
φ2 + sin2 θ

)2
= a2 sin2 θ + b2φ2,

with parameters a and b satisfying b2 ≥ 2a2.

This curve is the image
under a Lambert projec-
tion of an elliptic lemnis-
cate in the plane.

a2 = 1
8, b

2 = 1 99K



JJ II J I \ x �
⊗

Total curvature functional: Examples

Since the Lambert projection preserves the area,
the area enclosed by γ in S2(1

2) is A = a2+b2

2 π . Now
we choose a and b such that a2 + b2 is a rational
number, say p

q
, with a2 + b2 ≤ 1.

Then, a horizontal lift
of the 2q-fold cover of γ
gives a critical point for
F in S3(1).

H-lift
of the 16th-cover
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Total curvature functional: Examples

The spherical limaçon or the spherical snail of
Pascal. Given real parameters a and h.

γ :

(
1

2
φ2 +

1

2
sin2 θ − 2aφ

)2

= h2(φ2 + sin2 θ),

This is nothing but the
image under the Lam-
bert projection of a
snail of Pascal.

a = 1
4, b = 1

8 99K
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Total curvature functional: Examples

Therefore, γ encloses the area A =
(
h2 + 1

2a
2
)
π .

Again, for a suitable
choice of parameters a
and h, we get examples
of critical points for F
in S3(1) by applying the
above proposition.

Horizontal lift of the
64th-cover
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Total curvature functional: constrained model

F(γ) =

∫
γ

(κ + λ)ds, λ 6= 0 .

'

&

$

%

• The whole space of closed trajectories in the
constrained model is formed by a rational
one-parameter family of closed helices in S3.
Geometrically, they are geodesics of circular
Hopf tori which are obtained when the slope
is quantized by a rational constraint.
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Total curvature functional: constrained model

The solution of our problem is encoded in the
geometry of the Hopf Tori.

Examples of closed trajectories
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2.5. First order particles models

The energy functional is given by

Fmnp(γ) =

∫
γ

(m + nκ + pτ )ds, (2.6)

Second order boundary conditions

Given q1, q2 ∈ M3(c) and {x1, y1}, {x1, y1} orthonor-
mal vectors in Tq1

M3(c) and Tq2
M3(c) respectively,

define the space of curves

Λ = {γ : [t1, t2] → M3(c)} :

γ(ti) = qi, T (ti) = xi, N(ti) = yi,

1 ≤ i ≤ 2.
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First order particles models

Then, the critical points of the variational prob-
lem Fmnp : Λ → R are characterized by the follow-
ing Euler-Lagrange equations

−mκ + pκτ − nτ 2 + nc = 0,

pκs − nτs = 0.
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First order particles models

m n p Solutions in R3, c = 0

6= 0 = 0 = 0 Geodesics κ = 0

= 0 = 0 6= 0 Circles κ constant and τ = 0

= 0 6= 0 = 0 Plane curves τ = 0

6= 0 6= 0 = 0 Ordinary Helices with κ = −nτ2

m

6= 0 = 0 6= 0 Ordinary Helices with arbitrary κ
and τ = m

p

= 0 6= 0 6= 0 Lancret curves with τ = p
n
κ

6= 0 6= 0 6= 0 Ordinary Helices with κ = −na2

m+ap
,

τ = ma
m+ap

and a ∈ R− {−m
p
}
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First order particles models

In the Euclidean space, non-trivial Lancret curves
appear just for models with m = 0 and p.n 6= 0,
that is for

Fmnp(γ) =

∫
γ

(nκ + pτ )ds

In this cases the ratio p
n

determines the slope of
the solutions. In other words, p

n
= cot θ, where θ is

the angle that the Lancret curve makes with the
axis.
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First order particles models

m n p Solutions in H3, C = −c2

6= 0 = 0 = 0 Geodesics κ = 0

= 0 = 0 6= 0 Curves with κ constant and τ = 0

= 0 6= 0 = 0 Do not exist

6= 0 6= 0 = 0 Ordinary Helices with κ = −n(c2+τ2)
m

6= 0 = 0 6= 0 Ordinary Helices with arbitrary κ
and τ = m

p

= 0 6= 0 6= 0 Ordinary Helices with κ = −n(c2+a2)
ap

and τ = −c2

a
and a ∈ R− {0}

6= 0 6= 0 6= 0 Ordinary Helices with κ = −n(c2+a2)
m+ap

,

τ = ma−pc2

m+ap
and a ∈ R− {−m

p
}
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First order particles models

m n p Solutions in S3, C = c2

6= 0 = 0 = 0 Geodesics κ = 0

= 0 = 0 6= 0 Circles κ constant and τ = 0

= 0 6= 0 = 0 Horizontal lifts, via the Hopf
map, of curves in S2

6= 0 6= 0 = 0 Ordinary Helices with κ = n(c2−τ2)
m

6= 0 = 0 6= 0 Ordinary Helices with arbitrary κ and τ = m
p

= 0 6= 0 6= 0 Ordinary Helices with κ = n(c2−a2)
ap and τ = c2

a and

a ∈ R− {0}
6= 0 6= 0 6= 0 Ordinary Helices with κ = n(c2−a2)

m+ap , τ = ma+pc2

m+ap and

a ∈ R− {−m
p }

6= 0 6= 0 6= 0 Lancret curves with τ = p
nκ−

m
p and c = ±m

p
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First order particles models

The most interesting models on spheres are those
where m.n.p 6= 0.

Fmnp(γ) =

∫
γ

(m + nκ + pτ )ds, (2.7)

Remember: general helices in S3 are completely
determined from both a curve in the S2 and a
slope, that is the angle that the helix makes, in
the corresponding Hopf tube, with the axis (i.e.
with the fibres).
In this cases the ratio m

p
is determined from the

radius of the sphere while the ratio p
n

gives the
slope of the solutions.
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First order particles models

Notice that, in particular, the horizontal lifts of
curves in the two sphere are general helices of the
three sphere with slope π

2 .

Let βnp be the geodesic in Mβ = π−1(β) with slope
θ, cot θ = p

n
. From the third table one sees, for

example, the following.

Let γ be a curve in S3(1), then it is a critical point
of Fnnp, n.p 6= 0, if and only if either

1. γ is a helix with curvature κ = n(1−a2)
n+ap

and tor-

sion τ = na+p
n+ap

and a ∈ R− {−n
p
}, or

2. γ ∈ {βnp : β is a curve in S2(1
2)}
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First order particles models

We study the variational problem on the space of
closed curves.

