> "Geometry, Integrability and Quantization" $$
5-10 \text { June, 2009, }
$$ Varna, Bulgaria

Algebraic aspects of integrable nonlinear evolution equations with deep reductions

I. Equations on symmetric and homogeneous spaces

V. S. Gerdjikov

Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences
1784 Sofia, Bulgaria

Based on:

- V. S. Gerdjikov. Algebraic and Analytic Aspects of N-wave Type Equations. Contemporary Mathematics 301, 35-68 (2002).
- V. S. Gerdjikov, D. J. Kaup, N. A. Kostov, T. I. Valchev. On classification of soliton solutions of multicomponent nonlinear evolution equations.
J. Phys. A: Math. Theor. 41 (2008) 315213 (36pp).
- Nikolay Kostov, Vladimir Gerdjikov. Reductions of multicomponent $m K d V$ equations on symmetric spaces of DIII-type. SIGMA 4 (2008), paper 029, 30 pages; ArXiv:0803.1651.
- V. S. Gerdjikov. Selected Aspects of Soliton Theory. Constant boundary conditions. In: Prof. G. Manev's Legacy in Contemporary Aspects of Astronomy, Gravitational and Theoretical Physics Eds.: V. Gerdjikov, M. Tsvetkov, Heron Press Ltd, Sofia, 2005. pp. 277-290. nlin.SI/0604004

Съдържание

1 BEC with hyperfine structure 0-4
2 Symmetric and homogeneous spaces 0-7
3 Multicomponent nonlinear Schrödinger equations for BD.I. series of symmetric spaces 0-9
4 Inverse scattering method and reconstruction of potential from minimal scattering data 0-12
5 Dressing method and soliton solutions 0-17
5.1 The case of rank one solitons 0-20
6 Effects of reductions on soliton solutions 0-22
6.1 N -wave system related to so(5) 0-23
$6.2 \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ reductions and Doublet Solitons 0-29
$6.3 \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ reductions and Quadruplet Solitons 0-32
7 The Generalized Fourier Transforms for Non-regular J 0-34
7.1 The Wronskian relations 0-34
7.2 Completeness of the 'squared solutions' 0-38
7.3 Expansions over the ,squared" solutions 0-42
7.4 Expansions of $Q(x)$ and $\operatorname{ad}_{J}^{-1} \delta Q(x)$. 0-44
7.5 The generating operators 0-47
8 Fundamental properties of the MNLS equations 0-49
8.1 The principal class of NLEE 0-49
8.2 Integrals of motion and Hamiltonian properties 0-50
9 Recursion operator for generalized Zakharov-Shabat system with a \mathbb{Z}_{h} Coxeter type reduction
0-57

1 BEC with hyperfine structure

${ }^{23} \mathrm{Na} \Leftrightarrow F=1 \quad{ }^{87} \mathrm{Rb} \Leftrightarrow F=2$
see Wadati et al (2004), (2006), (2007); Ohmi \& Machida (1998);
Kuwamoto et al (2004); Gerdjikov et al (2007), (2008)
The assembly of atoms in the hyperfine state of spin F is described by a normalized spinor wave vector with $2 F+1$ components

$$
\Phi(x, t)=\left(\Phi_{F}(x, t), \Phi_{F-1}(x, t), \ldots, \Phi_{-F}(x, t)\right)^{T}
$$

whose components are labeled by the values of $m_{F}=F, \ldots, 1,0,-1, \ldots,-F$.
GPE-equation in the one-dimensional approximation:

$$
\begin{equation*}
i \frac{\partial \Phi}{\partial t}=\frac{\delta E_{\mathrm{GP}}[\Phi]}{\delta \Phi^{*}} \tag{1}
\end{equation*}
$$

where for $F=1$ the energy functional is given by:

$$
E_{\mathrm{GP}}=\int d x\left\{\frac{\hbar^{2}}{2 m}\left|\partial_{x} \Phi\right|^{2}+\frac{\bar{c}_{0}+\bar{c}_{2}}{2}\left[\left|\Phi_{1}\right|^{4}+\left|\Phi_{-1}\right|^{4}+2\left|\Phi_{0}\right|^{2}\left(\left|\Phi_{1}\right|^{2}+\left|\Phi_{-1}\right|^{2}\right)\right]\right.
$$

$$
\begin{equation*}
\left.+\left(\bar{c}_{0}-\bar{c}_{2}\right)\left|\Phi_{1}\right|^{2}\left|\Phi_{-1}\right|^{2}+\frac{\bar{c}_{0}}{2}\left|\Phi_{0}\right|^{4}+\bar{c}_{2}\left(\Phi_{1}^{*} \Phi_{-1}^{*} \Phi_{0}^{2}+\Phi_{0}^{* 2} \Phi_{1} \Phi_{-1}\right)\right\} \tag{2}
\end{equation*}
$$

the effective 1D couplings $\bar{c}_{0,2}$ are represented by

$$
\begin{equation*}
\bar{c}_{0}=c_{0} / 2 a_{\perp}^{2}, \quad \bar{c}_{2}=c_{2} / 2 a_{\perp}^{2} \tag{3}
\end{equation*}
$$

where a_{\perp} is the size of the transverse ground state. In this expression,

$$
\begin{equation*}
c_{0}=\pi \hbar^{2}\left(a_{0}+2 a_{2}\right) / 3 m, \quad c_{2}=\pi \hbar^{2}\left(a_{2}-a_{0}\right) / 3 m \tag{4}
\end{equation*}
$$

where a_{f}-s-wave scattering lengths; m is the mass of the atom.
Special (integrable) choice for the coupling constants $\bar{c}_{0}=\bar{c}_{2} \equiv-c<$ 0 , equivalently scattering lengths $2 a_{0}=-a_{2}>0$. In the dimensionless form: $\Phi \rightarrow\left\{\Phi_{1}, \sqrt{2} \Phi_{0}, \Phi_{-1}\right\}^{T}$ the corresponding GPE take the form:

$$
\begin{align*}
& i \partial_{t} \Phi_{1}+\partial_{x}^{2} \Phi_{1}+2\left(\left|\Phi_{1}\right|^{2}+2\left|\Phi_{0}\right|^{2}\right) \Phi_{1}+2 \Phi_{-1}^{*} \Phi_{0}^{2}=0 \\
& i \partial_{t} \Phi_{0}+\partial_{x}^{2} \Phi_{0}+2\left(\left|\Phi_{-1}\right|^{2}+\left|\Phi_{0}\right|^{2}+\left|\Phi_{1}\right|^{2}\right) \Phi_{0}+2 \Phi_{0}^{*} \Phi_{1} \Phi_{-1}=0 \tag{5}\\
& i \partial_{t} \Phi_{-1}+\partial_{x}^{2} \Phi_{-1}+2\left(\left|\Phi_{-1}\right|^{2}+2\left|\Phi_{0}\right|^{2}\right) \Phi_{-1}+2 \Phi_{1}^{*} \Phi_{0}^{2}=0
\end{align*}
$$

$F=2$ hyperfine state is described by a normalized spinor wave vector

$$
\begin{equation*}
\Phi(x, t)=\left(\Phi_{2}(x, t), \Phi_{1}(x, t), \Phi_{0}(x, t), \Phi_{-1}(x, t), \Phi_{-2}(x, t)\right)^{T} \tag{6}
\end{equation*}
$$

whose components are labelled by the values of $m_{F}=2,1,0,-1,-2$. Here the energy functional within mean-field theory is defined by

$$
\begin{equation*}
E_{\mathrm{GP}}[\Phi]=\int_{-\infty}^{\infty} d x\left(\frac{\hbar^{2}}{2 m}\left|\partial_{x} \Phi\right|^{2}+\frac{\epsilon c_{0}}{2} n^{2}+\frac{c_{2}}{2} \mathbf{f}^{2}+\frac{\epsilon c_{4}}{2}|\Theta|^{2}\right) \tag{7}
\end{equation*}
$$

where $\epsilon= \pm 1$. The number density and the singlet-pair amplitude are defined by

$$
n=\left(\vec{\Phi}, \overrightarrow{\Phi^{*}}\right)=\sum_{\alpha=-2}^{2} \Phi_{\alpha} \Phi_{\alpha}^{*}, \quad \Theta=\left(\vec{\Phi}, s_{0} \vec{\Phi}\right)=2 \Phi_{2} \Phi_{-2}-2 \Phi_{1} \Phi_{-1}+\Phi_{0}^{2}
$$

The coupling constants c_{i} are real and can be expressed in terms of the transverse confinement radius and the s-wave scattering lengths of atoms. Choosing $c_{2}=0, c_{4}=1$ and $c_{0}=-2$ we obtain

$$
i \partial_{t} \Phi_{ \pm 2}+\partial_{x x} \Phi_{ \pm 2}=-2 \epsilon\left(\vec{\Phi}, \overrightarrow{\Phi^{*}}\right) \Phi_{ \pm 2}+\epsilon\left(2 \Phi_{2} \Phi_{-2}-2 \Phi_{1} \Phi_{-1}+\Phi_{0}^{2}\right) \Phi_{\mp 2}^{*}
$$

$$
\begin{aligned}
& i \partial_{t} \Phi_{ \pm 1}+\partial_{x x} \Phi_{ \pm 1}=-2 \epsilon\left(\vec{\Phi}, \overrightarrow{\Phi^{*}}\right) \Phi_{ \pm 1}-\epsilon\left(2 \Phi_{2} \Phi_{-2}-2 \Phi_{1} \Phi_{-1}+\Phi_{0}^{2}\right) \Phi_{\mp 1}^{*} \\
& i \partial_{t} \Phi_{0}+\partial_{x x} \Phi_{0}=-2 \epsilon\left(\vec{\Phi}, \overrightarrow{\Phi^{*}}\right) \Phi_{ \pm 0}+\epsilon\left(2 \Phi_{2} \Phi_{-2}-2 \Phi_{1} \Phi_{-1}+\Phi_{0}^{2}\right) \Phi_{0}^{*}
\end{aligned}
$$

which is integrable by the inverse scattering method.
Lax pair is related to symmetric spaces Fordy, Kulish (1983) of BD.Itype:

$$
\simeq \mathrm{SO}(\mathrm{n}+2) / \mathrm{SO}(2) \times \mathrm{SO}(\mathrm{n})
$$

with $n=3$ and $n=5$ respectively.

2 Symmetric and homogeneous spaces

Symmetric space: \mathcal{M} is globally symmetric if each its point p is isolated invariant point under an involutive isometry:

$$
\mathcal{K}(\mathcal{N})=\mathcal{M}, \quad \mathcal{K}^{2}=\mathbb{1}
$$

Cartan has classified all such involutions.
$\mathcal{M} \equiv \mathfrak{G} / \mathcal{H}$ where \mathfrak{G} is simple and \mathcal{H} is semisimple. Normally

$$
\mathcal{H} \equiv\left\{K \in \mathfrak{G}, \quad \text { such that } \quad K J K^{-1}=J, \quad J \in \mathcal{H}\right\} .
$$

Local coordinates:

$$
Q(x)=\left[J, Q^{\prime}(x)\right] .
$$

Typically

$$
J=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad Q(x)=\left(\begin{array}{cc}
0 & Q^{+}(x) \\
Q^{-}(x) & 0
\end{array}\right),
$$

But for BD.I-type symmetric spaces:

$$
J=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), \quad Q=\left(\begin{array}{ccc}
0 & \vec{q}^{T} & 0 \\
\vec{p} & 0 & s_{0} \vec{q} \\
0 & \vec{p}^{T} s_{0} & 0
\end{array}\right)
$$

Effectively it is enough to properly specify \mathfrak{G} and J in order to determine \mathcal{M}. The corresponding Lie algebra \mathfrak{g} acquires \mathbb{Z}_{2}-grading:

$$
\mathfrak{g}=\mathfrak{g}^{(0)}+\mathfrak{g}^{(1)}
$$

$$
\mathfrak{g}^{(0)} \equiv\{X: X \in \mathfrak{g} \quad \mathcal{K}(X)=X\}, \quad \mathfrak{g}^{(1)} \equiv\{X: X \in \mathfrak{g} \quad \mathcal{K}(Y)=-Y\},
$$

The grading property:

$$
\left[\mathfrak{g}^{(0)}, \mathfrak{g}^{(0)}\right] \in \mathfrak{g}^{(0)}, \quad\left[\mathfrak{g}^{(0)}, \mathfrak{g}^{(1)}\right] \in \mathfrak{g}^{(1)}, \quad\left[\mathfrak{g}^{(1)}, \mathfrak{g}^{(1)}\right] \in \mathfrak{g}^{(0)}
$$

The set of positive roots Δ^{+}also splits into two subsets:

$$
\begin{gathered}
\Delta^{+}=\Delta_{0}^{+} \cup \Delta_{1}^{+} \\
\Delta_{0}^{+} \equiv\{\alpha: \quad \alpha(J)=0\} \quad \Delta_{1}^{+} \equiv\{\alpha: \quad \alpha(J)=a>0\}
\end{gathered}
$$

3 Multicomponent nonlinear Schrödinger equations for BD.I. series of symmetric spaces

MNLS equations for the BD.I. series of symmetric spaces (algebras of the type $s o(2 r+1)$ and J dual to e_{1}) have the Lax representation $[L, M]=0$ as follows

$$
\begin{equation*}
L \psi(x, t, \lambda) \equiv i \partial_{x} \psi+(Q(x, t)-\lambda J) \psi(x, t, \lambda)=0 . \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& M \psi(x, t, \lambda) \equiv i \partial_{t} \psi+\left(V_{0}(x, t)+\lambda V_{1}(x, t)-\lambda^{2} J\right) \psi(x, t, \lambda)=0, \tag{9}\\
& V_{1}(x, t)=Q(x, t), \quad V_{0}(x, t)=i \operatorname{ad}_{J}^{-1} \frac{d Q}{d x}+\frac{1}{2}\left[\operatorname{ad}_{J}^{-1} Q, Q(x, t)\right](10)
\end{align*}
$$

where

$$
Q=\left(\begin{array}{ccc}
0 & \vec{q}^{T} & 0 \tag{11}\\
\vec{p} & 0 & s_{0} \vec{q} \\
0 & \vec{p}^{T} s_{0} & 0
\end{array}\right), \quad J=\operatorname{diag}(1,0, \ldots 0,-1)
$$

