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1. Linear connections
Linear connections ∇ are 1st-order differential operators in vector

bundles. If such a connection ∇ is given and σ is a section of the
bundle, then ∇σ is 1-form on the base space valued in the space of
sections of the vector bundle, so if X is a vector field on the base space
then i(X)∇σ = ∇Xσ is a new section of the same bundle. If f is
a smooth function on the base space then ∇(fσ) = df ⊗ σ + f∇σ,
which justifies the differential operator nature of ∇: the components
of σ are differentiated and the basis vectors in the bundle space are
linearly transformed.

Let ea and εb, a, b = 1, 2, . . . , r be two dual local bases of the corre-
sponding spaces of sections: < εb, ea >= δb

a, then we can write

σ = σaea, ∇ = d⊗ id+Γb
µadxµ⊗(εa⊗eb), ∇(ea) = Γb

µadxµ⊗eb,

so
∇(σmem) = dσm ⊗ em + σmΓb

µadxµ < εa, em > ⊗ eb =

=
[
dσb + σaΓb

µadxµ
]⊗ eb,

and Γb
µa are the components of ∇ with respect to the coordinates {xµ}

on the base space and with respect to the bases {ea} and {εb}.
Since the elements (εa ⊗ eb) define a basis of the space of (local)

linear maps of the local sections, it becomes clear that in order to
define locally a linear connection it is sufficient to have some 1-form
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θ on the base space and a linear map φ = φb
aε

a ⊗ eb in the space of
sections. Then

∇(σ) = dσa ⊗ ea + θ ⊗ φ(σ)

defines a linear connection with components Γb
µa = θµφ

b
a in these bases.

So, locally, any linear connection ∇ may be written as

∇ = d⊗ (εa ⊗ ea) + Ψb
µadxµ ⊗ (εa ⊗ eb).

Let Ψ1 and Ψ2 be two 1-forms valued in the space of linear maps in
a vector bundle. A map (Ψ1, Ψ2) → (∧, })(Ψ1, Ψ2) is defined by (we
shall write just } for (∧, }) and the usual ◦ will mean just composition)

}(Ψ1, Ψ2) = (Ψ1)
b
µa(Ψ2)

n
νmdxµ ∧ dxν ⊗ [ ◦ (εa ⊗ eb, ε

m ⊗ en)
]

=

= (Ψ1)
b
µa(Ψ2)

n
νmdxµ ∧ dxν ⊗ [

< εa, en > (εm ⊗ eb)
]

=

= (Ψ1)
b
µa(Ψ2)

a
νmdxµ ∧ dxν ⊗ (εm ⊗ eb), µ < ν.

In the case of trivial vector bundles, the curvature of ∇ is given by[
d(Ψb

µadxµ)
]⊗ (εa ⊗ ea) + }(Ψ, Ψ).

2. Facts from Clasical electrodynamics and from
Extended electrodynamics

We recall now some facts from Classical Electrodynamics (CED) and
from Extended Electrodynamics (EED). The vector bundle under con-
sideration is the (trivial) bundle Λ2(M) of 2-forms on the Minkowski
space-time M . Recall that if (F, ∗F ) is a CED vacuum solution, i.e.
dF = 0, d ∗ F = 0, then the combinations

F = aF − b ∗ F, F∗ = b F + a ∗ F,

where (a, b) are two arbitrary real numbers, also give a CED vacuum
solution and, since on Minkowski space the corresponding Hodge star
∗2 satisfies the relation ∗2 = −idΛ2(M), we obtain F∗ = ∗F . The two
corresponding energy tensors are related by

T (F ,F∗) = (a2 + b2) T (F, ∗F ).
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Recall the real representation of complex numbers z = aI + bJ where
I is the unit matrix in R2 and J is the standard complex structure
matrix in R2 with columns (0,−1); (1, 0). So, we obtain an action
of the linear group G of matrices α = aI + bJ on the CED vacuum
solutions. This is a commutative group G and its Lie algebra G just
adds the zero (2× 2) matrix to G, and (I, J) define a natural basis of
G. So, having a CED vacuum solution, we have in fact a 2-parameter
family of vacuum solutions. Hence, we can define a G-valued 2-form Ω
on M by Ω = F ⊗ I +∗F ⊗ J , and the equation dΩ = 0 is equivalent
to dF = 0, d ∗ F = 0.

Consider the new basis (I ′, J ′) in G given by

I ′ = (aI + bJ), J ′ = (−bI + aJ).