• There are no closed critical points in R3 and
H3 other than closed ”plane” curves.

• Spherical case. We will restrict ourselves to
the unit sphere.

• Closed generalized helices in S3(1) can be char-
acterized as follows.
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First order particles models

• For any curve β(s) in S2, we take Tβ = π−1(β)
the Hopf Cylinder shaped on β .

• From the isometry type of Tβ , we have that a
geodesic γ of Tβ closes up, if and only if, its
slope ω = cot θ satisfies

ω =
1

L
(2A + qπ),

where q is a rational number.

• On the other hand, γ ∈ Ω is a critical point of
Fnnp if and only if its slope satisfies ω = p

n
.
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First order particles models

Then, we have

Proposition. Let β be an embedded closed curve
in S2(1

2), with length L > 0 and enclosing an ori-
ented area A ∈ (−π, π). The geodesic with slope ω
in Tβ = π−1(β) is a critical point of the variational
problem Fmnp : Ω → R in S3(1) if and only if the
following relationship holds

ωL− 2A

π
∈ Q.

We can assume the area A to be positive, chang-
ing if necessary the orientation of β .
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First order particles models

The only further restriction on (A,L) to define an
embedded closed curve in the two sphere is given
by the isoperimetric inequality in S2(1

2):

L2 + 4A2 − 4πA ≥ 0.

In terms of (2A,L), the above inequality is written
as

L2 + (2A− π)2 ≥ π2.

In the (2A,L)-plane, we define the region

∆ = {(2A,L) : L2 + (2A− π)2 ≥ π2 and 0 ≤ A ≤ π},
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First order particles models

For each point (2A,L) ∈ ∆ there is an embedded
closed curve on S2(1

2) with length L and enclosed
area A.

Theorem. For any couple of parameters, n and
p with n.p 6= 0, there exists an infinite series of
closed general helices that are extremal for the
variational problem Fnnp : Ω → R in S3(1). This
series includes all the geodesics βnp in Tβ = π−1(β)
with slope ω = p

n
and β determined as above by

(2A,L) in the following region

∆ ∩ (∪q∈Q(ωL− 2A = qπ)) .
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2.6. Some applications

Particle Models arising from Geometry

• Lagrangians describing relativistic particles,
have a long history in Physics.

• The conventional approach considers
Lagrangians which depend on higher deriva-
tives of the curve γ that represents the
worldline of the particle in the spacetime.

• Investigation of these models in the classical
variational setting, gives rise to very compli-
cated nonlinear differential equations which
are difficult to analyze.
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Some applications: Particle models

• Recent geometric models are intrinsic. They
describe the particles inside the original
space-time where the system is evolving.

• The motion of the particle is described by an
action of the form,

Θ(γ) =

∫
γ

P (κ1, κ2, ..., κn−1),

which is a functional of the Frenet curvatures
of the worldline γ .
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Some applications: Particle models

• For Lagrangians of this form, the Euler-
Lagrange equations can be always formulated
in terms of the Frenet curvatures κi.

• A basic point here is that in a space-time of
constant curvature c, the Frenet frame pro-
vides a complete kinematical description of
the particle motion: once we know its Frenet
curvatures κi, the trajectory of the particle
can be reconstructed up to rigid motions.
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Total curvature functional: Some applications

• A space-time where the dynamics of particles
happens (Mn Riemannian or Lorentzian);

• A regular curve γ with n − 1 curvature func-
tions, κ1, κ2, · · · , κn−1 :{

they are invariant under the group of motions

sometimes, they uniquely determine the curve

• An action defined by Lagrangian densities de-
pending on the curvatures

F : Ω → R, F(α) =

∫
α

P (κ1, κ2, · · · , κn−1) (s) ds.



JJ II J I \ x �
⊗

Total curvature functional: Some applications
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Total curvature functional: Some applications

Particular cases:

• 1. Geodesics.

P (κ1, κ2, · · · , κn−1) = c, constant.

This model describes free fall particles in Mn.

• 2. Massless Bosons, (Plyushchay, 1990). Tra-
jectories are critical points of the total curva-
ture

P (κ1, κ2, · · · , κn−1) = c κ1, F(α) = c

∫
α

κ(s) ds.
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Total curvature functional: Some applications

Particular cases:

• 3. Massive Bosons.

P (κ1, κ2, · · · , κn−1) = c κ1 +m,

F(α) =

∫
α

(c κ(s) +m) ds.

• 4. Tachyonless models of relativistic particles.

Fmnp(α) =

∫
α

(m + nκ1 + p κ2) ds.
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Total curvature functional: Some applications

The order one rigidity model (Plyushchay)

Fm : Ω → R, Fm(γ) =

∫
γ

(κ(s) +m) ds,

In Riemannian and Lorentzian Surfaces, trajecto-
ries of particles are the solutions of the following
equations:

mκ = ε2G.

Trajectories of the free model i.e. massless model
m = 0 correspond with those curves made up of
parabolic points.
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Total curvature functional: Some applications

In higher dimensions, the free total curvature
(Plyushchay), model is consistent only in three
spheres or in anti-de-Sitter three spaces.

The Dynamics in the three sphere has been pre-
viously described.

To completely describe the Dynamics in the anti
de Sitter three space AdS3, one has to determine
the family of helices:

{(κ, τ ) ∈ R2 : τ 2 − ε2mκ = 1}.
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Total curvature functional: constrained model

M. Barros, A. Ferrandez, M.A. Javaloyes and P.
Lucas, Class. Quantun Grav., 35 489–513 (2005)'

&
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%

Massive spinning particles in AdS3 described
by the Lagrangian Fm, with m 6= 0, evolve
generating worldlines that are helices in AdS3.
The complete solution of the motion equa-
tions consists of a one-parameter family of non-
congruent helices. The moduli space of solu-
tions may be described by three different (but
equivalent) pairs of dependent real moduli.
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First order particles models

The previous program can be extended to study
models describing relativistic particles where La-
grangian densities depend linearly on both the
curvature and the torsion of the trajectories in D
= 3 Lorentzian spacetimes with constant curva-
ture:

• Y.A. Kuznetsov and M. S. Plyushchay, Nucl.
Phys. B, 389 (1993) 181.

• M. Barros, A. Ferrandez, M.A. Javaloyes and
P. Lucas, Class. Quantun Grav., 35 (2005)
489–513.
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First order particles models

Fmnp(γ) =

∫
γ

(m + nκ + pτ )ds,

• The moduli spaces of trajectories are com-
pletely and explicitly determined.