The $2 r-1$-vectors \vec{q} and \vec{p} have the form

$$
\vec{q}=\left(q_{2}, \ldots, q_{r}, q_{r+1}, q_{r+2}, \ldots, q_{2 r}\right)^{T}, \quad \vec{p}=\left(p_{2}, \ldots, p_{r}, p_{r+1}, p_{r+2}, \ldots, p_{2 r}\right)^{T}
$$

while the matrix s_{0} represents the metric involved in the definition of $s o(2 r-1)$, therefore it is related to the metric S_{0} associated with so $(2 r+$ 1) in the following manner

$$
S_{0}=\sum_{k=1}^{2 r+1}(-1)^{k+1} E_{k, 2 r+2-k}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -s_{0} & 0 \\
1 & 0 & 0
\end{array}\right), \quad\left(E_{k n}\right)_{i j}=\delta_{i k} \delta_{n j}(12)
$$

Next we will use

$$
\begin{equation*}
\vec{E}_{1}^{ \pm}=\left(E_{ \pm\left(e_{1}-e_{2}\right)}, \ldots, E_{ \pm\left(e_{1}-e_{r}\right)}, E_{ \pm e_{1}}, E_{ \pm\left(e_{1}+e_{r}\right)}, \ldots, E_{ \pm\left(e_{1}+e_{2}\right)}\right), \tag{13}
\end{equation*}
$$

We will use also the "scalar product"

$$
\left(\vec{q} \cdot \vec{E}_{1}^{+}\right)=\sum_{k=2}^{r}\left(q_{k}(x, t) E_{e_{1}-e_{k}}+q_{2 r-k+2}(x, t) E_{e_{1}+e_{k}}\right)+q_{r+1}(x, t) E_{e_{1}}
$$

Then the generic form of the potentials $Q(x, t)$ related to these type of symmetric spaces is

$$
\begin{equation*}
Q(x, t)=\left(\vec{q}(x, t) \cdot \vec{E}_{1}^{+}\right)+\left(\vec{p}(x, t) \cdot \vec{E}_{1}^{-}\right), \tag{14}
\end{equation*}
$$

where E_{α} are the Weyl generators of the corresponding Lie algebra and Δ_{1}^{+}is the set of all positive roots of $s o(2 r+1)$ such that $\left(\alpha, e_{1}\right)=1$. In fact $\Delta_{1}^{+}=\left\{e_{1}, \quad e_{1} \pm e_{k}, \quad k=2, \ldots, r\right\}$.

In terms of these notations the generic MNLS type equations connected to BD.I. acquire the form

$$
\begin{align*}
& i \vec{q}_{t}+\vec{q}_{x x}+2(\vec{q}, \vec{p}) \vec{q}-\left(\vec{q}, s_{0} \vec{q}\right) s_{0} \vec{p}=0 \tag{15}\\
& i \vec{p}_{t}-\vec{p}_{x x}-2(\vec{q}, \vec{p}) \vec{p}+\left(\vec{p}, s_{0} \vec{p}\right) s_{0} \vec{q}=0
\end{align*}
$$

In the case of $r=2$ if we impose the reduction $p_{k}=q_{k}^{*}$ and introduce the new variables $\Phi_{1}=q_{2}, \Phi_{0}=q_{3} / \sqrt{2}, \Phi_{-1}=q_{4}$ then we reproduce the equations (119) with $F=1$; if $\Phi_{2}=q_{2}, \Phi_{1}=q_{3}, \Phi_{0}=q_{4}, \Phi_{-1}=q_{5}$, $\Phi_{-2}=q_{6}$ then we get the $F=2$-case.

4 Inverse scattering method and reconstruction of potential from minimal scattering data

Herein we remind some basic features of the inverse scattering theory appropriate for the special case of $F=2$ spinor BEC equations.

Solving the direct and the inverse scattering problem (ISP) for L uses the Jost solutions

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \phi(x, t, \lambda) e^{i \lambda J x}=\mathbb{1}, \quad \lim _{x \rightarrow \infty} \psi(x, t, \lambda) e^{i \lambda J x}=\mathbb{1} \tag{16}
\end{equation*}
$$

and the scattering matrix $T(\lambda, t) \equiv \psi^{-1} \phi(x, t, \lambda)$. Due to the special choice of J and to the fact that the Jost solutions and the scattering matrix take values in the group $S O(2 r+1)$ we can use the following
block-matrix structure of $T(\lambda, t)$

$$
T(\lambda, t)=\left(\begin{array}{ccc}
m_{1}^{+} & -\vec{b}^{-T} & c_{1}^{-} \tag{17}\\
\vec{b}^{+} & \mathbf{T}_{22} & -s_{0} \vec{B}^{-} \\
c_{1}^{+} & \vec{B}^{+T} s_{0} & m_{1}^{-}
\end{array}\right),
$$

where $\vec{b}^{ \pm}(\lambda, t)$ and $\vec{B}^{ \pm}(\lambda, t)$ are $2 r$ - 1-component vectors, $\mathbf{T}_{22}(\lambda)$ is a $2 r-1 \times 2 r-1$ block and $m_{1}^{ \pm}(\lambda), c_{1}^{ \pm}(\lambda)$ are scalar functions satisfying $c_{1}^{+}=1 / 2\left(\vec{b}^{+} \cdot s_{0} \vec{b}^{+}\right) / m_{1}^{+}, c_{1}^{-}=1 / 2\left(\vec{B}^{-} \cdot s_{0} \vec{B}^{-}\right) / m_{1}^{-}$.

The ISP is reduced to a Riemann-Hilbert problem (RHP) for the fundamental analytic solution (FAS) $\chi^{ \pm}(x, t, \lambda)$. Their construction is based on the generalized Gauss decomposition of $T(\lambda, t)$

$$
\begin{equation*}
T(\lambda)=T_{J}^{-}(\lambda) D_{J}^{+}(\lambda) \hat{S}_{J}^{+}(\lambda)=T_{J}^{+}(\lambda) D_{J}^{-}(\lambda) \hat{S}_{J}^{-}(\lambda) \tag{18}
\end{equation*}
$$

Here $S_{J}^{ \pm}, T_{J}^{ \pm}$upper- and lower-block-triangular matrices, while $D_{J}^{ \pm}(\lambda)$ are block-diagonal matrices with the same block structure as $T(\lambda, t)$ above. The explicit expressions of the Gauss factors in terms of the
matrix elements of $T(\lambda, t)$ is

$$
\begin{align*}
& \left.S_{J}^{ \pm}(t, \lambda)=\exp \left(\pm\left(\vec{\tau}^{ \pm}(\lambda, t) \cdot \vec{E}_{1}^{ \pm}\right)\right), \quad \tau^{+}=\frac{b^{-}}{m_{1}^{+}}, \quad \tau^{-}=\frac{B_{1}^{+}}{m_{1}^{-}} 19\right) \\
& T_{J}^{ \pm}(t, \lambda)=\exp \left(\mp\left(\vec{\rho}^{\mp}(\lambda, t) \cdot \vec{E}_{1}^{ \pm}\right)\right), \quad \rho^{+}=\frac{b^{+}}{m_{1}^{+}}, \quad \rho^{-}=\frac{B_{1}^{-}}{m_{1}^{-}}, \\
& D_{J}^{+}=\left(\begin{array}{ccc}
m_{1}^{+} & 0 & 0 \\
0 & \mathbf{m}_{2}^{+} & 0 \\
0 & 0 & 1 / m_{1}^{+}
\end{array}\right), \quad D_{J}^{-}=\left(\begin{array}{ccc}
1 / m_{1}^{-} & 0 & 0 \\
0 & \mathbf{m}_{2}^{-} & 0 \\
0 & 0 & m_{1}^{-}
\end{array}\right), \tag{20}
\end{align*}
$$

and

$$
\mathbf{m}_{2}^{+}=\mathbf{T}_{22}+\frac{\vec{b}^{+} \vec{b}^{-T}}{m_{1}^{+}}, \quad \mathbf{m}_{2}^{-}=\mathbf{T}_{22}+\frac{s_{0} \vec{b}^{-} \vec{b}^{+T} s_{0}}{m_{1}^{-}}
$$

Then the FAS can be defined as:

$$
\begin{equation*}
\chi^{ \pm}(x, t, \lambda)=\phi(x, t, \lambda) S_{J}^{ \pm}(t, \lambda)=\psi(x, t, \lambda) T_{J}^{\mp}(t, \lambda) D_{J}^{ \pm}(\lambda) \tag{21}
\end{equation*}
$$

If $Q(x, t)$ evolves according to (119) then the scattering matrix and
its elements satisfy the following linear evolution equations

$$
\begin{align*}
& i \frac{d \vec{b}^{ \pm}}{d t} \pm \lambda^{2} \vec{b}^{ \pm}(t, \lambda)=0, \quad i \frac{d \vec{B}^{ \pm}}{d t} \pm \lambda^{2} \vec{B}^{ \pm}(t, \lambda)=0 \\
& i \frac{d m_{1}^{ \pm}}{d t}=0, \quad i \frac{d \mathbf{m}_{2}^{ \pm}}{d t}=0 \tag{22}
\end{align*}
$$

so $D^{ \pm}(\lambda)$ can be considered as generating functionals of the integrals of motion.

The FAS for real λ are linearly related

$$
\begin{equation*}
\chi^{+}(x, t, \lambda)=\chi^{-}(x, t, \lambda) G_{J}(\lambda, t), \quad G_{0, J}(\lambda, t)=S_{J}^{-}(\lambda, t) S_{J}^{+}(\lambda, t) \tag{23}
\end{equation*}
$$

One can rewrite eq. (23) in an equivalent form for the $\operatorname{FAS} \xi^{ \pm}(x, t, \lambda)=$ $\chi^{ \pm}(x, t, \lambda) e^{i \lambda J x}$ which satisfy also the relation

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \xi^{ \pm}(x, t, \lambda)=\mathbb{1} \tag{24}
\end{equation*}
$$

Then these FAS satisfy

$$
\begin{equation*}
\xi^{+}(x, t, \lambda)=\xi^{-}(x, t, \lambda) G_{J}(x, \lambda, t), \quad G_{J}(x, \lambda, t)=e^{-i \lambda J x} G_{0, J}^{-}(\lambda, t) e^{i \lambda J x} \tag{25}
\end{equation*}
$$

Obviously the sewing function $G_{j}(x, \lambda, t)$ is uniquely determined by the Gauss factors $S_{J}^{ \pm}(\lambda, t)$. In view of eq. (19) we arrive to the following

Lemma 1. Let the potential $Q(x, t)$ be such that the Lax operator L has no discrete eigenvalues. Then as minimal set of scattering data which determines uniquely the scattering matrix $T(\lambda, t)$ and the corresponding potential $Q(x, t)$ one can consider either one of the sets $\mathfrak{T}_{i}, i=1,2$
$\mathfrak{T}_{1} \equiv\left\{\vec{\rho}^{+}(\lambda, t), \vec{\rho}(\lambda, t), \quad \lambda \in \mathbb{R}\right\}, \quad \mathfrak{T}_{2} \equiv\left\{\vec{\tau}^{+}(\lambda, t), \vec{\tau}^{-}(\lambda, t), \quad \lambda \in \mathbb{R}\right\}$.

Obviously, given \mathfrak{T}_{i} one uniquely recovers the sewing function $G_{J}(x, t, \lambda)$. In order to recover the corresponding scattering matrix $T(\lambda)$ one can use the fact that the RHP (25) with canonical normalization has unique regular solution. Then the generalized Gauss factors are recovered as limits:

$$
\begin{equation*}
S_{J}^{ \pm}(\lambda)=\lim _{x \rightarrow-\infty} e^{i \lambda J x} \xi^{ \pm}(x, \lambda) e^{-i \lambda J x}, \quad T_{j}^{\mp}(\lambda) D_{J}^{ \pm}(\lambda)=\lim _{x \rightarrow \infty} e^{i \lambda J x} \xi^{ \pm}(x, \lambda) e^{-i \lambda J x} \tag{27}
\end{equation*}
$$

Given the solution $\xi^{ \pm}(x, t, \lambda)$ one recovers $Q(x, t)$ via the formula

$$
\begin{equation*}
Q(x, t)=\lim _{\lambda \rightarrow \infty} \lambda\left(J-\xi^{ \pm} J \widehat{\xi}^{ \pm}(x, t, \lambda)\right) \tag{28}
\end{equation*}
$$

We impose also the standard reduction:

$$
Q(x, t)=\epsilon Q^{\dagger}(x, t) \Leftrightarrow p_{k}=\epsilon q_{k}^{*}
$$

As a consequence we have

$$
\vec{\rho}^{-}(\lambda, t)=\epsilon \vec{\rho}^{+, *}(\lambda, t), \quad \vec{\tau}^{-}(\lambda, t)=\epsilon \overrightarrow{\mathcal{T}}^{+, *}(\lambda, t)
$$

5 Dressing method and soliton solutions

The soliton solutions can be constructed by Hirota method (Wadati, (2005)) and also by the dressing Zakharov-Shabat method (VSG et al, (2006).