Accordingly, the ”new” solution Ω′, i.e. the old solution in the new
basis of G, will be

Ω′ = F ⊗ I ′ + ∗F ⊗ J ′ = F ⊗ (aI + bJ) + ∗F ⊗ (−bI + aJ) =

= (aF − b ∗ F )⊗ I + (b F + a ∗ F )⊗ J = F ⊗ I + F∗ ⊗ J.

In view of this we may consider this transformation as nonessential, i.e.
we may consider (F, ∗F ) and (F ,F∗) as two different representations
in corresponding bases of G of the same solution.

Such an interpretation is approporiate and useful if the field shows
some invariant properties with respect to this class of transformations.
For example, if the Lorentz invariants

I1 =
1

2
FµνF

µν = (B2 − E2), I2 =
1

2
Fµν(∗F )µν = 2E.B,

where E and B are the corresponding electric and magnetic components
of F , are zero: I1 = I2 = 0, (the so called ”null field case”) then all
the above transformations keep unchanged these zero-values of I1 and
I2. In fact, under such a transformation (F, ∗F ) → (F ,F∗) the two
Lorentz invariants transform to (I ′1, I

′
2) in the following way:

I ′1 = (a2 − b2) I1 + 2ab I2, I ′2 = −2ab I1 + (a2 − b2) I2,
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and the determinant of this transformation is (a2 + b2)2 6= 0. So, a null
field, i.e. a field with zero invariants I1 and I2, stays a null field under
these transformations. Moreover, NO non-null field can be transformed
to a null field by means of these transformations, and, conversely, NO
null field can be transformed to a non-null field in this way. Hence,
the Lorentz invariance and the dual G-invariance of I1 and I2 hold
simultanoiusly only in the null-field case. Further we are going to pay
due repect to this invariance, keeping in mind the basic fact that only
in this case the velocity of the energy propagation of the field is equal
to ”c” and follows straight lines, so this is intrinsic property of the field.

In order to come to the equations of EED we recall that every bi-
linear map ϕ : G × G → W , where W is some linear space with
basis {ei}, i = 1, 2, . . . , defines corresponding product in the G-valued
differential forms by means of the relation

ϕ(Ωi
1 ⊗ ei, Ω

j
2 ⊗ ej) = Ωi

1 ∧ Ωj
2 ⊗ ϕ(ei, ej).

Recall now the following identity in Minkowski space:

I1δ
ν
µ ≡

1

2
FαβF

αβδν
µ = FσµF

σν − (∗F )σµ(∗F )σν,

and the standard energy-tensor Qν
µ of electromagnetic field:

Qν
µ = −1

2

[
FσµF

σν + (∗F )σµ(∗F )σν
]
.

We see that under I1 = 0 the two fields F and ∗F carry the same
energy-momentum during propagation. Moreover, there is no inter-
action energy-momentum between F and ∗F as it is seen from the
expression for Qν

µ. Hence, F and ∗F may interact only in regime of
dynamical equilibrium, i.e. any energy-momentum loss of F/ ∗ F
should be compensated by equal gain of ∗F/F : F À ∗F .

EED makes use of these facts assuming that the corresponding dy-
namical equations must have local energy-momentum exchange physical
sense, so the symmetry F À ∗F must be respected.
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Now, let ϕ = ∨, where ”∨” is the symmetrized tensor product in G.
We consider the expression ∨(Ω, ∗dΩ).

∨(Ω, ∗dΩ) = (F ∧ ∗dF )⊗ I ∨ I + (∗F ∧ ∗d ∗ F )⊗ J ∨ J+

+(F ∧ ∗d ∗ F ⊗ + ∗ F ∧ ∗dF )⊗ I ∨ J.

The vacuum EED equations are ∨(Ω, ∗dΩ) = 0, or equavalently,

F ∧ ∗dF = 0, (∗F )∧ ∗d ∗F = 0, F ∧ ∗d ∗F + (∗F )∧ ∗dF = 0.

In terms of the codifferential δ = ∗d∗ these equations look like

δ ∗ F ∧ F = 0, δF ∧ ∗F = 0, δF ∧ F − δ ∗ F ∧ ∗F = 0.