• Trajectories are Lancret curves including or-
dinary helices.

• The geometric integration of the solutions is
obtained using the Lancret program as well as
the notions of B-scrolls and Hopf tubes.

• The moduli subspaces of closed solitons in
anti-de Sitter settings are also obtained.
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3. Higher Order Functionals:
Euler-Lagrange Equations
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3.1. First variation formula
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PROBLEM

existence and classification of critical points

and minimizers of the generalized Euler-
Bernoulli energy functional

F(γ) =

∫
γ

P(κ). (3.8)

acting on spaces of curves in a Riemannian mani
fold (P (t) is a C∞ function)
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3.2. First variation formula

Lemma 1.(J. Langer and D. Singer, 1985)

With the previous notation, we have:
1. [V,W ] = 0.

2. [W,T ] = gT, where < ∇TW,T >= −g.

3. [[W,T ], T ] = −T (g)T = −gsT.

4. ∂v
∂w =< ∇TW,T > v = −gv.

5.

∂κ

∂w
=< R(W,T )T,∇TT > + < ∇2

TW,N > −2 < ∇TW,T > κ
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First variation formula

Moreover, if Mn(G) is a Riemannian manifold of
constant sectional curvature G then

∂τ

∂w
=<

1

κ
∇3

TW − κs

κ2
∇2

TW,B >+

(
G

κ
+ κ

)
∇TW

−κs

κ2
< GW,B >

where τ is the torsion of the curve
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First variation formula

We take P (t) a smooth function and consider the
following curvature energy functional

F(γ) =

∫
γ

P(κ) =

∫ L

0
P(κ)ds =

∫ 1

0
P(κ) · v · dt. (3.9)

acting on H. (P (t) is a C∞ function and

v(t) =< γ ′, γ ′ >
1
2 ).
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First variation formula

By using

• lemma 1,

• the first Frenet formula ∇TT = κN , and

• integration by parts,

we can obtain the first derivative of F .

Notation


P ′(κ) = dP

dκ

K = P ′(κ) ·N,
J = ∇TK + (2κP ′(κ)− P (κ)) · T,
E = ∇TJ + P ′(κ) ·R(N, T )T,

we have,
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First variation formula

Proposition 1. (First Variation Formula)
Under the above conditions and notation, the fol-
lowing formula holds:'

&
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d

dw
F(γ)|w=o

=

∫ L

0
< E ,W > ds + B [W, γ] L

0 ,

where

B [W, γ] L
0 = [< K,∇TW > − < J ,W >] L

0 .
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3.3. Euler-Lagrange equation

Thus, under suitable boundary conditions, one
sees that a critical point of F will satisfy the fol-
lowing Euler-Lagrange equation'

&

$

%

E = ∇2
TP

′(κ) ·N +∇T (2κP ′(κ)− P (κ)) · T +

+ P ′(κ) ·R(N, T )T = 0.
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Euler-Lagrange equation

Proposition 1.(Euler-Lagrange equations in real
space forms of constant curvature G, Mn(G))(

κ2 − τ 2 +G
)
· P ′(κ) +

d2P ′

ds2
= κ · P (κ), (3.10)

2 · dP
′

ds
· τ + P ′(κ) · τs = 0, (3.11)

P ′(κ) · η = 0, (3.12)

• η belongs to the normal bundle to
span {T,N,B} .
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Euler-Lagrange equation

'

&

$

%

Hence, a critical point γ must lie fully in ei-
ther a 2-dimensional or a 3-dimensional to-
tally geodesic submanifold of Mn(G).

Thus our problem in space forms reduces to:

'

&

$

%

To determine explicitly the closed critical
curves in a 3-dimensional real space form
M 3(G):
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3.4. Solving the Euler-Lagrange equation

1. To explicitly integrate E = 0

• Impossible for a general P .

2. Even if we assume the existence of periodic so-
lutions κ, τ, the corresponding periodic curves
γ in M3(G) are not necessarily closed

• We need to establish closure conditions for
these critical points

3. We need to compute the second variation for-
mula to locate minima.
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Solving the Euler-Lagrange equation

1. For a general P :
compute first integrals of E = 0

give closure conditions of critical γ.

compute the second variation formula

2. For ”suitable” choices of P : solve the Euler-
Lagrange equations (explicitly or by quadra-
tures) and determine the closed critical points
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Solving the Euler-Lagrange equation

• to establish closure conditions for critical
points γ associated to periodic solutions of the
Euler-Lagrange equation

• we construct and adapted coordinate system

• depends on

{
space of Killing fields of M3(G)

choice of P
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3.5. First integrals of E = 0

Assumption: dP
ds
6= 0.

To integrate the E-L equations in this case, we
use the following method

• Find Killing fields along a critical point γ(s)
expressible in terms of the local invariants of
the curve.

• Use them along with a sort of Noether’s ar-
gument to facilitate integration of the Euler-
Lagrange equations
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First integrals of E = 0

A vector field W defined on regular curve γ im-
mersed in M3(G), is called a Killing field along γ ,
if for any variation in the direction of W , we have

∂v

∂w
=
∂κ

∂w
=
∂τ

∂w
= 0. (3.13)

• (Langer-Singer) A Killing field along γ is the
restriction of a Killing field defined on M 3(G)
.
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First integrals of E = 0

From Lemma 1, we can see that W is a Killing
field along γ, if and only if,

< ∇TW,T >= 0,

< ∇2
TW,N > +G· < W,N >= 0,

<
1

κ
∇3

TW − κs

κ2
∇2

TW +

(
G

κ
+ κ

)
∇TW − κs

κ2
G ·W,B >= 0.
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First integrals of E = 0

Consider the following vector fields along γ

J = (κP ′(κ)− P (κ))T +
dP ′

dκ
·N + τP ′(κ)B, (3.14)

I = −P ′(κ)B, (3.15)

Proposition 2.
Let γ : I = [0, 1] → M 3(G) be a critical point of F .
Then the vector fields J and I defined in (3.14)
and (3.15) respectively, are Killing fields along γ.
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First integrals of E = 0

Now if γ happens to be a critical point of F (un-
der any boundary conditions), then standard ar-
guments imply that E = 0 on γ . The variation
formulas continue to hold when L is replaced by
any intermediate value t ∈ (0, L) and, therefore,
the first variational formula

d

dw
F(γ)|w=o

=

∫ t

0
< E ,W > ds + B [W, γ] t

0.