The main goal of the Zakharov-Shabat dressing method: starting from a known solutions $\chi_{0}^{ \pm}(x, t, \lambda)$ of $L_{0}(\lambda)$ with potential $Q_{(0)}(x, t)$
to construct new singular solutions $\chi_{1}^{ \pm}(x, t, \lambda)$ of L with a potential $Q_{(1)}(x, t)$ with two additional singularities located at prescribed positions $\lambda_{1}^{ \pm}$; the reduction $\vec{p}=\vec{q}^{*}$ ensures that $\lambda_{1}^{-}=\left(\lambda_{1}^{+}\right)^{*}$. It is related to the regular one by a dressing factor $u(x, t, \lambda)$

$$
\begin{equation*}
\chi_{1}^{ \pm}(x, t, \lambda)=u(x, \lambda) \chi_{0}^{ \pm}(x, t, \lambda) u_{-}^{-1}(\lambda) . \quad u_{-}(\lambda)=\lim _{x \rightarrow-\infty} u(x, \lambda) \tag{29}
\end{equation*}
$$

Note that $u_{-}(\lambda)$ is a block-diagonal matrix. $u(x, \lambda)$ must satisfy

$$
\begin{equation*}
i \partial_{x} u+Q_{(1)}(x) u-u Q_{(0)}(x)-\lambda[J, u(x, \lambda)]=0 \tag{30}
\end{equation*}
$$

and the normalization condition $\lim _{\lambda \rightarrow \infty} u(x, \lambda)=\mathbb{1}$.
The construction of $u(x, \lambda)$ is based on an appropriate anzats specifying explicitly the form of its λ-dependence:
$u(x, \lambda)=\mathbb{1}+(c(\lambda)-1) P(x, t)+\left(\frac{1}{c(\lambda)}-1\right) \bar{P}(x, t), \quad \bar{P}=S_{0}^{-1} P^{T} S_{0}$,
where $P(x, t)$ and $\bar{P}(x, t)$ are projectors whose rank s can not exceed r and which satisfy $P \bar{P}(x, t)=0$. Given a set of s linearly independent
polarization vectors $\left|n_{k}\right\rangle$ spanning the corresponding eigensubspase of L one can define

$$
\begin{align*}
& P(x, t)=\sum_{a, b=1}^{s}\left|n_{a}(x, t)\right\rangle M_{a b}^{-1}\left\langle n_{b}^{\dagger}(x, t)\right|, \quad M_{a b}(x, t)=\left\langle n_{b}^{\dagger}(x, t) \mid n_{a}(x, t)\right\rangle, \\
& \left|n_{a}(x, t)\right\rangle=\chi_{0}^{+}\left(x, t, \lambda^{+}\right)\left|n_{0, a}\right\rangle, \quad c(\lambda)=\frac{\lambda-\lambda^{+}}{\lambda-\lambda^{-}}, \quad\left\langle n_{0, a}\right| S_{0}\left|n_{0, b}\right\rangle=0 \tag{32}
\end{align*}
$$

Taking the limit $\lambda \rightarrow \infty$ in eq. (30) we get that

$$
Q_{(1)}(x, t)-Q_{(0)}(x, t)=\left(\lambda_{1}^{-}-\lambda_{1}^{+}\right)[J, P(x, t)-\bar{P}(x, t)] .
$$

Below we list the explicit expressions only for the one-soliton solutions. To this end we assume $Q_{(0)}=0$ and put $\lambda_{1}^{ \pm}=\mu \pm i \nu$. As a result we get

$$
\begin{equation*}
q_{k}^{(1 \mathrm{~s})}(x, t)=-2 i \nu\left(P_{1 k}(x, t)+(-1)^{k} P_{\bar{k}, 2 r+1}(x, t)\right), \tag{33}
\end{equation*}
$$

where $\bar{k}=2 r+2-k$.
Repeating the above procedure N times we can obtain N soliton solutions.

5.1 The case of rank one solitons

In this case $s=1$ so that the generic (arbitrary r) one-soliton solution reads

$$
\begin{align*}
q_{k} & =\frac{-i \nu e^{-i \mu\left(x-v t-\delta_{0}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\alpha_{k} e^{z-i \phi_{k}}+(-1)^{k} \alpha_{\bar{k}} e^{-z+i \phi_{\bar{k}}}\right) \\
v & =\frac{\nu^{2}-\mu^{2}}{\mu}, \quad u=-2 \mu, \quad z(x, t)=\nu\left(x-u t-\xi_{0}\right) \tag{34}\\
\xi_{0} & =\frac{1}{2 \nu} \ln \frac{\left|n_{0,2 r+1}\right|}{\left|n_{0,1}\right|}, \quad \alpha_{k}=\frac{\left|n_{0, k}\right|}{\sqrt{\left|n_{0,1}\right|\left|n_{0,2 r+1}\right|}}, \quad \Delta_{0}^{2}=\frac{\sum_{k=2}^{2 r}\left|n_{0, k}\right|^{2}}{2\left|n_{0,1} n_{0,2 r+1}\right|}
\end{align*}
$$

and $\delta_{0}=\arg n_{0,1} / \mu=-\arg n_{0,2 r+1} / \mu, \phi_{k}=\arg n_{0, k}$. The polarization vectors satisfy the following relation

$$
\begin{equation*}
\sum_{k=1}^{r} 2(-1)^{k+1} n_{0, k} n_{0, \bar{k}}+(-1)^{r} n_{0, r+1}^{2}=0 \tag{35}
\end{equation*}
$$

Thus for $r=2$ we identify $\Phi_{1}=q_{2}, \Phi_{0}=q_{3} / \sqrt{2}$ and $\Phi_{3}=q_{4}$ and we obtain the following solutions for the equation (119)

$$
\begin{aligned}
\Phi_{ \pm 1} & =-\frac{2 i \nu \sqrt{\alpha_{2} \alpha_{4}} e^{-i \mu\left(x-v t-\delta_{ \pm 1}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\cos \phi_{ \pm 1} \cosh z_{ \pm 1}-i \sin \phi_{ \pm 1} \sinh z_{ \pm 1}\right) \\
\delta_{ \pm 1} & =\delta_{0} \mp \frac{\phi_{2}-\phi_{4}}{2 \mu}, \quad \phi_{ \pm 1}=\frac{\phi_{2}+\phi_{4}}{2} \quad z_{ \pm 1}=z \mp \frac{1}{2} \ln \frac{\alpha_{4}}{\alpha_{2}} \\
\Phi_{0} & =-\frac{\sqrt{2} i \nu \alpha_{3} e^{-i \mu\left(x-v t-\delta_{0}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\cos \phi_{3} \sinh z-i \sin \phi_{3} \cosh z\right)
\end{aligned}
$$

For $r=3$ we identify $\Phi_{2}=q_{2}, \Phi_{1}=q_{3}, \Phi_{0}=q_{4}, \Phi_{-1}=q_{5}$ and $\Phi_{-2}=q_{6}$, so that the one-soliton solution for equation (??) reads

$$
\begin{aligned}
& \Phi_{ \pm 2}=-\frac{2 i \nu \sqrt{\alpha_{2} \alpha_{6}} e^{-i \mu\left(x-v t-\delta_{ \pm 2}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\cos \phi_{ \pm 2} \cosh z_{ \pm 2}-i \sin \phi_{ \pm 2} \sinh z_{ \pm 2}\right) \\
& \Phi_{ \pm 1}=-\frac{2 i \nu \sqrt{\alpha_{3} \alpha_{5}} e^{-i \mu\left(x-v t-\delta_{ \pm 1}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\cos \phi_{ \pm 1} \sinh z_{ \pm 1}-i \sin \phi_{ \pm 1} \cosh z_{ \pm 1}\right) \\
& \delta_{ \pm 2}=\delta_{0} \mp \frac{\phi_{2}-\phi_{6}}{2 \mu}, \quad \phi_{ \pm 2}=\frac{\phi_{2}+\phi_{6}}{2} \quad z_{ \pm 2}=z \mp \frac{1}{2} \ln \frac{\alpha_{6}}{\alpha_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{ \pm 1} & =\delta_{0} \mp \frac{\phi_{3}-\phi_{5}}{2 \mu}, \quad \phi_{ \pm 1}=\frac{\phi_{3}+\phi_{5}}{2}, \quad z_{ \pm 1}=z \mp \frac{1}{2} \ln \frac{\alpha_{5}}{\alpha_{3}} \\
\Phi_{0} & =-\frac{2 i \nu \alpha_{4} e^{-i \mu\left(x-v t-\delta_{0}\right)}}{\cosh 2 z+\Delta_{0}^{2}}\left(\cos \phi_{4} \cosh z-i \sin \phi_{4} \sinh z\right) .
\end{aligned}
$$

Choosing appropriately the polarization vectors $|n\rangle$ we are able to reproduce the soliton solutions obtained by Wadati et al. both for $F=1$ and $F=2$ BEC.

6 Effects of reductions on soliton solutions

The reduction group G_{R} (Mikhailov, 1978) is a finite group which preserves the Lax representation so that the reduction constraints are automatically compatible with the evolution.
G_{R} must have two realizations:
i) $G_{R} \subset$ Autg and
ii) $G_{R} \subset \operatorname{Conf} \mathbb{C}$, i.e. as conformal mappings of the complex λ-plane. To
each $g_{k} \in G_{R}$ we relate a reduction condition for the Lax pair:

$$
\begin{equation*}
U(x, t, \lambda)=[J, Q(x, t)]-\lambda J, \quad V(x, t, \lambda)=[I, Q(x, t)]-\lambda I \tag{36}
\end{equation*}
$$

of the Lax representation:
1)

$$
C_{1}\left(U^{\dagger}\left(\kappa_{1}(\lambda)\right)\right)=U(\lambda)
$$

$$
C_{1}\left(V^{\dagger}\left(\kappa_{1}(\lambda)\right)\right)=V(\lambda)
$$

$$
C_{2}\left(V^{T}\left(\kappa_{2}(\lambda)\right)\right)=-V(\lambda)
$$

$$
C_{3}\left(U^{*}\left(\kappa_{1}(\lambda)\right)\right)=-U(\lambda)
$$

$$
C_{3}\left(V^{*}\left(\kappa_{1}(\lambda)\right)\right)=-V(\lambda),
$$

$$
C_{4}\left(U\left(\kappa_{2}(\lambda)\right)\right)=U(\lambda),
$$

$$
C_{4}\left(V\left(\kappa_{2}(\lambda)\right)\right)=V(\lambda)
$$

6.1 N -wave system related to $s o(5)$

Impose first a reductions of class 4 that does not affect the spectral parameter. Choose $C_{2}=S_{0}, \kappa_{2}(\lambda)=\lambda$, so

$$
S_{0}\left(U^{T}(\lambda)\right) S_{0}^{-1}+U(\lambda)=0, \quad S_{0}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Focus our attention on NLEE related to the so(5) algebra. Thus the N-wave system itself consists of 8 equations. A half of them reads

$$
\begin{align*}
i\left(J_{1}-J_{2}\right) Q_{10, t}(x, t)-i\left(I_{1}-I_{2}\right) Q_{10, x}(x, t)+k Q_{11}(x, t) Q_{\overline{01}}(x, t) & =0 \\
i J_{1} Q_{11, t}(x, t)-i I_{1} Q_{11, x}(x, t)-k\left(Q_{10} Q_{01}+Q_{12} Q_{\overline{01}}\right)(x, t) & =0 \\
i\left(J_{1}+J_{2}\right) Q_{12, t}(x, t)-i\left(I_{1}+I_{2}\right) Q_{12, x}(x, t)-k Q_{11}(x, t) Q_{01}(x, t) & =0 \\
i J_{2} Q_{01, t}(x, t)-i I_{2} Q_{01, x}(x, t)+k\left(Q_{\overline{11}} Q_{12}+Q_{\overline{10}} Q_{11}\right)(x, t) & =0 \tag{37}
\end{align*}
$$

where $k:=J_{1} I_{2}-J_{2} I_{1}$ is a constant describing the wave interaction. The other 4 can be obtained by changing $Q_{k n} \leftrightarrow Q_{\overline{k n}}$. Dressing factor:

$$
\begin{gather*}
u(x, \lambda)=\mathbb{1}+(c(\lambda)-1) P(x)+\left(\frac{1}{c(\lambda)}-1\right) \bar{P}(x) \in S O(5) \tag{38}\\
\bar{P}(x)=S_{0} P^{T}(x) S_{0}^{-1}
\end{gather*}
$$

Generic 1-soliton solution reads

$$
\begin{aligned}
Q_{10}(z) & =\frac{\lambda^{-}-\lambda^{+}}{\langle m \mid n\rangle}\left(e^{-i\left(\lambda^{+} z_{1}-\lambda^{-} z_{2}\right)} n_{0,1} m_{0,2}+e^{i\left(\lambda^{+} z_{2}-\lambda^{-} z_{1}\right)} n_{0,4} m_{0,5}\right) \\
Q_{11}(z) & =\frac{\lambda^{-}-\lambda^{+}}{\langle m \mid n\rangle}\left(e^{-i \lambda^{+} z_{1}} n_{0,1} m_{0,3}-e^{-i \lambda^{-} z_{1}} n_{0,3} m_{0,5}\right) \\
Q_{12}(z) & =\frac{\lambda^{-}-\lambda^{+}}{\langle m \mid n\rangle}\left(e^{-i\left(\lambda^{+} z_{1}+\lambda^{-} z_{2}\right)} n_{0,1} m_{0,4}+e^{-i\left(\lambda^{-} z_{1}+\lambda^{+} z_{2}\right)} n_{0,2} m_{0,5}\right), \\
Q_{01}(z) & =\frac{\lambda^{-}-\lambda^{+}}{\langle m \mid n\rangle}\left(e^{-i \lambda^{+} z_{2}} n_{0,2} m_{0,3}+e^{-i \lambda^{-} z_{2}} n_{0,3} m_{0,4}\right), \\
\langle m \mid n\rangle & =\sum_{k=1}^{5} e^{-i\left(\lambda^{+}-\lambda^{-}\right) z_{k}} n_{0, k} m_{0, k}, \quad z_{k}=J_{k} x+I_{k} t, \quad k=1,2 .
\end{aligned}
$$