In components we obtain correspondingly

1

2
F αβ(dF )αβµ ≡ (∗F )µν(δ ∗ F )ν = 0,

1

2
(∗F )αβ(d ∗ F )αβµ ≡ Fµν(δF )ν = 0;

1

2
(∗F )αβ(dF )αβµ+

1

2
F αβ(d∗F )αβµ ≡ (δ∗F )νFνµ+(δF )ν(∗F )νµ = 0.

Basic property of the nonlinear solutions:
All nonlinear solutions to these EED vacuum equations, i.e. those

satisfying dF 6= 0,d ∗ F 6= 0, have zero invariants: I1 = I2 = 0, so,
they minimize the quantity I2

1 + I2
2 ≥ 0. Moreover, for any nonlinear

solution defined by F there exists a canonical coordinate system on M ,
called further F -adapted, in which F and ∗F look as follows:

F = A ∧ ζ+, ∗F = A∗ ∧ ζ,

A = udx + pdy, A∗ = pdy − udz, ζ = εdz + dξ, ε± 1,

and (u, p) are two functions on M , satisfying the equation

u(uξ − εuz) + p(pξ − εpz) = 0
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As for the energy-momentum tensor Tµν of the vacuum solutions,
considered as a symmetric 2-form on M , it is defined in terms of Ω as
follows:

T (X,Y ) =
1

2
∗ g

[
i(X)Ω, ∗i(Y )Ω

]
=

= −1

2
XµY ν

[
FµσFν

σ + (∗F )µσ(∗F )ν
σ
]

= XµY νTµν,

where (X,Y ) are two arbitrary vector fields on M , g is the metric
in G defined by g(α, β) = 1

2tr(α.β∗), and β∗ is the transposed to β.
Note that g(I, J) = 0, which elliminates the corresponding coefficient
which reads Fµσ(∗F )νσ + (∗F )µσF

νσ = 1
2Fαβ(∗F )αβδν

µ, so, in a g-
NONorthogonal basis of G this coefficient will appear.

Finally, recall the generalization of Lie derivative LK with respect
to the k-vector K, acting in the exterior algebra of differential forms
according to the formula LK = i(K)d−(−1)kdi(K). Then, in view of
the relations FµνF

µν = (∗F )µνF
µν = 0, the above equations acquire

the form

LF̄F = 0, L∗̄F (∗F ) = 0, LF̄ (∗F ) + L(∗̄F )F = 0,

where F̄ and ∗̄F are the η-corresponding 2-vectors. In terms of Ω and
Ω̄ = F̄ ⊗ e1 + ∗̄F ⊗ e2 these three equations can be united in one as
follows

L∨̄ΩΩ = LF̄F⊗e1∨e1+L∗̄F∗F⊗e2∨e2+(LF̄∗F +L∗̄FF )⊗e1∨e2 = 0.

3. Linear connection interpretation of the nonlinear part of
EED

If I is the identity in Λ2(M) and J = ∗ is the complex structure in
Λ2(M) then a representation ρ of G in Λ2(M) is given by

ρ(α) = aI + bJ .

Also, a representation ρ′ of the corresponding Lie algebra G is defined
by the same relation. So, if α : M → G is a map then ρ′(α) is a linear
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map in Λ2(M), and recalling our 1-form ζ = εdz + dξ we define a
linear connection ∇ in Λ2(M) by

∇ = d⊗ idΛ2(M) + ζ ⊗ ρ′(α(u, p)) =

= d⊗ idΛ2(M) + ζ ⊗ (uI + pJ ), α ∈ G.

Two other connections ∇̄ and ∇∗ are defined by

ρ′(ᾱ(u, p)) = ρ′(α(u,−p)) = uI − pJ ,

(ρ′)∗(α(u, p)) = ρ′(α.J) = ρ′(α(−p, u)) = −pI + uJ ,

and we shall denote:

χ = uI + pJ , χ̄ = uI − pJ , χ∗ = −pI + uJ .

Denoting Ψ = ζ ⊗χ, Ψ̄ = ζ ⊗ χ̄, Ψ∗ = ζ ⊗χ∗, we note that (since
ζ ∧ ζ = 0)

}(Ψ, Ψ) = }(Ψ, Ψ̄) = }(Ψ, Ψ∗) = 0.

Now, since
Ψ = uζ ⊗ I + pζ ⊗ J ,

Ψ̄ = uζ ⊗ I − pζ ⊗ J ,

Ψ∗ = −pζ ⊗ I + uζ ⊗ J
for the corresponding curvatures we obtain

R = d(uζ)⊗ I + d(pζ)⊗ J ,

R̄ = d(uζ)⊗ I − d(pζ)⊗ J ,

R∗ = d(−pζ)⊗ I + d(uζ)⊗ J .