reduces to

d

dw
F(γ)|w=o

= B [W, γ] t
0. (3.16)
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First integrals of E = 0

Therefore, for any Killing field W on M3(G), we
have from (3.16)

0 = B [W, γ]
t
0 , (3.17)

and B [W, γ] (t), is constant along γ. Applying this
to I,J , we have

< I,J >= c, (3.18)

< I,J > +G < I, I >= e, (3.19)

on γ , where c is and e are constant.
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First integrals of E = 0

Now, plug (3.15) and (3.14) into (3.18) and (3.19)
to obtain

Proposition 2.
(First Integrals of the Euler-Lagrange equations
in space forms)
With the above notation,

e = τ · (P ′(κ))
2
, (3.20)

d = (P ′′(κ))2 · κ2
s + (κ · P ′(κ)− P (κ))

2
+

+G · (P ′(κ))2 +
e2

(P ′(κ))2
(3.21)
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3.6. Closed critical points

κ(s), τ (s) periodic solutions of Euler-Lagrange
equations; γ(s) the corresponding curve in M3(G);
J , I the associated Killing fields and their exten-
sions to M3(G)

Proposition 3.

The Killing fields J , I commute : [J , I] = 0.

We use this to find a coordinate system where:{
the coordinates of γ

closure conditions

}
in terms of

{
P

κ

}
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3.7. Closure conditions in S3(1).

Choose cylindrical coordinates in the 3-sphere

x(θ, ϕ, ψ) = ...

... = (cos θ cosψ, sin θ cosψ, cosϕ sinψ, sinϕ sinψ),

θ, ϕ ∈ (0, 2π), ψ ∈ (0, π
2)

γ(s) = x(θ(s), ϕ(s), ψ(s)). (3.22)

By using (1) the above proposition; (2) the ex-
pressions for J , I : (3.14),(3.15); and (3) the
first integrals of E = 0 :(3.18), (3.19), one can ob-
tain



JJ II J I \ x �
⊗

Closure conditions in S3(1).

θ′(s) =
b(κP ′(κ)− P (κ))

b2 − (P ′(κ))2
,

ϕ′(s) =
a(κP ′(κ)− P (κ))

a2 − (P ′(κ))2
, (3.23)

cos 2ψ = 2
(P ′ (κ))

2 − b2

a2 − b2
− 1.

So, from the above equations we have that
the curvature κ, and the energy function P ,
basically determine the cylindrical coordinates
θ(s), ϕ(s), ψ(s) of a critical point γ(s)



JJ II J I \ x �
⊗

Closure conditions in S3(1).

Moreover, closure conditions for critical point γ(s)
can be formulated in this system.

Proposition 4.

A critical point of periodic curvature γ will close
up, if and only if, the angular progressions

Λθ(γ) =

∫ ρ

o

b(κP ′(κ)− P (κ))

b2 − (P ′(κ))2
,

Λϕ(γ) =

∫ ρ

o

a(κP ′(κ)− P (κ))

a2 − (P ′(κ))2
.

are rational multiples of 2π.
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3.8. Closure conditions in R3.

Similarly



adapted cylindrical coordinates

more difficult process︸ ︷︷ ︸
↓{

r(s), z(s), ϕ(s)

closure conditions

}
expressed

{
κ(s)

P (κ)

}
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Closure conditions in R3.

A critical point of periodic curvature γ, will close
up in R3, if and only if,

0 =

∫ ρ

o

(κP ′(κ)− P (κ))ds ,

and the angular progression

Λϕ(γ) =

∫ ρ

o

e
√
d(κP ′(κ)− P (κ))

e2 − d(P ′(κ))2
ds

is a rational multiple of 2π.
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Closure conditions in H3.

2-dimensional cases are obtained by taking b = 0
and e = 0 in the above formulas.

• Proceeding in a similar way we can give clo-
sure conditions in H2.

• We are working out the closure conditions in
H3.
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3.9. Particular cases

We shall discuss the above results for suitable
choices of P . By ”suitable” we mean:

• E = 0 can be explicitly solved (at least, they
can be solved by quadratures)

• P (κ) has

{
mathematical significance,

physical significance.
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Particular cases

Examples of suitable choices where the method
works

P(κ) = κr


hyperelastic curves

Chen-Willmore submanifolds

string theory

P(κ) = (κ + λ)
2

{
elasticae circular at rest

membranes, vesicles

P(κ) = (κ + λ)
1
2

{
total curvature

relativistic particle models
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Particular cases: Closed solutions

P (κ) = κr



r = 1

{
total curvature functional

———: Mn(c), n = 2, 3.

r = 2


classical elasticae functional

Euler-Rado-Langer-Singer and

———: Mn(c), n = 2, 3. exceptH3.

r > 2



generalized elasticae functional

non-existence in R2,S2,R3.

H2 : solved for r = 3; exist. other.

S3 : solved for constant κ; e. o.

H3 : unknown so far.
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4. Classical elasticae
in S3(1)

Critical points of the elastic energy functional

F(γ) =

∫
γ

κ2 (4.24)

acting on closed curves of the 3-sphere.

• Constant curvature

• Non-constant curvature
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4.1. Elasticae in S3(1): Constant curvature
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The set of constant curvature closed criti-
cal curves of F(γ) =

∫
γ
κ2ds in S3 (G) (and

therefore, also with constant non-zero tor-
sion: helices) is completely determined
and forms a rational 1-parameter family{
γq

/
q ∈ Q+ −

{
1
2

}}
.

• The main point of the proof is that: Helices in
S3 (G) can be considered as geodesics of Hopf
tori.
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Elasticae in S3(1): Constant curvature

Given a helix of known curvature and torsion
(κ, τ ), it may be seen as the geodesic of slope
g = 1−τ

κ
contained in the Hopf torus Tα shaped

on the circle α of curvature ρ = κ2+τ2−1
ρ

and en-

closing an oriented area A of the sphere S2(1
2).

Tα is determined by the lattice

Γ = span{(0, 2π), (L, 2A)},

where L is the length of α.
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Elasticae in S3(1): Constant curvature

A helix will be close, iff exists a rational number
q 6= 0, such that

g = q
√
ρ2 + 4− ρ

2
(4.25)

• Given ρ ∈ R, q ∈ Q we determine g by (4.25)

• The curvature and torsion (κ, τ ) of the closed
helix are obtained from g = 1−τ

κ
, ρ = κ2+τ2−1

ρ
.