The other 4 field can be formally constructed by doing the following transformation

$$
Q_{k n} \leftrightarrow Q_{\overline{k n}}, \quad e^{-i \lambda^{+} z_{k}} \leftrightarrow e^{i \lambda^{-} z_{k}}, \quad n_{0, j} \leftrightarrow m_{0, j}
$$

A typical \mathbb{Z}_{2} reduction: $K U^{\dagger}\left(\lambda^{*}\right) K^{-1}=U(\lambda)$ where $K=\operatorname{diag}\left(\epsilon_{1}, \epsilon_{2}, 1, \epsilon_{2}, \epsilon_{1}\right)$
with $\epsilon_{k}= \pm 1$.

$$
J_{k}=J_{k}^{*}, \quad Q_{\overline{10}}=-\epsilon_{1} \epsilon_{2} Q_{10}^{*}, \quad Q_{\overline{01}}=-\epsilon_{2} Q_{01}^{*}, \quad Q_{\overline{11}}=-\epsilon_{1} Q_{11}^{*}, \quad Q_{\overline{12}}=-\epsilon_{1} \epsilon_{2} Q_{12}^{*}
$$

Reduced NLEE is given by 4 equation

$$
\begin{aligned}
i\left(J_{1}-J_{2}\right) Q_{10, t}(x, t)-i\left(I_{1}-I_{2}\right) Q_{10, x}(x, t)-k \epsilon_{2} Q_{11}(x, t) Q_{01}^{*}(x, t) & =0 \\
i J_{1} Q_{11, t}(x, t)-i I_{1} Q_{11, x}(x, t)-k\left(Q_{10} Q_{01}+\epsilon_{2} Q_{12} Q_{01}^{*}\right)(x, t) & =0 \\
i\left(J_{1}+J_{2}\right) Q_{12, t}(x, t)-i\left(I_{1}+I_{2}\right) Q_{12, x}(x, t)-k Q_{11}(x, t) Q_{01}(x, t) & =0 \\
i J_{2} Q_{01, t}(x, t)-i I_{2} Q_{01, x}(x, t)-k \epsilon_{1}\left(Q_{11}^{*} Q_{12}+\epsilon_{2} Q_{10}^{*} Q_{11}\right)(x, t) & =0 .
\end{aligned}
$$

Then $\lambda^{ \pm}=\mu \pm i \nu$, and $|m\rangle=K|n\rangle^{*}$ and 1-soliton solution becomes

$$
\begin{aligned}
Q_{10}(z) & =\frac{-2 i \nu}{\left\langle n^{*}\right| K|n\rangle}\left(\epsilon_{2} e^{-i\left(\lambda^{+} z_{1}-\left(\lambda^{+}\right)^{*} z_{2}\right)} n_{0,1} n_{0,2}^{*}+\epsilon_{1} e^{i\left(\lambda^{+} z_{2}-\left(\lambda^{+}\right)^{*} z_{1}\right)} n_{0,4} n_{0,5}^{*}\right) \\
Q_{11}(z) & =\frac{-2 i \nu}{\left\langle n^{*}\right| K|n\rangle}\left(e^{-i \lambda^{+} z_{1}} n_{0,1} n_{0,3}^{*}-\epsilon_{1} e^{-i\left(\lambda^{+}\right)^{*} z_{1}} n_{0,3} n_{0,5}^{*}\right) \\
Q_{12}(z) & =\frac{-2 i \nu}{\left\langle n^{*}\right| K|n\rangle}\left(\epsilon_{2} e^{-i\left(\lambda^{+} z_{1}+\left(\lambda^{+}\right)^{*} z_{2}\right)} n_{0,1} n_{0,4}^{*}+\epsilon_{1} e^{-i\left(\left(\lambda^{+}\right)^{*} z_{1}+\lambda^{+} z_{2}\right)} n_{0,2} n_{0,5}^{*}\right) \\
Q_{01}(z) & =\frac{-2 i \nu}{\left\langle n^{*}\right| K|n\rangle}\left(e^{-i \lambda^{+} z_{2}} n_{0,2} n_{0,3}^{*}+\epsilon_{2} e^{-i\left(\lambda^{+}\right)^{*} z_{2}} n_{0,3} n_{0,4}^{*}\right) \\
\left\langle n^{*}\right| K|n\rangle & =\epsilon_{1}\left|n_{0,1}\right|^{2} e^{2 \nu z_{1}}+\epsilon_{2}\left|n_{0,2}\right|^{2} e^{2 \nu z_{2}}+\left|n_{0,3}\right|^{2}+\epsilon_{2}\left|n_{0,4}\right|^{2} e^{-2 \nu z_{2}}+\epsilon_{1}\left|n_{0,5}\right|^{2} e^{-2 \nu z_{1}},
\end{aligned}
$$

Solitons associated with subalgebras of so(5):

1. Suppose $n_{0,1}=n_{0,5}=0$. The only nonzero waves are $Q_{01}, Q_{\overline{01}}$ related to the simple root $\alpha_{2}-$ a $s o(3)$ soliton.
2. Another $s l(2)$ soliton is derived when $n_{0,2}=n_{0,4}=0$. Then $Q_{11}, Q_{\overline{11}}$ are nonvanishing; the so(3) subalgebra is connected with the root $e_{1}=\alpha_{1}+\alpha_{2}$.
3. Let $n_{0,3}=0$. Then $Q_{10}, Q_{\overline{10}}$ and $Q_{12}, Q_{\overline{12}}$ are nonzero waves. The corresponding subalgebra is $s o(3) \oplus s o(3) \approx s o(4)$.
4. If $n_{0,1}^{*}=n_{0,5}, n_{0,2}^{*}=n_{0,4}$ and $n_{0,3}^{*}=n_{0,3}$ then

$$
\begin{aligned}
Q_{10}(z) & =\frac{-i \nu}{\Delta_{1}} \sinh 2 \theta_{0} \cosh \nu\left(z_{1}+z_{2}\right) e^{-i \mu\left(z_{1}-z_{2}-\delta_{1}+\delta_{2}\right)} \\
Q_{11}(z) & =-\frac{2 \sqrt{2} i \nu}{\Delta_{1}} \sinh \theta_{0} \sinh \nu z_{1} e^{-i \mu\left(z_{1}-\delta_{1}\right)} \\
Q_{12}(z) & =\frac{-i \nu}{\Delta_{1}} \sinh 2 \theta_{0} \cosh \nu\left(z_{1}-z_{2}\right) e^{-i \mu\left(z_{1}+z_{2}-\delta_{1}-\delta_{2}\right)} \\
Q_{01}(z) & =\frac{-2 \sqrt{2} i \nu}{\Delta_{1}} \cosh \theta_{0} \cosh \nu z_{2} e^{-i \mu\left(z_{2}-\delta_{2}\right)} \\
n_{0,1} & =\frac{n_{0,3}}{\sqrt{2}} \sinh \theta_{0} e^{i \mu \delta_{1}}, \quad n_{0,2}=\frac{n_{0,3}}{\sqrt{2}} \cosh \theta_{0} e^{i \mu \delta_{2}}, \quad \theta_{0} \in \mathbb{R} \\
\Delta_{1}(x, t) & =2\left(\sinh ^{2} \theta_{0} \sinh ^{2}\left(\nu z_{1}\right)+\cosh ^{2} \theta_{0} \cosh ^{2}\left(\nu z_{2}\right)\right)
\end{aligned}
$$

If $\theta_{0}=0$ then a single wave remains nontrivial:

$$
Q_{01}(x, t)=\frac{-\sqrt{2} i \nu}{\cosh \nu z_{2}} e^{-i \mu\left(z_{2}-\delta_{2}\right)}
$$

$6.2 \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ reductions and Doublet Solitons

An additional \mathbb{Z}_{2} symmetry:

$$
\begin{aligned}
\chi^{-}(x, \lambda) & =K_{1}\left(\left(\chi^{+}\right)^{\dagger}\left(x, \lambda^{*}\right)\right)^{-1} K_{1}^{-1} \\
\chi^{-}(x, \lambda) & =K_{2}\left(\left(\chi^{+}\right)^{T}(x,-\lambda)\right)^{-1} K_{2}^{-1}
\end{aligned}
$$

where $K_{1,2} \in S O(5)$ and $\left[K_{1}, K_{2}\right]=0$. Also $U(x, \lambda)$ satisfies both symmetry conditions. The $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-reduced 4 -wave system reads

$$
\begin{aligned}
\left(J_{1}-J_{2}\right) \mathbf{q}_{10, t}(x, t)-\left(I_{1}-I_{2}\right) \mathbf{q}_{10, x}(x, t)+k \mathbf{q}_{11}(x, t) \mathbf{q}_{01}(x, t) & =0 \\
J_{1} \mathbf{q}_{11, t}(x, t)-I_{1} \mathbf{q}_{11, x}(x, t)+k\left(\mathbf{q}_{12}(x, t)-\mathbf{q}_{10}(x, t)\right) \mathbf{q}_{01}(x, t) & =0 \\
\left(J_{1}+J_{2}\right) \mathbf{q}_{12, t}(x, t)-\left(I_{1}+I_{2}\right) \mathbf{q}_{12, x}(x, t)-k \mathbf{q}_{11}(x, t) \mathbf{q}_{01}(x, t) & =0 \\
J_{2} \mathbf{q}_{01, t}(x, t)-I_{2} \mathbf{q}_{01, x}(x, t)+k\left(\mathbf{q}_{10}(x, t)+\mathbf{q}_{12}(x, t)\right) q_{11}(x, t) & =0
\end{aligned}
$$

where $\mathbf{q}_{10}(x, t), \mathbf{q}_{11}(x, t), \mathbf{q}_{12}(x, t)$ and $\mathbf{q}_{01}(x, t)$ are real valued fields.
The dressing factor $u(x, \lambda)$ must be invariant under the action of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, i.e.

$$
\begin{gather*}
K_{1}\left(u^{\dagger}\left(x, \lambda^{*}\right)\right)^{-1} K_{1}^{-1}=u(x, \lambda) \tag{39}\\
K_{2}\left(u^{T}(x,-\lambda)\right)^{-1} K_{2}^{-1}=u(x, \lambda) \tag{40}
\end{gather*}
$$

If $K_{1}=K_{2}=\mathbb{1}$ one way to satisfy both conditions is to choose the poles of $u(x, \lambda)$ at $\lambda^{ \pm}= \pm i \nu$ and $|m(x, t)\rangle=|n(x, t)\rangle=e^{\nu(J x+I t)}\left|n_{0}\right\rangle$ real.

The doublet solution becomes

$$
\begin{aligned}
\mathbf{q}_{10}(x, t) & =-\frac{4 \nu}{\langle n \mid n\rangle} N_{1} N_{2} \cosh \nu\left[\left(J_{1}+J_{2}\right) x+\left(I_{1}+I_{2}\right) t-\xi_{1}-\xi_{2}\right] \\
\mathbf{q}_{11}(x, t) & =-\frac{4 \nu}{\langle n \mid n\rangle} N_{1} n_{0,3} \sinh \nu\left(J_{1} x+I_{1} t-\xi_{1}\right) \\
\mathbf{q}_{12}(x, t) & =-\frac{4 \nu}{\langle n \mid n\rangle} N_{1} N_{2} \cosh \nu\left[\left(J_{1}-J_{2}\right) x+\left(I_{1}-I_{2}\right) t-\xi_{1}+\xi_{2}\right] \\
\mathbf{q}_{01}(x, t) & =-\frac{4 \nu}{\langle n \mid n\rangle} N_{2} n_{0,3} \cosh \nu\left(J_{2} x+I_{2} t-\xi_{2}\right) \\
\langle n(x, t) \mid n(x, t)\rangle & =2 N_{1}^{2} \cosh 2 \nu\left(J_{1} x+I_{1} t-\xi_{1}\right)+2 N_{2}^{2} \cosh 2 \nu\left(J_{2} x+I_{2} t-\xi_{2}\right)+n_{0,3}^{2}
\end{aligned}
$$

where

$$
\xi_{1}:=\frac{1}{2 \nu} \ln \frac{n_{0,5}}{n_{0,1}}, \quad \xi_{2}:=\frac{1}{2 \nu} \ln \frac{n_{0,4}}{n_{0,2}}, \quad N_{1}=\sqrt{n_{0,1} n_{0,5}}, \quad N_{2}=\sqrt{n_{0,2} n_{0,4}}
$$

$6.3 \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ reductions and Quadruplet Solitons