By direct calculation we obtain:

∗1

6
Tr

[
}(Ψ̄, ∗dΨ)

]
= −ε

[
u(uξ − εuz) + p(pξ − εpz)

]
dz−

−[
u(uξ − εuz) + p(pξ − εpz)

]
dξ;
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1

6
Tr [}(Ψ∗, ∗dΨ)] = ε

[
p(uξ − εuz)− u(pξ − εpz)

]
dx ∧ dy ∧ dz+

+
[
p(uξ − εuz)− u(pξ − εpz)

]
dx ∧ dy ∧ dξ =

= δF ∧ F = δ ∗ F ∧ ∗F = ε
1

6
Tr [}(Ψ, ∗dΨ∗)] ,

where δ is the coderivatie. Denoting by |R|2 the quantity
1
6|∗Tr

[
}(R∧ ∗R̄)

] | we obtain (in the F -adapted coordinate system)

|R|2 =
1

6
| ∗ Tr

[
}(dΨ, ∗dΨ̄)

] | =

= (uξ − εuz)
2 + (pξ − εpz)

2 = |δF |2 = |δ ∗ F |2.
Finally we note the relations

1

6
tr(χ) =

1

6
tr(uI + pJ ) = u, and

1

6
tr

[
(χ ◦ χ̄)

]
=

1

6
tr

[
(uI + pJ ) ◦ (uI − pJ )

]
= u2 + p2.

These relations allow to introduce two characteristic functions for any
nonlinear solution: phase-function ψ and scale factor L according to:

ψ = arccos
1
6trχ√

1
6tr(χ ◦ χ̄)

, L =

√
1
6tr(χ ◦ χ̄)
√

1
6|R|

=

√
tr(χ ◦ χ̄)

|R| .

Since the nonlinear solutions of the two equations

δF ∧ ∗F = 0, δ ∗ F ∧ F = 0,

i.e. those satisfyiing δF 6= 0 and δ ∗ F 6= 0, are parametrized by two
functions (u, p) and satisfy the relations

u(uξ − εuz) + p(pξ − εpz) = 0, (uξ − εuz) 6= 0, (pξ − εpz) 6= 0,

in the corresponding F -adapted coordinate system, we obtain that on
those solutions the following relation holds:

Tr
[
}(Ψ̄, ∗dΨ)

]
= 0,
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and the equation
δF ∧ F = δ ∗ F ∧ ∗F

is equivalent to

Tr [}(Ψ, ∗dΨ∗)] = ε Tr [}(Ψ∗, ∗dΨ)] .

It can be shown that the non-zero value of the squared curvature invari-
ant |R|2 guarantees availability of rotational component of propagation.

4. Conclusion
The linear connection ∇ is defined through ζ⊗ρ′(α(u, p)). We note

that the 2-form Fo = dx⊗ζ gives the possibility to consider a nonlinear
solution F (u, p) as an appropriately defined linear map

ρ′(α(u, p)) = uI + pJ
in Λ2(M), since the action of ρ′(α(u, p)) on Fo gives F .

This special importance of ζ is based on the fact that it intrinsically
defines the translational part of the dynamical befavior of the solution,
and its uniqueness is determined by the fact that all nonlinear solutions
of EED equations have zero invariants: FµνF

µν = Fµν(∗F )µν = 0. As
for the rotational part of the dynamical behavior of the solution it is
available only if the curvature R iz nonzero and is locally represented
by any of the two 3-forms F ∧ δF = ∗F ∧ δ ∗F 6= 0. For all nonlinear
solutions we have δF 6= 0 and δ ∗ F 6= 0, and all finite nonlinear
solutions have finite energy density:

0 < φ2 =
1

6
tr(F ◦ F̄ ) =

1

6
tr(χ ◦ χ̄) = (u2 + p2) < ∞.

The nonzero finite scale factor 0 < L < ∞ separates those finite
nonlinear solutions which carry spin momentum, and this happens only
when |δF | = |R| 6= 0. The spin momentum is carried by any of the
two 3-forms δF ∧F = δ ∗F ∧∗F , determining the energy-momentum
exchange between F and ∗F . Clearly, on the linear Maxwell solutions
these 3-forms are zero.
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Hence, in terms of curvature we can say that the nonzero curvature
invariant |R|, is responsible for availability of rotational compo-
nent of propagation, in other words, the spin properties of a non-
linear solution require non-zero curvature.

From physical viewpoint the corresponding dynamical process that
generates these spin properties is the mutual energy-momentum ex-
change between the two components F and ∗F during propagation. It
has the following three characteristic properies:

-it is permanent, i.e. it occurs constantly during propagation,

-it is simultanious in the both directions: F À ∗F ,

-it is in equal quantities.

It follows that F and ∗F live in a permanent dynamical equilib-
rium. They carry always the same quantities of energy-momentum:

[
FµνF

µν = 0
]
⇒ FµσF

νσ = (∗F )µσ(∗F )νσ.

This dynamical equilibrium is quantitatively described by the equation

δF ∧ F = δ ∗ F ∧ ∗F,

or by
Tr [}(Ψ, ∗dΨ∗)] = ε Tr [}(Ψ∗, ∗dΨ)] .

10