• In order to be a critical point, it must satisfy
the Euler-Lagrange equation.
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Elasticae in S3(1): Constant curvature

• Hence the point is to find a real number ρ and
a rational number q satisfying

E(κ(ρ,q), τ (ρ,q)) = 0.

• We can show that, for any rational number
q 6= 0, there exists a unique positive solution.
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Elasticae in S3(1): Constant curvature

The following Figure shows the stereographic
projection of the closed elastic helices cor-
responding to q = 1 and q = 1

32.

Closed elastic helicesγ1 and γ 1
32
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4.2. Elasticae in S3(1): Non-constant curvature

To determine the closed critical points, our
method required

1. to explicitly obtain the periodic solutions κ,
τ, of the Euler-Lagrange equations (first inte-
grals);

2. to compute the ingredients in the closure con-
ditions;

3. to check that closure conditions are satisfied.
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Elasticae in S3(1): Non-constant curvature

First step

Assume now that κ is a non-constant function.
By applying previous results, we get that the first
integrals of the Euler-Lagrange equations are

16κ2κ2
s (s) = 4dκ2 − 16Gκ4 − 4κ6 − e2,

τ (s) =

(
e

4κ2 (s)

)
,

where d and e are constants of integration.
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Elasticae in S3(1): Non-constant curvature

The family of periodic solutions of the Euler-
Lagrange equations can be parameterized in

D = {(β, α) ; α > β > 0} ,
{

e2 = 4 (4G+ α+ β)αβ

d = (α+ β) (4G+ α+ β)− αβ

and is given by

κ2
β,α (s) = α− (α− β) sn2

(√
α− αo

2
s−K (p) , p

)
with K (p) denoting the complete elliptic integral

of the first kind of modulus p =
√

α−β
α−αo

.
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Elasticae in S3(1): Non-constant curvature

Therefore, we have proved

There exists a 2-parameter family of curves
in S3 (G) , Rβ,α = {γβ,α; α > β > 0} , whose curva-
ture and torsion functions κβ,α and τβ,α, as given
previously are periodic solutions of the Euler-
Lagrange equations corresponding to the elastic
energy functional F .

• Members of Rβ,α are candidates to be closed
critical points of F .

• Without loss of generality we assume G = 1.
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Elasticae in S3(1): Non-constant curvature

Second step: Closure conditions

Take γβ,α ∈ Rβ,α and let ρ the period of its curva-
ture κβ,α (s). Then γβ,α is a closed critical point of
F , if and only if,

Λθ (γβ,α) = −b
4

∫ ρ(β,α)

0

(
κ2

κ2 − b2

4

)
ds,

Λϕ (γβ,α) = −a
4

∫ ρ(β,α)

0

(
κ2

κ2 − a2

4

)
ds

are rationally related to 2π (to simplify the notation, we are

using κ instead of κβ,α in the above formulas).
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Elasticae in S3(1): Non-constant curvature

In the above expression a and b were given by

a2 =
d +

√
d2 − 4e2

2
, b2 =

d−
√
d2 − 4e2

2

We define new parameters (w, r) by

w =
b2

4
and r =

a2

4
.

Then we can show after a long computation that
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Elasticae in S3(1): Non-constant curvature

Λθ
(
γβ,α

)
= −2

(
w

α− αo

) 1
2

(K (p) + ...

...+
w

α− w
Π

(
π

2
,
α− β

α− w
,

√
α− β

α− αo

))
,

and

Λϕ
(
γβ,α

)
= −2

(
r

α− αo

) 1
2

(K (p) + ...

...+
r

α− r
Π

(
π

2
,
α− β

α− r
,

√
α− β

α− αo

))
,

with
• Π

(
π
2 , υ, p

)
(respectively, K (p) ) is the complete elliptic integral of

third kind (respectively, of the first kind) of modulus p =
√

α−β
α−αo

.
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Elasticae in S3(1): Non-constant curvature

Third step

For any (β, α) ∈ D, let κβ,α (s) be the correspond-
ing non-constant periodic solutions of the Euler-
Lagrange equations, it determines a curve γβ,α in
S3 (1) belonging to Rβ,α.

Then we define the map

Λ : D → R2

Λ (β, α) =

(
Λϕ (γβ,α)

2π
,
Λθ (γβ,α)

2π

)
.
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Elasticae in S3(1): Non-constant curvature

To determine the closed critical curves of Rβ,α,
we must check the closure conditions given pre-
viously. Hence we must:

• compute Λ (D) as accurately as possible (it is
quite complicate generally), and

• show that Λ (D) ∩Q2 6= ∅.
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Elasticae in S3(1): Constant curvature

In our case, we can prove that

Λ (D) =

{
(x, y) ; x2 + y2 <

1

2
, x > 0 and y < −1

2

}
.
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Elasticae in S3(1): Non-constant curvature

Hence, closed non-constant curvature elastic
curves in S3 (1) are indexed in Λ (D)∩Q2 (multiple
covers of a closed elastica correspond to the same
point of the region).

Points in the upper boundary of this region,
represent closed elastic curves that lie in S2 (1)
(geodesics correspond to the ”vertex” (1

2,
−1
2 )).

Points in the lower boundary, Λ (L2) ∩ Q, corre-
spond to closed elastic helices fully immersed in
S3 (1).
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Elasticae in S3(1): Non-constant curvature

For any choice of natural parameters n,m, l ∈ N
satisfying

(n,m, l) =1, 0 < m <
n

2
< l <

n√
2
, m2 + l2 <

n2

2
,

there exists a closed elastica γn,m,l which is to-
tally determined and fully immersed in S3(1), that
closes up after n periods of its curvature, m trips
around the ”equator” of xϕ and l trips around the
”equator” of xθ .

Every closed elastica in S3(1) can be obtained in
this way.
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Elasticae in S3(1): Non-constant curvature

Stereographic projections of the closed elasticae
γ75,22,47 and γ150,30,97
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5. Elastic curves cir-

cular at rest

We consider the problem of the existence and
classification of elastic curves which are circular
at rest, that is critical points of

Fλ (γ) =

∫
γ

(κ− λ)2ds . (5.26)

in a surface of constant curvature M2(c).

• intrinsic interest.

• they provide solutions to the membranes
problem.
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5.1. λ-elastic curves in S2(1)

Closed critical points satisfy the Euler-Lagrange
equation:

2κss + κ3 + (2− λ2)κ + 2λ = 0 ,

whose first integral is:

4κ2
s = d− (κ + λ)2

(
(κ− λ)2 + 4

)
; d > 0.