Now the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-invariance of $u(x, t, \lambda)$ is ensured by adding two more terms:

$$
\begin{aligned}
u(x, t, \lambda) & =\mathbb{1}+\frac{A(x, t)}{\lambda-\lambda^{+}}+\frac{K_{1} S A^{*}(x, t)\left(K_{1} S\right)^{-1}}{\lambda-\left(\lambda^{+}\right)^{*}}-\frac{K_{2} S A(x, t)\left(K_{2} S\right)^{-1}}{\lambda+\lambda^{+}} \\
& -\frac{K_{1} K_{2} A^{*}(x, t)\left(K_{1} K_{2}\right)^{-1}}{\lambda+\left(\lambda^{+}\right)^{*}}
\end{aligned}
$$

where $A(x, t)=|X(x, t)\rangle\langle F(x, t)|$ and

$$
|F(x, t)\rangle=e^{i \lambda^{+}(J x+I t)}\left|F_{0}\right\rangle
$$

For $|X(x, t)\rangle$ we get a linear system of equations. Skipping the details we obtain the generic quadruplet solution to the 4 -wave system associated with the \mathbf{B}_{2} algebra
$\mathbf{q}_{10}=\frac{4}{\Delta} \operatorname{Im}\left[a^{*} N_{1} \cosh \left(\varphi_{1}+\varphi_{2}\right)-\frac{i m N_{1}^{*}}{\mu \nu}\left(\mu \cosh \left(\varphi_{1}^{*}+\varphi_{2}\right)-i \nu \cosh \left(\varphi_{1}^{*}-\varphi_{2}\right)\right)\right] N_{2}$

$$
\begin{aligned}
& \mathbf{q}_{11}=\frac{4}{\Delta} \operatorname{Im}\left[a^{*} N_{1} \sinh \left(\varphi_{1}\right)-\frac{i m \lambda^{+}}{\mu \nu} N_{1}^{*} \sinh \left(\varphi_{1}^{*}\right)\right] m_{0}^{3} \\
& \mathbf{q}_{12}=\frac{4}{\Delta} \operatorname{Im}\left[a^{*} N_{1} \cosh \left(\varphi_{1}-\varphi_{2}\right)-\frac{i m N_{1}^{*}}{\mu \nu}\left(\mu \cosh \left(\varphi_{1}^{*}-\varphi_{2}\right)-i \nu \cosh \left(\varphi_{1}^{*}+\varphi_{2}\right)\right)\right] N_{2} \\
& \mathbf{q}_{01}=\frac{4}{\Delta} \operatorname{Im}\left[a^{*} N_{2} \cosh \left(\varphi_{2}\right)-\frac{i m \lambda^{+*}}{\mu \nu} N_{2}^{*} \cosh \left(\varphi_{2}^{*}\right)\right] m_{0}^{3} .
\end{aligned}
$$

where

$$
\begin{aligned}
& a(x, t)=\frac{1}{\mu+i \nu}\left[N_{1}^{2} \cosh 2 \varphi_{1}+N_{2}^{2} \cosh 2 \varphi_{2}+\frac{F_{0,3}^{2}}{2}\right], \quad b(x, t)=\frac{m(x, t)}{i \nu}, \\
& c(x, t)=\frac{m(x, t)}{\mu}, \quad m(x, t)=\left|N_{1}\right|^{2} \cosh \left(2 \operatorname{Re} \varphi_{1}\right)+\left|N_{2}\right|^{2} \cosh \left(2 \operatorname{Re} \varphi_{2}\right)+\frac{\left|m_{0}^{3}\right|^{2}}{2}, \\
& N_{\sigma}:=\sqrt{m_{0}^{\sigma} m_{0}^{6-\sigma}}, \quad \varphi_{\sigma}(x, t):=i \lambda^{+}\left(J_{\sigma} x+I_{\sigma} t\right)+\frac{1}{2} \log \frac{m_{0}^{\sigma}}{m_{0}^{6-\sigma}}, \quad \sigma=1,2 .
\end{aligned}
$$

Other inequivalent reductions: we can use automorphisms \tilde{K}_{1} and/or
\tilde{K}_{2} taking values in the Weyl group.

7 The Generalized Fourier Transforms for Non-regular J

We show that the ISM can be viewed as generalized Fourier transform (GFT). We determine explicitly the proper generalizations of the usual exponents. We also introduce a skew-scalar product on \mathcal{M} which provides it with a symplectic structure.

7.1 The Wronskian relations

Along with the Lax operator we consider associated systems:

$$
\begin{align*}
& i \frac{d \hat{\psi}}{d x}-\hat{\psi}(x, t, \lambda) U(x, t, \lambda)=0, \quad U(x, \lambda)=Q(x)-\lambda J \tag{41}\\
& i \frac{d \delta \psi}{d x}+\delta U(x, t, \lambda) \psi(x, t, \lambda)+U(x, t, \lambda) \delta \psi(x, t, \lambda)=0 \tag{42}\\
& i \frac{d \dot{\psi}}{d x}-\lambda J \psi(x, t, \lambda)+U(x, t, \lambda) \dot{\psi}(x, t, \lambda)=0 \tag{43}
\end{align*}
$$

where $\delta \psi$ corresponds to a given variation $\delta Q(x, t)$ of the potential, while by dot we denote the derivative with respect to the spectral parameter.

We start with the identity:

$$
\begin{equation*}
\left.(\hat{\chi} J \chi(x, \lambda)-J)\right|_{x=-\infty} ^{\infty}=i \int_{-\infty}^{\infty} d x \hat{\chi}[J, Q(x)] \chi(x, \lambda) \tag{44}
\end{equation*}
$$

where $\chi(x, \lambda)$ can be any fundamental solution of L.
One can use the asymptotics of $\chi^{ \pm}(x, \lambda)$ for $x \rightarrow \pm \infty$ to express the l.h.sides of the Wronskian relations in terms of the scattering data. Then

$$
\begin{align*}
& \left.\left\langle\left(\hat{\chi}^{ \pm} J \chi^{ \pm}(x, \lambda)-J\right) E_{\beta}\right\rangle\right|_{x=-\infty} ^{\infty}=i \int_{-\infty}^{\infty} d x\left\langle\left([J, Q(x)] e_{\beta}^{ \pm}(x, \lambda)\right)\right\rangle \\
& \left.\left\langle\left(\hat{\chi}^{\prime}, \pm J \chi^{\prime, \pm}(x, \lambda)-J\right) E_{\beta}\right\rangle\right|_{x=-\infty} ^{\infty}=i \int_{-\infty}^{\infty} d x\left\langle\left([J, Q(x)] e_{\beta}^{\prime, \pm}(x, \lambda)\right)\right\rangle \tag{45}
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
e_{\beta}^{ \pm}(x, \lambda) & =\chi^{ \pm} E_{\beta} \hat{\chi}^{ \pm}(x, \lambda), \\
e_{\beta}^{\prime, \pm}(x, \lambda) & =\chi^{\prime, \pm} E_{\beta} \hat{\chi}^{\prime, \pm}(x, \lambda), \tag{46}
\end{array} \quad \boldsymbol{e}_{\beta}^{\prime, \pm}(x, \lambda)=P_{0 J}\left(\chi^{ \pm} E_{\beta} \hat{\chi}^{ \pm}(x, \lambda)\right), \chi^{\prime, \pm} E_{\beta} \hat{\chi}^{\prime, \pm}(x, \lambda)\right), ~ l
$$

are the natural generalization of the 'squared solutions' introduced first for the $s l(2)$-case. By $P_{0 J}$ we have denoted the projector $P_{0 J}=\operatorname{ad}_{J}^{-1} \mathrm{ad}{ }_{J}$ on the block-off-diagonal part of the corresponding matrix-valued function.

The right hand sides of eq. (46) can be written down with the skewscalar product:

$$
\begin{equation*}
\llbracket[X, Y]]=\int_{-\infty}^{\infty} d x\langle X(x),[J, Y(x)]\rangle \tag{47}
\end{equation*}
$$

where $\langle X, Y\rangle$ is the Killing form; in what follows we assume that the Cartan-Weyl generators satisfy $\left\langle E_{\alpha}, E_{-\beta}\right\rangle=\delta_{\alpha, \beta}$ and $\left\langle H_{j}, H_{k}\right\rangle=\delta_{j k}$. The product is skew-symmetric $[[X, Y]]=-[[Y, X]$ and is non-degenerate
on the space of allowed potentials \mathcal{M}. Thus we find

$$
\begin{align*}
& \rho_{\beta}^{+}=-i\left[\left[Q(x), \boldsymbol{e}_{\beta}^{\prime,+}\right]\right], \quad \rho_{\beta}^{-}=-i\left[\left[Q(x), \boldsymbol{e}_{-\beta}^{\prime,-}\right]\right. \\
& \tau_{\beta}^{+}=-i\left[\left[Q(x), \boldsymbol{e}_{-\beta}^{+}\right]\right], \quad \tau_{\beta}^{-}=-i\left[\left[Q(x), \boldsymbol{e}_{\beta}^{-}\right]\right] \tag{48}\\
& \vec{\rho}^{+}=\frac{\vec{b}^{+}}{m_{1}^{+}}, \quad \vec{\rho}=\frac{\vec{B}^{-}}{m_{1}^{-}}, \quad \vec{\tau}^{+}=\frac{\vec{b}^{-}}{m_{1}^{+}}, \quad \vec{\tau}^{-}=\frac{\vec{B}^{+}}{m_{1}^{-}}
\end{align*}
$$

Thus the mappings $\mathfrak{F}: Q(x, t) \rightarrow \mathfrak{T}_{i}$ can be viewed as generalized Fourier transform in which $\boldsymbol{e}_{\beta}^{ \pm}(x, \lambda)$ and $\boldsymbol{e}_{\beta}^{\prime, \pm}(x, \lambda)$ can be viewed as generalizations of the standard exponentials.

We apply ideas similar to the ones above and get:

$$
\begin{align*}
& \left.\delta \rho_{\beta}^{+}=-i\left[\operatorname{ad}_{J}^{-1} \delta Q(x), \boldsymbol{e}_{\beta}^{\prime,+}\right]\right], \quad \delta \rho_{\beta}^{-}=i\left[\left[\operatorname{ad}_{J}^{-1} \delta Q(x), \boldsymbol{e}_{-\beta}^{\prime,-}\right]\right], \\
& \left.\delta \tau_{\beta}^{+}=i\left[\operatorname{ad}_{J}^{-1} \delta Q(x), \boldsymbol{e}_{-\beta}^{+}\right]\right], \quad \delta \tau_{\beta}^{-}=-i\left[\left[\operatorname{ad}_{J}^{-1} \delta Q(x), \boldsymbol{e}_{\beta}^{-}\right]\right] \tag{49}
\end{align*}
$$

where $\beta \in \Delta_{1}^{+}$.
These relations are basic in the analysis of the related NLEE and their Hamiltonian structures. Assume that

$$
\begin{equation*}
\delta Q(x, t)=Q_{t} \delta t+\mathcal{O}\left((\delta t)^{2}\right) \tag{50}
\end{equation*}
$$

Keeping only the first order terms with respect to δt we find:

$$
\begin{array}{rlrl}
\frac{d \rho_{\beta}^{+}}{d t} & \left.=-i\left[\operatorname{ad}_{J}^{-1} Q_{t}(x), \boldsymbol{e}_{\beta}^{\prime,+}\right]\right], & \frac{d \rho_{\beta}^{-}}{d t} & =i\left[\left[\operatorname{ad}_{J}^{-1} Q_{t}(x), \boldsymbol{e}_{-\beta}^{\prime,-}\right]\right. \tag{51}\\
\frac{d \tau_{\beta}^{+}}{d t} & \left.=i\left[\operatorname{ad}_{J}^{-1} Q_{t}(x), \boldsymbol{e}_{-\beta}^{+}\right]\right], & \left.\frac{d \tau_{\beta}^{-}}{d t}=-i\left[\operatorname{ad}_{J}^{-1} Q_{t}(x), \boldsymbol{e}_{\beta}^{-}\right]\right],
\end{array}
$$

7.2 Completeness of the 'squared solutions'

Let us introduce the sets of 'squared solutions'

$$
\begin{align*}
& \{\boldsymbol{\Psi}\}=\{\boldsymbol{\Psi}\}_{\mathrm{c}} \cup\{\boldsymbol{\Psi}\}_{\mathrm{d}}, \quad\{\boldsymbol{\Phi}\}=\{\boldsymbol{\Phi}\}_{\mathrm{c}} \cup\{\boldsymbol{\Phi}\}_{\mathrm{d}}, \\
& \{\boldsymbol{\Psi}\}_{\mathrm{c}} \equiv\left\{\boldsymbol{e}_{-\alpha}^{+}(x, \lambda), \quad \boldsymbol{e}_{\alpha}^{-}(x, \lambda), \quad \lambda \in \mathbb{R}, \quad \alpha \in \Delta_{1}^{+}\right\}, \\
& \{\boldsymbol{\Psi}\}_{\mathrm{d}} \equiv\left\{\boldsymbol{e}_{\mp \alpha ; j}^{ \pm}(x), \quad \dot{\boldsymbol{e}}_{\mp \alpha ; j}^{ \pm}(x), \quad \ddot{\boldsymbol{e}}_{\mp \alpha ; j}^{ \pm}(x), \quad \dddot{\boldsymbol{e}}_{\mp \alpha ; j}^{ \pm}(x), \quad \alpha \in \Delta_{1}^{+},\right\}, \tag{53}\\
& \{\boldsymbol{\Phi}\}_{\mathrm{c}} \equiv\left\{\boldsymbol{e}_{\alpha}^{+}(x, \lambda), \quad \boldsymbol{e}_{-\alpha}^{-}(x, \lambda), \quad \lambda \in \mathbb{R}, \quad \alpha \in \Delta_{1}^{+}\right\}, \\
& \{\boldsymbol{\Phi}\}_{\mathrm{d}} \equiv\left\{\boldsymbol{e}_{ \pm \alpha ; j}^{ \pm}(x), \quad \dot{\boldsymbol{e}}_{ \pm \alpha ; j}^{ \pm}(x), \quad \ddot{\boldsymbol{e}}_{ \pm \alpha ; j}^{ \pm}(x), \quad \dddot{\boldsymbol{e}}_{ \pm \alpha ; j}^{ \pm}(x), \quad \alpha \in \Delta_{1}^{+},\right\}, \tag{54}
\end{align*}
$$

where $j=1, \ldots, N$ and the subscripts 'c' and ' d ' refer to the continuous and discrete spectrum of L, the latter consisting of $2 N$ discrete eigenvalues $\lambda_{j}^{ \pm} \in \mathbb{C}_{ \pm}$.
Theorem 1 (see V.S.G. (1998)). The sets $\{\boldsymbol{\Psi}\}$ and $\{\boldsymbol{\Phi}\}$ form complete sets of functions in \mathcal{M}_{J}. The completeness relation has the form:

$$
\begin{gather*}
\delta(x-y) \Pi_{0 J}=\frac{1}{\pi} \int_{-\infty}^{\infty} d \lambda\left(G_{1}^{+}(x, y, \lambda)-G_{1}^{-}(x, y, \lambda)\right) \\
-2 i \sum_{j=1}^{N}\left(G_{1, j}^{+}(x, y)+G_{1, j}^{-}(x, y)\right), \tag{55}\\
\Pi_{0 J}=\sum_{\alpha \in \Delta_{1}^{+}}\left(E_{\alpha} \otimes E_{-\alpha}-E_{-\alpha} \otimes E_{\alpha}\right), \tag{56}\\
G_{1}^{ \pm}(x, y, \lambda)=\sum_{\alpha \in \Delta_{1}^{+}} e_{ \pm \alpha}^{ \pm}(x, \lambda) \otimes \boldsymbol{e}_{\mp \alpha}^{+}(y, \lambda), \\
G_{1, j}^{ \pm}(x, y)=\sum_{\alpha \in \Delta_{1}^{+}}\left(\dot{e}_{ \pm \alpha ; j}^{ \pm}(x) \otimes \boldsymbol{e}_{\mp \alpha ; j}^{ \pm}(y)+\boldsymbol{e}_{ \pm \alpha ; j}^{ \pm}(x) \otimes \dot{\boldsymbol{e}}_{\mp \alpha ; j}^{ \pm}(y) .\right. \tag{57}
\end{gather*}
$$

Idea of the proof. Apply the contour integration method to the function

$$
\begin{align*}
G^{ \pm}(x, y, \lambda) & =G_{1}^{ \pm}(x, y, \lambda) \theta(y-x)-G_{2}^{ \pm}(x, y, \lambda) \theta(x-y) \\
G_{1}^{ \pm}(x, y, \lambda) & =\sum_{\alpha \in \Delta_{1}^{+}} \boldsymbol{e}_{ \pm \alpha}^{ \pm}(x, \lambda) \otimes \boldsymbol{e}_{\mp \alpha}^{ \pm}(y, \lambda), \\
G_{2}^{ \pm}(x, y, \lambda) & =\sum_{\alpha \in \Delta_{0} \cup \Delta_{1}^{-}} \boldsymbol{e}_{ \pm \alpha}^{-}(x, \lambda) \otimes \boldsymbol{e}_{\mp \alpha}^{-}(y, \lambda)+\sum_{j=1}^{r} \boldsymbol{h}_{j}^{ \pm}(x, \lambda) \otimes \boldsymbol{h}_{j}^{ \pm}(y, \lambda), \\
\boldsymbol{h}_{j}^{ \pm}(x, \lambda) & =\chi^{ \pm}(x, \lambda) H_{j} \hat{\chi}^{ \pm}(x, \lambda), \tag{58}
\end{align*}
$$

and calculate the integral

$$
\begin{equation*}
\mathcal{J}_{G}(x, y)=\frac{1}{2 \pi i} \oint_{\gamma_{+}} d \lambda G^{+}(x, y, \lambda)-\frac{1}{2 \pi i} \oint_{\gamma_{-}} d \lambda G^{-}(x, y, \lambda) \tag{59}
\end{equation*}
$$

in two ways: i) via the Cauchy residue theorem and ii) integrating along the contours.

Фигура 1: The contours $\gamma_{ \pm}=\mathbb{R} \cup \gamma_{ \pm \infty}$.

Remark 1. There is a dual completeness relation for the 'squared solutions' obtained by replacing all $e_{\alpha}^{ \pm}(x, \lambda)$ with $e_{\alpha}^{\prime, \pm}(x, \lambda)$.

7.3 Expansions over the ,squared" solutions

Using the completeness relations one can expand any generic element $F(x)$ of the phase space \mathcal{M} over each of the sets of 'squared solutions':

$$
\begin{align*}
F(x) & =\frac{1}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(e_{\alpha}^{+}(x, \lambda) \gamma_{F ;-\alpha}^{+}(\lambda)-e_{-\alpha}^{-}(x, \lambda) \gamma_{F ; \alpha}^{-}(\lambda)\right) \\
& -2 i \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(Z_{F ; \alpha, j}^{+}(x)+Z_{F ; \alpha, j}^{-}(x)\right), \tag{60}
\end{align*}
$$

$$
\begin{align*}
F(x) & =-\frac{1}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\boldsymbol{e}_{-\alpha}^{+}(x, \lambda) \tilde{\gamma}_{F ; \alpha}^{+}(\lambda)-\boldsymbol{e}_{\alpha}^{-}(x, \lambda) \tilde{\gamma}_{F ;-\alpha}^{-}(\lambda)\right) \\
& +2 i \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\tilde{Z}_{F ; \alpha, j}^{+}(x)+\tilde{Z}_{F ; \alpha, j}^{-}(x)\right) \tag{61}
\end{align*}
$$

where

$$
\begin{gather*}
\gamma_{F ; \alpha}^{ \pm}(\lambda)=\left[\left[\boldsymbol{e}_{ \pm \alpha}^{ \pm}(y, \lambda), F(y)\right], \quad \tilde{\gamma}_{F ; \alpha}^{ \pm}(\lambda)=\left[\left[\boldsymbol{e}_{\mp \alpha}^{ \pm}(y, \lambda), F(y)\right]\right],\right. \\
Z_{F ; j}^{ \pm}(x)=\operatorname{Res}_{\lambda=\lambda_{j}^{ \pm}} \boldsymbol{e}_{\mp \alpha}^{ \pm}(x, \lambda) \gamma_{F ; \mp \alpha}^{ \pm}(\lambda), \quad \tilde{Z}_{F ; j}^{ \pm}(x)=\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \boldsymbol{e}_{ \pm \alpha}^{ \pm}(x, \lambda) \gamma_{F ; \pm \alpha}^{+}(\lambda) \tag{63}
\end{gather*}
$$

Proposition 1. The function $F(x) \equiv 0$ if and only if all its expansion coefficients vanish, i.e.:

$$
\begin{array}{lll}
\gamma_{F ;-\alpha}^{+}(\lambda)=\gamma_{F ; \alpha}^{-}(\lambda)=0, & \alpha \in \Delta_{1}^{+} ; & Z_{F ; \alpha, j}^{+}(x)=Z_{F ; \alpha, j}^{-}(x)=0 \\
\tilde{\gamma}_{F ; \alpha}^{+}(\lambda)=\tilde{\gamma}_{F ;-\alpha}^{-}(\lambda)=0, & \alpha \in \Delta_{1}^{+} ; & \tilde{Z}_{F ; \alpha, j}^{+}(x)=\tilde{Z}_{F ; \alpha, j}^{-}(x)=0 ; \\
\text { where } j=1, \ldots, N .
\end{array}
$$

7.4 Expansions of $Q(x)$ and $\operatorname{ad}_{J}^{-1} \delta Q(x)$.

$$
\begin{align*}
Q(x) & =-\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\tau_{\alpha}^{+}(\lambda) e_{\alpha}^{+}(x, \lambda)-\tau_{\alpha}^{-}(\lambda) e_{-\alpha}^{-}(x, \lambda)\right) \\
& -2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\underset{\lambda=\lambda_{j}^{+}}{\operatorname{Res}} \tau_{\alpha}^{+} e_{\alpha}^{+}(x, \lambda)+\underset{\lambda=\lambda_{j}^{-}}{\operatorname{Res}} \tau_{\alpha}^{-} e_{-\alpha}^{-}(x, \lambda)\right), \tag{64}\\
Q(x) & =\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\rho_{\alpha}^{+}(\lambda) \boldsymbol{e}_{-\alpha}^{\prime+}(x, \lambda)-\rho_{\alpha}^{-}(\lambda) \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right) \\
& +2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \rho_{\alpha}^{+} e_{\alpha}^{\prime,+}(x, \lambda)+\underset{\lambda=\lambda_{j}^{-}}{\operatorname{Res}} \rho_{\alpha}^{-} \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right), \tag{65}
\end{align*}
$$

$$
\begin{align*}
\operatorname{ad}_{J}^{-1} \delta Q(x) & =\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\delta \tau_{\alpha}^{+}(\lambda) \boldsymbol{e}_{\alpha}^{+}(x, \lambda)+\delta \tau_{\alpha}^{-}(\lambda) \boldsymbol{e}_{-\alpha}^{-}(x, \lambda)\right) \\
& +2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \delta \tau_{\alpha}^{+} \boldsymbol{e}_{\alpha}^{+}(x, \lambda)-\operatorname{Res}_{\lambda=\lambda_{j}^{-}} \delta \tau_{\alpha}^{-} \boldsymbol{e}_{-\alpha}^{-}(x, \lambda)\right) \tag{66}\\
\operatorname{ad}_{J}^{-1} \delta Q(x) & =\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\delta \rho_{\alpha}^{+}(\lambda) \boldsymbol{e}_{-\alpha}^{\prime,+}(x, \lambda)+\delta \rho_{\alpha}^{-}(\lambda) \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right) \\
& -2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \delta \rho_{\alpha}^{+} \boldsymbol{e}_{-\alpha}^{\prime,+}(x, \lambda)-\operatorname{Res}_{\lambda=\lambda_{j}^{-}} \delta \rho_{\alpha}^{-} \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right) \tag{67}
\end{align*}
$$

These expansions combined with the proposition above give another way to establish the one-to-one correspondence between $Q(x)$ and each of the minimal sets of scattering data \mathcal{T}_{1} and \mathcal{T}_{2}.

$$
\begin{align*}
\operatorname{ad}_{J}^{-1} \frac{d Q}{d t} & =\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\frac{d \tau_{\alpha}^{+}}{d t} e_{\alpha}^{+}(x, \lambda)+\frac{d \tau_{\alpha}^{-}}{d t} e_{-\alpha}^{-}(x, \lambda)\right) \\
& +2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \frac{d \tau_{\alpha}^{+}}{d t} e_{\alpha}^{+}(x, \lambda)-\operatorname{Res}_{\lambda=\lambda_{j}^{-}} \frac{d \tau_{\alpha}^{-}}{d t} e_{-\alpha}^{-}(x, \lambda)\right) \tag{68}
\end{align*}
$$

$$
\begin{align*}
\operatorname{ad}_{J}^{-1} \frac{d Q}{d t} & =\frac{i}{\pi} \int_{-\infty}^{\infty} d \lambda \sum_{\alpha \in \Delta_{1}^{+}}\left(\frac{d \rho_{\alpha}^{+}}{d t} \boldsymbol{e}_{-\alpha}^{\prime,+}(x, \lambda)+\frac{d \rho_{\alpha}^{-}}{d t} \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right) \\
& -2 \sum_{j=1}^{N} \sum_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{Res}_{\lambda=\lambda_{j}^{+}} \frac{d \rho_{\alpha}^{+}}{d t} \boldsymbol{e}_{-\alpha}^{\prime,+}(x, \lambda)-\operatorname{Res}_{\lambda=\lambda_{j}^{-}} \frac{d \rho_{\alpha}^{-}}{d t} \boldsymbol{e}_{\alpha}^{\prime,-}(x, \lambda)\right) \tag{69}
\end{align*}
$$

7.5 The generating operators

Introduce the generating operators $\Lambda_{ \pm}$through:

$$
\begin{array}{ll}
\left(\Lambda_{+}-\lambda\right) \boldsymbol{e}_{-\alpha}^{+}(x, \lambda)=0, & \left(\Lambda_{+}-\lambda\right) \boldsymbol{e}_{\alpha}^{-}(x, \lambda)=0 \\
\left(\Lambda_{-}-\lambda\right) \boldsymbol{e}_{\alpha}^{+}(x, \lambda)=0, & \left(\Lambda_{-}-\lambda\right) \boldsymbol{e}_{-\alpha}^{-}(x, \lambda)=0 \tag{70}
\end{array}
$$

Their derivation starts by introducing the splitting:

$$
\begin{equation*}
e_{\alpha}^{ \pm}(x, \lambda)=e_{\alpha}^{\mathrm{d}, \pm}(x, \lambda)+\boldsymbol{e}_{\alpha}^{ \pm}(x, \lambda), \quad e_{\alpha}^{\mathrm{d}, \pm}(x, \lambda)=\left(\mathbb{1}-P_{0 J}\right) e_{\alpha}^{ \pm}(x, \lambda), \tag{71}
\end{equation*}
$$

into the equation

$$
\begin{equation*}
i \frac{d e_{\alpha}}{d x}+\left[Q(x)-\lambda J, e_{\alpha}(x, \lambda)\right]=0 \tag{72}
\end{equation*}
$$

which is obviously satisfied by the 'squared solutions'. Then eq. (72) splits into:

$$
\begin{equation*}
i \frac{d e_{\alpha}^{\mathrm{d}, \pm}}{d x}+\left[Q(x), e_{\alpha}^{ \pm}(x, \lambda)\right]=0 \tag{73}
\end{equation*}
$$

$$
\begin{equation*}
i \frac{d \boldsymbol{e}_{\alpha}^{ \pm}}{d x}+\left[Q(x), e_{\alpha}^{\mathrm{d}, \pm}(x, \lambda)\right]=\lambda\left[J, \boldsymbol{e}_{\alpha}^{ \pm}(x, \lambda)\right] \tag{74}
\end{equation*}
$$

Eq. (73) can be integrated formally with the result

$$
\begin{array}{r}
e_{\alpha}^{\mathrm{d}, \pm}(x, \lambda)=C_{\alpha ; \epsilon}^{\mathrm{d}, \pm}(\lambda)+i \int_{\epsilon \infty}^{x} d y\left[Q(y), \boldsymbol{e}_{\alpha}^{ \pm}(y, \lambda)\right] \\
C_{\alpha ; \epsilon}^{\mathrm{d}, \pm}(\lambda)=\lim _{y \rightarrow \epsilon \infty} e_{\alpha}^{\mathrm{d}, \pm}(y, \lambda), \quad \epsilon= \pm 1 \tag{76}
\end{array}
$$

Next insert (75) into (74) and act on both sides by ad ${ }_{J}^{-1}$. This gives us:

$$
\begin{equation*}
\left(\Lambda_{ \pm}-\lambda\right) \boldsymbol{e}_{\alpha}^{ \pm}(x, \lambda)=i\left[C_{\alpha ; \epsilon}^{\mathrm{d}, \pm}(\lambda), \operatorname{ad}_{J}^{-1} Q(x)\right] \tag{77}
\end{equation*}
$$

where the generating operators $\Lambda_{ \pm}$are given by:

$$
\begin{gather*}
\Lambda_{ \pm} X(x) \equiv \operatorname{ad}_{J}^{-1}\left(i \frac{d X}{d x}+i\left[Q(x), \int_{ \pm \infty}^{x} d y[Q(y), X(y)]\right]\right) . \tag{78}\\
\quad\left(\Lambda_{+}-\lambda\right) \boldsymbol{e}_{-\alpha}^{+}(x, \lambda)=0, \quad\left(\Lambda_{+}-\lambda\right) \boldsymbol{e}_{\alpha}^{-}(x, \lambda)=0 \tag{79}
\end{gather*}
$$

$$
\begin{equation*}
\left(\Lambda_{-}-\lambda\right) \boldsymbol{e}_{\alpha}^{+}(x, \lambda)=0, \quad\left(\Lambda_{-}-\lambda\right) \boldsymbol{e}_{-\alpha}^{-}(x, \lambda)=0 \tag{80}
\end{equation*}
$$

Thus the sets $\{\Psi\}$ and $\{\Phi\}$ are the complete sets of eigen- and adjoint functions of Λ_{+}and Λ_{-}.