Denote by

Qd(x) = d− (x + λ)2
(
(x− λ)2 + 4

)
,

Depending on the values of λ and d this polyno-
mial may have two or four simple roots.
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λ-elastic curves in S2(1)
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λ-elastic curves in S2(1)

4-roots: Two solutions. The first one is given by

κλ
d(s) =

α2 (α4 − α1)− α4 (α2 − α1) cn
2 (rs,M)

(α4 − α1)− (α2 − α1) cn2 (rs,M)
,

where

r =

√
(α4 − α2) (α3 − α1)

4
, M =

√
(α4 − α3) (α2 − α1)

(α4 − α2) (α3 − α1)

and cn (rs,M) is the Jacobi Elliptic cosine.
The second solution κ̃λ

d(s) is obtained by inter-
changing 1 ↔ 3, 2 ↔ 4
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λ-elastic curves in S2(1)

2-roots: One solution.

κλ
d(s) =

(p + q)(qα2 + pα1)− 2p q (α2 − α1) cn (rs,M)

(p + q)2 − (p− q)2cn2 (rs,M)
+

+
(p− q)(qα2 − pα1)cn

2 (rs,M)

(p + q)2 − (p− q)2cn2 (rs,M)
,

with

p2 = (α2 + α1)
2 + 2α2

2 − 2λ2 + 4 ,

q2 = (α2 + α1)
2 + 2α2

1 − 2λ2 + 4 ,

M =
1

2

√
(α2 − α1)

2 − (p− q)2

pq
, r =

√
p q

2
.
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λ-elastic curves in S2(1)

• Let κ(s) be a solution to the E-L equation with
period ρ.

• Take γ(s) the associate curve in S2(1).

• We show that there exist geographic coordi-
nates,

x(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ)

such that γ(s) = x(θ(s), φ(s)) and

θs(s) =
κ2 − λ2

b
(
d− 4 (κ+ λ)2

) , b2(d− 4(κ+ λ)2) = sin2 φ.
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λ-elastic curves in S2(1)

Closedness condition:

Let γ(s) be a curve in S2(1) corresponding to a
periodic solution of the E-L equation κ(s) with
period ρ. Then γ(s) is a closed λ−elastic curve,
if and only if, its progression angle in one period
of its curvature,

Λλ(d) =
√
d

∫ ρ

0

(κ2 − λ2)

d− 4 (κ + λ)
2ds ,

is a rational multiple of π.
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λ-elastic curves in S2(1)

Variation of Λλ(d) for λ2 < 8.
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λ-elastic curves in S2(1)

Variation of Λλ(d) for λ2 > 8, d > 16λ2
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λ-elastic curves in S2(1)

Let Λ1 be defined as

Λ1 =− 4λ
K (M)

r

+ 8λ2

∫ λ

ς

dκ

(κ+ 3λ)

√
(λ− κ) (κ− ς)

(
(κ− u)2 + v2

) , (5.27)

where M and r were given previously, K(M) de-
notes the complete elliptic integral of the first
kind, and ς is the only negative root of β3 + λβ2 +
β (λ2 − 4)− λ (λ2 − 12) = 0.
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λ-elastic curves in S2(1)

• If 0 ≤ λ < 2
√

2, then for every pair of integer
numbers m,n ∈ Z satisfying

∣∣Λ1

2π
− m

n

∣∣ < 1
2 , there

exists a closed λ-elastic curve γmn(s) in S2(1).

• If λ ≥ 2
√

2, then for every pair of integer num-
bers m,n ∈ Z satisfying m

n
< 0, there exists a

closed λ-elastic curve γmn(s) in S2(1).
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λ-elastic curves in S2(1)

• In any of the above cases,γmn(s) closes up after
n periods of its curvature and m trips around
the equator.

• For any λ ≥ 2
√

2 there exists a closed ”figure
eight” λ-elastic curve in S2(1).
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λ-elastic curves in S2(1)

Variation of Λλ(d) for λ = 4
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λ-elastic curves in S2(1)

λ = 4



JJ II J I \ x �
⊗

λ-elastic curves in S2(1)

Variation of Λλ(d) for λ = 4
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λ-elastic curves in S2(1)

λ = 4
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λ-elastic curves in S2(1)

Variation of Λλ(d) for λ = 4
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λ-elastic curves in S2(1)

λ = 4
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λ-elastic curves in S2(1)

Variation of Λλ(d) for λ = 4
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λ-elastic curves in S2(1)

λ = 4



JJ II J I \ x �
⊗

λ-elastic curves in S2(1)

Minima of the energy

• numerical searching for minima

• derivation of working hypothesis

• formal proofs and conclusions
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λ-elastic curves in S2(1)

Minima of the energy: λ2 ≥ 8

There are three circles which are critical points

• Cηo
with curvature κ = −λ. Obviously they

are global minima.

• Cη1
with curvature η1 = λ+

√
λ2−8
2 .

• Cη2
, with curvature η2 = λ−

√
λ2−8
2
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λ-elastic curves in S2(1)

Minima of the energy: λ = 4.

(a) Variation of Eλ(d), energy of γ in one period of its κ.



JJ II J I \ x �
⊗

λ-elastic curves in S2(1)

Minima of the energy: λ = 4.

energy of Cηo
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λ-elastic curves in S2(1)

Minima of the energy: λ = 4.

energy of β(s)
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λ-elastic curves in S2(1)

Minima of the energy: λ ≥ 4. We have computed
the second variation formula of Fλ(γ) and showed
that

• Cη2
is always unstable .

• the once covered Cη1
is stable (multiple m-

covers of this circle Cm
η1

are stable provided
that m is not too large)

• ”eight figure” is stable ?
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5.2. λ-elastic curves in H2(−1)

We investigate minima of Fλ (γ) =
∫

γ
(κ− λ)2ds by

following a procedure similar to previous one in
S2(1)
• We integrate explicitly the Euler-Lagrange

equations in terms of the Jacobi Elliptic func-
tions.