8 Fundamental properties of the MNLS equations

8.1 The principal class of NLEE

By principle class of NLEE we mean the ones whose dispersion laws take the form:

$$
\begin{equation*}
F(\lambda)=f(\lambda) J \tag{81}
\end{equation*}
$$

where $f(\lambda)$ may be rational functions of λ whose poles lie outside the spectrum of L. The corresponding NLEE is

$$
\begin{equation*}
i \operatorname{ad}_{J}^{-1} Q_{t}+f\left(\Lambda_{ \pm}\right) Q(x, t)=0 \tag{82}
\end{equation*}
$$

Theorem 2. The NLEE (82) are equivalent to: i) the equations (22) and ii) to the following evolution equations for the generalized Gauss
factors of $T(\lambda)$:

$$
\begin{equation*}
i \frac{d S_{J}^{+}}{d t}+\left[F(\lambda), S_{J}^{+}\right]=0, \quad i \frac{d T_{J}^{-}}{d t}+\left[F(\lambda), T_{J}^{-}\right]=0 \tag{83}
\end{equation*}
$$

and

$$
\begin{equation*}
i \frac{d S_{J}^{-}}{d t}+\left[F(\lambda), S_{J}^{-}\right]=0, \quad i \frac{d T_{J}^{+}}{d t}+\left[F(\lambda), T_{J}^{+}\right]=0 \tag{84}
\end{equation*}
$$

8.2 The integrals of motion Hamiltonian properties of the MNLS eqs.

The block-diagonal Gauss factors $D_{J}^{ \pm}(\lambda)$ are generating functionals of the integrals of motion. The principal series of integrals is generated by $m_{1}^{ \pm}(\lambda)$:

$$
\begin{equation*}
\pm \ln m_{1}^{ \pm}=\sum_{k=1}^{\infty} I_{k} \lambda^{-k} \tag{85}
\end{equation*}
$$

Let us outline a way to calculate their densities as functionals of $Q(x, t)$. Use a third type of Wronskian identities involving $\dot{\chi}^{ \pm}(x, \lambda)$. They have
the form:

$$
\begin{equation*}
\left.\left(\hat{\chi}^{ \pm} \dot{\chi}^{ \pm}(x, \lambda)+i J x\right)\right|_{x=-\infty} ^{\infty}=-i \int_{-\infty}^{\infty} d x(\hat{\chi} J \chi(x, \lambda)-J) \tag{86}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\pm \frac{d}{d \lambda} \ln m_{1}^{ \pm}(\lambda)=-i \int_{-\infty}^{\infty} d x(\langle\chi(x, \lambda) J \hat{\chi} J\rangle-1) \tag{87}
\end{equation*}
$$

Note that in the integrand of the above equation we have in fact $\left\langle h_{1}^{ \pm}(x, \lambda) J\right\rangle$. Splitting $h_{1}^{ \pm}(x, \lambda)=h_{1}^{d, \pm}(x, \lambda)+\boldsymbol{h}_{1}^{ \pm}(x, \lambda)$ into 'block-diagonal' and 'block-off-diagonal' parts we get

$$
\begin{align*}
\left(\Lambda_{+}-\lambda\right) \boldsymbol{h}_{1}^{ \pm}(x, \lambda) & =i\left[\lim _{y \rightarrow \pm \infty} h_{1}^{d, \pm}(x, \lambda), \operatorname{ad}_{J}^{-1} Q(x)\right] \tag{88}\\
& =i\left[J, \operatorname{ad}_{J}^{-1} Q(x)\right] \equiv Q(x)
\end{align*}
$$

i.e.

$$
\begin{array}{r}
\left(\Lambda_{ \pm}-\lambda\right) \boldsymbol{h}_{1}^{ \pm}(x, \lambda)=Q(x), \\
h_{1}^{d, \pm}(x, \lambda)=J+\int_{ \pm \infty}^{x} d y\left[Q(y), \boldsymbol{h}_{1}^{ \pm}(x, \lambda)\right] . \tag{89}
\end{array}
$$

Using eq. (89) and inverting formally the operator $\left(\Lambda_{ \pm}-\lambda\right)$ we obtain the relations:

$$
\begin{align*}
\pm \frac{d}{d \lambda} \ln m_{1}^{ \pm}(\lambda) & =-i \int_{-\infty}^{\infty} d x\left(\left\langle J+\int_{ \pm \infty}^{x} d y\left[Q(y), \boldsymbol{h}_{1}^{ \pm}(x, \lambda)\right], J\right\rangle-1\right) \\
& =-i \int_{-\infty}^{\infty} d x \int_{ \pm \infty}^{x} d y\left\langle[J, Q(y)], \boldsymbol{h}_{1}^{ \pm}(x, \lambda)\right\rangle \\
& =-i \int_{-\infty}^{\infty} d x \int_{ \pm \infty}^{x} d y\left\langle[J, Q(y)],\left(\Lambda_{ \pm}-\lambda\right)^{-1} Q(x)\right\rangle \tag{90}
\end{align*}
$$

This procedure allows us to express the integrals of motion as functionals of $Q(x)$ in compact form:

$$
\begin{equation*}
I_{s}=\frac{1}{s} \int_{-\infty}^{\infty} d x \int_{ \pm \infty}^{x} d y\left\langle[J, Q(y)], \Lambda_{ \pm}^{s} Q(x)\right\rangle \tag{91}
\end{equation*}
$$

Note: the operators Λ_{+}and Λ_{-}produce the same integrals of motion.

Using the explicit form of $\Lambda_{ \pm}$we find that:

$$
\begin{align*}
\Lambda_{ \pm} Q & =i \operatorname{ad}_{J}^{-1} \frac{d Q}{d x}=i \frac{d Q^{+}}{d x}-i \frac{d Q^{-}}{d x} \\
\Lambda_{ \pm}^{2} Q & =-\frac{d^{2} Q}{d x^{2}}+\left[Q^{+}-Q^{-},\left[Q^{+}, Q^{-}\right]\right], \\
\Lambda_{ \pm}^{3} Q & =-i \frac{d^{3} Q^{+}}{d x^{3}}+i \frac{d^{3} Q^{-}}{d x^{3}}+3 i\left[Q^{+},\left[Q_{x}^{+}, Q^{-}\right]\right]+3 i\left[Q^{-},\left[Q^{+}, Q_{x}^{-}\right]\right], \tag{92}\\
& Q^{+}(x, t)=\left(\vec{q}(x, t) \cdot \vec{E}_{1}^{+}\right), \quad Q^{-}(x, t)=\left(\vec{p}(x, t) \cdot \vec{E}_{1}^{-}\right) .
\end{align*}
$$

Thus for the first three integrals of motion we get:

$$
\begin{align*}
& I_{1}=-i \int_{-\infty}^{\infty} d x\left\langle Q^{+}(x), Q^{-}(x)\right\rangle \\
& I_{2}=\frac{1}{2} \int_{-\infty}^{\infty} d x\left(\left\langle Q_{x}^{+}(x), Q^{-}(x)\right\rangle-\left\langle Q^{+}(x), Q_{x}^{-}(x)\right\rangle\right) \tag{93}\\
& I_{3}=i \int_{-\infty}^{\infty} d x\left(-\left\langle Q_{x}^{+}(x), Q_{x}^{-}(x)\right\rangle+\frac{1}{2}\left\langle\left[Q^{+}(x), Q^{-}(x)\right],\left[Q^{+}(x), Q^{-}(x)\right]\right\rangle\right)
\end{align*}
$$

$i I_{1}$ - is the density of the particles, I_{2} is the momentum and $-i I_{3}$ is the Hamiltonian of the MNLS equations. Indeed, taking $H_{(0)}=-i I_{3}$ with the Poissson brackets

$$
\begin{equation*}
\left\{q_{k}(y, t), p_{j}(x, t)\right\}=i \delta_{k j} \delta(x-y) \tag{94}
\end{equation*}
$$

coincide with the MNLS equations (15). The above Poisson brackets are dual to the canonical symplectic form:

$$
\begin{align*}
\Omega_{0} & =i \int_{-\infty}^{\infty} d x \operatorname{tr}(\delta \vec{p}(x) \wedge \delta \vec{q}(x)) \\
& =\frac{1}{i} \int_{-\infty}^{\infty} d x \operatorname{tr}\left(\operatorname{ad}_{J}^{-1} \delta Q(x) \wedge\left[J, \operatorname{ad}_{J}^{-1} \delta Q(x)\right)\right. \tag{95}\\
& =\frac{1}{i}\left[\left[\operatorname{ad}_{J}^{-1} \delta Q(x) \wedge \operatorname{ad}_{J}^{-1} \delta Q(x)\right]\right], \tag{96}
\end{align*}
$$

The last expression for Ω_{0} is preferable to us because it makes obvious the interpretation of $\delta Q(x, t)$ as local coordinate on the co-adjoint orbit passing through J. It can be evaluated in terms of the scattering data
variations.

$$
\begin{aligned}
\Omega_{0} & =\frac{1}{\pi i} \int_{-\infty}^{\infty} d \lambda\left(\Omega_{0}^{+}(\lambda)-\Omega_{0}^{-}(\lambda)\right)-2 \sum_{j=1}^{N}\left(\underset{\lambda=\lambda_{j}^{+}}{\operatorname{Res}} \Omega_{0}^{+}(\lambda)+\underset{\lambda=\lambda_{j}^{-}}{\operatorname{Res}} \Omega_{0}^{-}(\lambda)\right), \\
\Omega_{0}^{ \pm}(\lambda) & =\sum_{\alpha, \gamma \in \Delta_{1}^{+}} \delta \tau^{ \pm}(\lambda) D_{\alpha, \gamma}^{ \pm} \wedge \delta \rho_{\gamma}^{ \pm}, \quad D_{\alpha, \gamma}^{ \pm}=\left\langle\hat{D}^{ \pm} E_{\mp \gamma} D^{ \pm}(\lambda) E_{ \pm \alpha}\right\rangle,
\end{aligned}
$$

Hierarchy of Hamiltonian formulations of MNLS:

$$
\begin{align*}
& \left.\Omega_{k}=\frac{1}{i}\left[\operatorname{ad}_{J}^{-1} \delta Q \wedge \Lambda^{k} \operatorname{ad}_{J}^{-1} \delta Q\right]\right], \quad \Lambda=\frac{1}{2}\left(\Lambda_{+}+\Lambda_{-}\right) \tag{97}\\
& H_{k}=i^{k+3} I_{k+3} \tag{98}
\end{align*}
$$

We can also calculate Ω_{k} in terms of the scattering data variations. Doing this we will need also eqs. (79) and (80). The answer is

$$
\begin{equation*}
\Omega_{k}=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d \lambda \lambda^{k}\left(\Omega_{0}^{+}(\lambda)-\Omega_{0}^{-}(\lambda)\right)-i \sum_{j=1}^{N}\left(\Omega_{k, j}^{+}+\Omega_{k ; j}^{-}\right) \tag{99}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{k, j}^{ \pm}=\underset{\lambda=\lambda_{j}^{ \pm}}{\operatorname{Res}^{k} \Omega_{0}^{ \pm}(\lambda)} \tag{100}
\end{equation*}
$$

This allows one to prove that if we are able to cast Ω_{0} in canonical form then all Ω_{k} will also be cast in canonical form and will be pair-wise equivalent.