• The situation here is much reacher: new cases
appear

• For each case, we choose coordinates systems
adapted to the problem and establish the cor-
responding closedness conditions in terms of
the progression angle
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λ-elastic curves in H2(−1)

• We check numerically the closedness condi-
tions

• We prove that they are satisfied

• We use the associated coordinate systems and
numerical-graphical stuff to draw the critical
points

• A rough stability analysis is made.
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λ-elastic curves in H2(−1)

For any λ > 0, d ∈ (−δ2, 0), the progression angle
Λλ(d) moves continuously in

(−δ2,−16λ2)
⋃

(−16λ2, 0)

and, therefore, there exist infinite many closed
critical curves of

Fλ (γ) =

∫
γ

(κ− λ)2ds

with rotational symmetry in the hyperbolic plane.
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

critical curve of the energy with rotational symmetry
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λ-elastic curves in H2(−1)

For any λ > 1, d > 0), the progression angle Λλ(d)
reaches the zero value exactly once, and, there-
fore, there is a closed ”eight figure” critical curve
of

Fλ (γ) =

∫
γ

(κ− λ)2ds

in the hyperbolic plane.
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λ-elastic curves in H2(−1)

the only critical curve of the energy with translational symmetry
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λ-elastic curves in H2(−1)

For any λ > 0, there exist periodic critical curves
of

Fλ (γ) =

∫
γ

(κ− λ)2ds

in the hyperbolic plane with horocyclical symme-
try, but they never close up.
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λ-elastic curves in H2(−1)

critical curve of the energy with horocyclical symmetry
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6. Some applications

We shall investigate some applications of the elas-
tic curves results previously considered to:

• Membranes and vesicles;

• Chen-Willmore submanifolds.
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6.1. Membranes and vesicles

• Investigation of surfaces which are extremal
for a free energy which is quadratic in the
principal curvatures is relevant in the study
of many physical and biophysical problems.

• Example: The theoretical description of am-
phiphilic systems. Well known classes of am-
phiphiles are: tensides or surfactants (used
for washing and cleaning purposes) and lipids
(the basic components of biomembranes)
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Membranes and vesicles

The physics of amphi-
philic systems is mostly
determined by their in-
terfaces.
In binary systems, am-
phiphiles self-assemble
into bilayer structures
which are fluid mem-
branes .
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Membranes and vesicles

Thus, embedded surfaces in Euclidean space R3

are considered not so much as a geometric object
but as an idealized model for the interfaces or
middle surfaces occurring in real materials: open
or closed lipid bilayers and surfactant films, thin
elastic plates, etc...
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Membranes and vesicles

• The free energy of an amphiphilic system can
be written as a functional of its interfacial ge-
ometry.

• The shape of the membrane is determined by
the mechanical equilibrium of the free energy.

• Their elastic properties suggest that the free
energy of S is controlled not only by the ten-
sion, but also by the curvature.
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Membranes and vesicles

Linear elasticity theory: Hooke’s law suggest that
the Free energy of a surface, E(S), is quadratic
in the principal curvatures. We may assume
Φ̃(κ1, κ2) = Φ(H,K)

• Φ(H,K) = a + b(H − co)
2 − cK ;

• K is the Gaussian curvature;

• H is the Mean curvature.

S. Germain, 1810; S.D. Poisson, 1812;
G.R. Kirchhoff, 1850; A.E.H. Love, 1906;
P.B. Canhman, 1970; W. Helfrich, 1973
T. Thomsem, H. Hopf, T.J. Willmore,...
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Membranes and vesicles

So the free energy is

E(S) =

∫
S

(a + b(H − co)
2 − cK) · dA , (6.28)

• a, b, c ∈ R are material constants (surface ten-
sion, elastic moduli,...)

• H,K are the mean and Gaussian curvatures
of S .

• co is the spontaneous curvature related to

– initial state.

– asymmetry in the two faces of the bilayer.
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Membranes and vesicles

The static equilibrium shape of our interface S
is determined by the condition that S be energy
minimizing or, more generally and less restrictive,
that S be an stationary for the energy functional
E(S).

S must be a solution of the variational problem:

δE = 0 .
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Membranes and vesicles

For suitable choices of the parameters, mem-
branes family includes important classes of sur-
faces

• minimal surfaces (soap films).

• constant mean curvature surfaces (soap bubbles)

• Willmore surfaces (vesicles)

• bimomembranes and vesicles, etc...
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Membranes and vesicles

This variational problem leads not only to the
Euler-Lagrange equation,

b{4H+2H(H2−K)}−2(a+b c2o)H+2b coK = 0, (6.29)

where 4 is the Laplacian of S , but also to cer-
tain specific intrinsic, or natural, boundary con-
ditions.

−b∂H
∂n

− c{∂τ
∂s

+
∂2ϑ

∂s2
},

b(H − co)− cκn,

−a+ b(H − co)
2coK,

(6.30)

where κn, n are normal curvature and interior normal of ∂S in S ; τ is

the torsion of ∂S in R3 ; and ϑ = ∠(N, n).



JJ II J I \ x �
⊗

Membranes and vesicles

Often the interface separates two media of pre-
scribed volumes: volume constraint.

• The E-L equation is now,

b{4H + 2H(H2 −K)}−
− 2(a + bc2o)H + 2b coK − d = 0,

(6.31)

• Obviously, the boundary conditions will have
to be complemented as well.



JJ II J I \ x �
⊗

Membranes and vesicles

Euler-Lagrange equation (6.31) is a nonlinear par-
tial differential equation of fourth order for x, the
position vector of S . Using the Beltrami’s equa-
tion

4x = 2HN (6.32)

N the unit normal to S , it can be written in the
form of four differential equations of second or-
der (three, namely (6.32), for x, and one, namely
(6.31), for the mean curvature H .)
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Membranes and vesicles

BOUNDARY VALUE PROBLEMS FOR VARI-
ATIONAL INTEGRALS:

determination of minimizing or stationary sur-
faces for the energy functional in the class of all
surfaces of a prescribed topological type (subject
or not to a volume constraint) and with bound-
aries on fixed curves (Plateau type) or on pre-
scribed surfaces (free boundary).
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Membranes and vesicles

• symmetry in the bilayer, co = 0, and no volume
constraint d = 0: Minimal surfaces.

• asymmetric bylayer, co 6= 0, and no volume
constraint d = 0: Constant mean curvature
surfaces.

• symmetry in the bilayer co = 0, no area con-
straint a = 0 and no volume constraint d = 0:
Willmore surfaces.
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Membranes and vesicles

For mathematicians the most central question is
the existence proof of stationary surfaces.

• The existence and uniqueness of minimizers
of E(S) of a certain topological class is still
unknown.

• It is also not known whether the minimizer is
symmetric in any sense.

• On the mathematical level the attending prob-
lems are formidable.
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Membranes and vesicles

Physicists are more interested in analytical solu-
tions of the Euler-Lagrange equation (6.31)

b{4H + 2H(H2 −K)}−
− 2(a + bc2o)H + 2b coK − d = 0

since they can be used to derive physical proper-
ties of the corresponding system.
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Membranes and vesicles

• Very few analytical solutions are known to-
day.