II. Equations with Coxeter type reduction

This reduction is of the form:

$$
C_{4}\left(U\left(\kappa_{4}(\lambda)\right)\right)=U(\lambda)
$$

$$
C_{4}\left(V\left(\kappa_{4}(\lambda)\right)\right)=V(\lambda)
$$

where C_{4} is the Coxeter automorphism:

$$
C_{4}^{h}=\mathbb{1}, \quad \kappa_{4}(\lambda)=\omega \lambda, \quad \omega^{h}=1
$$

9 Recursion operator for generalized ZakharovShabat system with a \mathbb{Z}_{h} Coxeter type reduction

Generalized Zakharov-Shabat system associated with a simple Lie algebra \mathfrak{g} of rank r

$$
\begin{equation*}
L \psi=i \partial_{x} \psi+(q-\lambda J) \psi=0 \tag{101}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\sum_{j=1}^{r} q_{j} H_{j}, \quad J=\sum_{\alpha \in \mathcal{A}} E_{\alpha} \tag{102}
\end{equation*}
$$

The generators H_{j} for $j=1, \ldots, r$ and E_{α} for any root $\alpha \in \Delta$ represent Cartan-Weyl's basis of the algebra \mathfrak{g}. The subset $\mathcal{A} \subset \Delta$ is formed by all admissible roots, so

$$
\mathcal{A}=\left\{\alpha_{1}, \ldots, \alpha_{r}, \alpha_{0}\right\}
$$

where α_{0} is the minimal root of \mathfrak{g}
The above potential is obtained form a generic one by applying a \mathbb{Z}_{h} reduction

$$
\begin{equation*}
\mathcal{C} q \mathrm{C}^{-1}=q, \quad \mathcal{C} J \mathcal{C}^{-1}=\frac{1}{\omega} J \tag{103}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=e^{\frac{2 \pi i}{h}}, \quad \mathcal{C}=\exp \left(-\frac{2 \pi i}{h} H_{\vec{\rho}_{0}}\right), \quad\left(\vec{\rho}_{0}, \alpha_{j}\right)=1 \tag{104}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are the simple roots of \mathfrak{g}. Any root $\beta=\sum_{j=1}^{r} n_{j} \alpha_{j}$. Then

$$
\left(\beta, \vec{\rho}_{0}\right)=\sum_{j=1}^{r} n_{j}=\operatorname{ht}(\beta),
$$

i.e.

$$
\left(\alpha_{k}, \vec{\rho}_{0}\right)=1, \quad\left(\alpha_{0}, \vec{\rho}_{0}\right)=h-1 .
$$

Taking into account the famous formula

$$
e^{B} A e^{-B}=e^{\operatorname{ad}_{B}} A
$$

it follows

$$
\begin{equation*}
\mathcal{C} J \mathcal{C}^{-1}=\sum_{\alpha \in \mathcal{A}} \exp \left(-\frac{2 \pi i}{h}\right) E_{\alpha}=\omega^{-1} J \tag{105}
\end{equation*}
$$

Consider the algebra $\mathfrak{s l}(r+1)$. For $\mathfrak{s l}(r+1)$ we have

$$
\mathcal{A}=\left\{e_{i}-e_{i+1}, \quad i=1, \ldots, r ; \quad e_{r+1}-e_{1}\right\}
$$

Choosing $\alpha=e_{k}-e_{k+1}$ we obtain $\vec{\rho}_{0}=\sum_{j=1}^{r} \omega_{j}$. The minimal root is $\alpha=\alpha_{\text {min }}=e_{r+1}-e_{1}$.

The Coxeter automorphism has a finite order $h=n$, the so-called Coxeter number. Hence it induces a \mathbb{Z}_{h} grading in \mathfrak{g} as follows

$$
\begin{equation*}
\mathfrak{g}=\sum_{k=0}^{h-1} \mathfrak{g}^{k}, \quad \mathfrak{g}^{k}=\left\{X \in \mathfrak{g} ; \mathcal{C} X \mathcal{C}^{-1}=\omega^{k} J\right\} \tag{106}
\end{equation*}
$$

Comparing the reduction condition (103) with the definition of splitting of \mathfrak{g} we see that

$$
\begin{equation*}
q \in \mathfrak{g}^{0}, \quad J \in \mathfrak{g}^{h-1} \tag{107}
\end{equation*}
$$

$0-60$

The \mathbb{Z}_{h} reduction affects the spectral properties of L - its continuous spectrum consists in $2 h$ rays $l_{a}(a=1, \ldots, 2 h)$ through the origin of coordinate system in the complex λ-plane. The angles between any adjacent rays are equal to π / h. The rays split into $2 h$ sectors Ω_{a}. In each sector Ω_{a} there exists a fundamental analytic solution $\chi^{a}(x, \lambda)$. The fundamental analytic solutions of adjacent sectors are interrelated via a local RiemmanHilbert problem

$$
\begin{equation*}
\chi^{a}(x, \lambda)=\chi^{a-1}(x, \lambda) G^{a}(\lambda) . \tag{108}
\end{equation*}
$$

Thus with each sector is associated "squared"solutions as follows
$e_{\alpha}^{a}(x, \lambda)=\pi\left(\chi^{a}(x, \lambda) E_{\alpha} \hat{\chi^{a}}(x, \lambda)\right), \quad h_{j}^{a}(x, \lambda)=\pi\left(\chi^{a}(x, \lambda) H_{j} \hat{\chi^{a}}(x, \lambda)\right)$,
where $\pi: \mathfrak{g} \mapsto \mathfrak{g} / \operatorname{ker}\left(\operatorname{ad}_{J}\right)$. Introducing

$$
\begin{equation*}
\mathcal{E}_{\alpha}^{a}=\chi^{a} E_{\alpha} \hat{\chi^{a}}=e_{\alpha}^{a}+d_{\alpha}^{a}, \quad \mathcal{H}_{j}^{a}=\chi^{a} H_{j} \hat{\chi}^{a}=h_{j}^{a}+f_{j}^{a} . \tag{110}
\end{equation*}
$$

we immediately convince ourselves that

$$
\begin{equation*}
i \partial_{x} \mathcal{E}_{\alpha}^{a}+\left[q-\lambda J, \mathcal{E}_{\alpha}^{a}\right]=0 \tag{111}
\end{equation*}
$$

$$
\begin{equation*}
i \partial_{x} \mathcal{H}_{j}^{a}+\left[q-\lambda J, \mathcal{H}_{j}^{a}\right]=0 \tag{112}
\end{equation*}
$$

Further on we shall skip the upper index a in the squared solutions for the sake of simplicity. After applying the splitting (110) to (111) we derive

$$
\begin{align*}
i \partial_{x} e_{\alpha}+\pi\left[q, e_{\alpha}\right]+\pi\left[q, d_{\alpha}\right] & =\lambda \pi\left[J, e_{\alpha}\right] \tag{113}\\
i \partial_{x} d_{\alpha}+(\mathbb{1}-\pi)\left[q, e_{\alpha}\right] & =0 \tag{114}
\end{align*}
$$

Obviously, e_{α} and d_{α} possess the representation

$$
\begin{array}{ll}
e_{\alpha}(x, \lambda)=\sum_{k=0}^{h-1} e_{\alpha, k}(x, \lambda), & e_{\alpha, k}(x, \lambda) \in \mathfrak{g}^{k} \\
d_{\alpha}(x, \lambda)=\sum_{k=0}^{h-1} d_{\alpha, k}(x, \lambda), & d_{\alpha, k}(x, \lambda) \in \mathfrak{g}^{k}
\end{array}
$$

As a result we obtain the following equalities

$$
\begin{equation*}
i \partial_{x} e_{\alpha, 0}+\pi\left[q, e_{\alpha, 0}\right]=\lambda \pi\left[J, e_{\alpha, 1}\right] \tag{115}
\end{equation*}
$$

$$
\begin{equation*}
i \partial_{x} e_{\alpha, k}+\pi\left[q, e_{\alpha, k}\right]+\pi\left[q, d_{\alpha, k}\right]=\lambda \pi\left[J, e_{\alpha, k+1}\right] \tag{116}
\end{equation*}
$$

$k=1, \ldots, h-1$. Since d_{α} belongs to the centralizer C_{J} of J it is a linear combination of the following type

$$
\begin{equation*}
d_{\alpha}=\sum_{j=1}^{r} \mathbf{d}_{\alpha}^{j} \varepsilon_{j}, \quad \mathcal{E}_{j} \in \mathfrak{g}^{k_{j}}, \quad\left[J, \mathcal{E}_{j}\right]=0 \tag{117}
\end{equation*}
$$

Consider the $\mathfrak{s l}(r+1)$ case again $(h=r+1)$. Now the adapted basis has the form

$$
\mathcal{E}_{k}=J^{h-k} \in \mathfrak{g}^{k} .
$$

It follows from (114) that

$$
i \partial_{x} \mathbf{d}_{\alpha}^{k}+\frac{1}{h} \operatorname{tr}\left(\left[q, e_{\alpha}\right] J^{k}\right)=0, \quad \Rightarrow \mathbf{d}_{\alpha}^{k}=\frac{i}{h} \int_{ \pm \infty}^{x} d y \operatorname{tr}\left(\left[q, e_{\alpha}\right] J^{k}\right)
$$

On the other hand we have

$$
\begin{aligned}
& i \partial_{x} e_{\alpha, 0}+\pi\left[q, e_{\alpha, 0}\right]=\lambda \pi\left[J, e_{\alpha, 1}\right] \\
& i \partial_{x} e_{\alpha, k}+\frac{i}{h} \pi\left[q, J^{h-k}\right] \int_{ \pm \infty}^{x} d y \operatorname{tr}\left(\left[q, e_{\alpha, k}\right] J^{k}\right)+\pi\left[q, e_{\alpha, k}\right]=\lambda \pi\left[J, e_{\alpha, k+1}\right]
\end{aligned}
$$

As a result one obtains

$$
e_{\alpha, 1}=\frac{1}{\lambda} \Lambda_{0} e_{\alpha, 0}, \quad e_{\alpha, k+1}=\frac{1}{\lambda} \Lambda_{k} e_{\alpha, k}, \quad k=1, \ldots, h-1,
$$

where

$$
\begin{gathered}
\Lambda_{0}=\operatorname{ad}_{J}^{-1}\left(i \partial_{x}+\pi[q, .]\right) \\
\Lambda_{k}=\operatorname{ad}_{J}^{-1}\left(i \partial_{x}+\frac{i}{h} \pi\left(\left[q, J^{h-k}\right]\right) \int_{ \pm \infty}^{x} d y \operatorname{tr}\left([q, .] J^{k}\right)+\pi[q, .]\right) .
\end{gathered}
$$

Therefore

$$
\Lambda e_{\alpha, 0}=\lambda^{h} e_{\alpha, 0}, \quad \Lambda=\Lambda_{h-1} \Lambda_{h-2} \ldots \Lambda_{0}
$$

From Wronskian relations we get:

$$
\begin{array}{r}
q(x)=\frac{i}{2 \pi} \sum_{a=1}^{h}(-1)^{(a+1)} \beta_{a}(J) \int_{l_{a}} d \lambda \beta_{a}(J) \\
\left(s_{a, \beta_{a}}^{+} e_{\beta_{a}, 0}^{(a)}(x, \lambda)+s_{a,-\beta_{a}}^{-} e_{-\beta_{a}, 0}^{(a-1)}(x, \lambda)\right), \\
\operatorname{ad}_{J}^{-1}\left[J^{k}, q(x)\right]=\frac{i}{2 \pi} \sum_{a=1}^{h}(-1)^{(a+1)} \beta_{a}\left(J^{k}\right) \int_{l_{a}} d \lambda \beta_{a}(J) \\
\left(s_{a, \beta_{a}}^{+} e_{\beta_{a}, 0}^{(a)}(x, \lambda)+s_{a,-\beta_{a}}^{-} e_{-\beta_{a}, 0}^{(a-1)}(x, \lambda)\right), \\
\Lambda^{p} \operatorname{ad}_{J}^{-1}\left[J^{k}, q(x)\right]=\frac{i}{2 \pi} \sum_{a=1}^{h}(-1)^{(a+1)} \beta_{a}\left(J^{k}\right) \int_{l_{a}} d \lambda \lambda^{h p} \\
\left(s_{a, \beta_{a}}^{+} e_{\beta_{a}, 0}^{(a)}(x, \lambda)+s_{a,-\beta_{a}}^{-} e_{-\beta_{a}, 0}^{(a-1)}(x, \lambda)\right),
\end{array}
$$

and

$$
\operatorname{ad}_{J}^{-1} \delta q(x)=\frac{i}{2 \pi} \sum_{a=1}^{h}(-1)^{a} \int_{l_{a}} d \lambda\left(\delta s_{a, \beta_{a}}^{+} e_{\beta_{a}, h-1}^{(a)}(x, \lambda)-\delta s_{a,-\beta_{a}}^{-} e_{-\beta_{a}, h-1}^{(a-1)}(x, \lambda)\right) .
$$

If $\delta q(x) \simeq q(x, t+\delta t)-q(x, t)=q_{t} \delta t+\mathcal{O}\left((\delta t)^{2}\right)$, then
$\operatorname{ad}_{J}^{-1} q_{t}(x)=\frac{i}{2 \pi} \sum_{a=1}^{h}(-1)^{a} \int_{l_{a}} d \lambda\left(s_{a, \beta_{a} ; t}^{+} e_{\beta_{a}, h-1}^{(a)}(x, \lambda)-s_{a,-\beta_{a} ; t}^{-} e_{-\beta_{a}, h-1}^{(a-1)}(x, \lambda)\right)$.
Therefore the NLEE:

$$
i \Lambda_{h-1} \operatorname{ad}_{J}^{-1} q_{t}+\sum_{k} c_{k} \Lambda_{h} \Lambda_{h-1} \ldots \Lambda_{k} \operatorname{ad}_{J}^{-1}\left[J^{k}, q(x, t)\right]=0,
$$

is equivalent to the linear evolution eqs. for $s_{a, \beta_{a}}^{+}$:

$$
i \frac{d s_{a, \beta_{a}}^{+}}{d t} \pm \sum_{k} c_{k} \lambda^{h-k+1} \beta_{a}\left(J^{k}\right) s_{a, \beta_{a}}^{+}(\lambda, t)=0
$$

Examples of such NLEE:

The two-dimensional Toda field theory (Mikhailov, 1979):

$$
\begin{aligned}
& \quad \frac{\partial^{2} u_{k}}{\partial x \partial t}=\exp \left(u_{k+1}-u_{k}\right)-\exp \left(u_{k}-u_{k-1}\right), \quad k=1, \ldots, h \\
& u_{0} \equiv u_{h} \\
& \mathbb{Z}_{h} \text {-NLS eq.: }
\end{aligned}
$$

$$
\begin{equation*}
i u_{k, t}+\gamma\left(\frac{\pi k}{N} \cdot u_{k, x}+i \sum_{p=1}^{N-1} u_{p} u_{k-p}\right)_{x}=0, \quad k=1,2, \ldots, N-1 \tag{119}
\end{equation*}
$$

Благодаря

Thank you

За for

вниманието attention!