• As far as closed surfaces are concerned, we
have of course the spheres and certain anchor
rings.

• There are extensive numerical investigations
of the solution surfaces of (6.31) generally re-
stricted to surfaces with rotational symmetry.

• Seifert, Lipowsky, Michalef, Bensimon,
Julicher, Mladenov, etc...
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Membranes and vesicles

• The 1-dimensional version of membranes are
the elastic curves.

• Under certain boundary conditions, cylindri-
cal membranes in R3 are cylinders shaped on
plane elastic curves (J.C.C. Nitsche, (1999)).
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Membranes and vesicles
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Membranes and vesicles
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6.2. Willmore surfaces

The simplest type of elastic energy is the bending
energy or Willmore energy

Willmore surfaces: Critical points of the bending
energy

E(S) =

∫
S

H2 · dA ,

The Willmore energy is a conformal invariant.
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Willmore surfaces

• In 1978 J.L. Weiner showed that minimal sur-
faces of real space forms are examples of Will-
more surfaces.

• Consequently, he used the conformal invari-
ance, the stereographic projection and the
Lawson minimal examples in S3, to produce
Willmore surfaces of any genus in R3 .
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Willmore surfaces

Surfaces


cones

cylinders

surfaces of revolution

which are Willmore membranes, have to be

shaped on elastic curves of


S2(1)

R2

H2(−1)

(Hertich-Jeromin, (2003)).
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Willmore surfaces

• The Willmore energy is a conformal invariant.

• By combining this with the Palais’ Symmetric
Criticality Principle, we obtain a method to
produce exact solutions of the Euler-Lagrange
equations for membranes and vesicles.

Palais’ Principle: Take a manifold N and a group
G which acts by diffeomorphisms.

Consider a functional W : N → R which is G-
invariant

W(a · ϕ) = W(ϕ), ∀a ∈ G.
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Willmore surfaces

Consider the following sets:
• Symmetric points
NG = {ϕ ∈ N : a · ϕ = ϕ, ∀a ∈ G}.

• Critical points Σ of W : N → R.

• Critical points ΣG of the restriction of W to
the set NG of symmetric points.

• If G is compact, then NG is a submanifold of
N .

• Under this assumption, we have

Σ ∩NG = ΣG,

Palais’ Symmetric Criticality Principle.
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Willmore surfaces

First known examples of Willmore membranes in
R3 which did not come from minimal surfaces of
S3(1) were constructed using Hopf Tori shaped on
the elastic curves of S2(1/2) (U. Pinkal, (1985)).
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Willmore surfaces

In a similar way closed vesicles in S3 may be
produced by lifting closed elasticae in S2 which
are circular at rest (J. Arroyo and O.J. Garay
(2001)).
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Willmore surfaces

The Surfaces of Revolution in R3 which are Will-
more membranes are precisely those shaped on
the elastic curves of H2(−1) (J. Langer, D. Singer,
(1985)).
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Willmore surfaces
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6.3. Chen-Willmore submanifolds

In the early seventies, B-Y Chen extended the
Thomsem-Willmore functional to any submani-
fold M of any Riemannian manifold N. He de-
fined (Chen-Willmore functional):

CW (M) =

∫
M

(
H2 − τe

)n
2 dv,

• H and τe being the mean curvature and the
extrinsic scalar curvature of M , respectively;

• It is conformally invariant.

• its critical points are known as Chen-Willmore
submanifolds
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Chen-Willmore submanifolds

• When n = 2 and N = R3 it coincides with the
Willmore functional.

• Examples of Chen-Willmore tori in spheres
and complex projective spaces have been
given by : Barros, Chen, Garay, Singer,...

• Z. Guo, H. Li and Ch. Wang (2001) have
shown that, in contrast with the surfaces
case, a minimal submanifold of the sphere
is not necessarily a Chen-Willmore subman-
ifold. They also determined the Riemannian
products of standard spheres which are Chen-
Willmore hypersurfaces of Sn+1 (standard ex-
amples).
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Chen-Willmore submanifolds

• A quite general procedure to construct Chen-
Willmore submanifolds in warped product
Riemannian manifolds has been described by
Arroyo, Barros, Garay (1999).

Theorem

Let (M, g) = M1×f M2 be a warped product where
(M2, g2) is a compact homogeneous space of di-
mension n2. Let γ be a closed curve immersed
in (M1, g1). The submanifold N = γ ×f M2 is a
Willmore-Chen submanifold in (M, g) if and only
if γ is a n2-generalized elastica in (M1,

1
f2g1).
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Chen-Willmore submanifolds

The main point is that we can relate this varia-
tional problem to that of hyperelastic curves in
the conformal structure on the base space.

It explains

• The Willmore cylinders shaped on plane elas-
tica.

• The Willmore Hopf Tori shaped on spherical
elastica.

• The Willmore surfaces of revolution shaped
on hyperbolic elastica.
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6.4. Chen-Willmore hypersurfaces

In (2003), we produced the first examples of
Chen-Willmore hypersurfaces of Rn+1 and Sn+1,
which are not in the conformal class of the stan-
dard examples.

We use the conformal invariance of the Chen-
Willmore functional and the Palais’ symmet-
ric criticality principle,to characterize the Chen-
Willmore rotational hypersurfaces of Rn+1 and
Sn+1 in terms of the closed free n-elastic curves
of the hyperbolic plane H2 (−1).
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Chen-Willmore hypersurfaces

We prove that there exist periodic solutions to
the Euler-Lagrange equation.

We also have a qualitative description of the non-
constant curvature closed n-elastic curves, they
are convex curves travelling along εn, which oscil-
late between two concentric circles and close up
after an integer number of trips around εn.

Getting concrete examples would require first to
solve explicitly the Euler-Lagrange equations and
then to quantify the closure condition.
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Chen-Willmore hypersurfaces

Although this task does not seem to be possible
in general, it has been done for n = 2 by J. Langer
and D. Singer (1987) and for n = 3 by J. Arroyo,
M. Barros, O.J. Garay, (2002) .

• Euler-Lagrange equation of 3-elastic curves in
H2 (−1) can be explicitly integrated and the
corresponding Frenet equations can be inte-
grated by quadratures.

• We found a rationally dependent family of
curves which fulfilled the closure condition.
They provide the required examples.
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Chen-Willmore hypersurfaces

This gives explicit examples of Chen-Willmore
hypersurfaces in R4.
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