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1 BEC with hyperfine structure

2BNae= F =1 S'TRb < F =2
see Wadati et al (2004), (2006), (2007); Ohmi & Machida (1998);
Kuwamoto et al (2004); Gerdjikov et al (2007), (2008)

The assembly of atoms in the hyperfine state of spin F' is described
by a normalized spinor wave vector with 2F + 1 components

O(x,t) = (Pp(z,t),Pp_1(x,1),..., CID_F(a;,t))T

whose components are labeled by the valuesotmp = F,...,1,0,—1,..., —F.
GPE-equation in the one-dimensional approximation:

0P  §Eqp|®]
Yor T 6d+ (1)

where for F' = 1 the energy functional is given by:

_ h* 2  CotC2 4 4 2 2 2
Egp = [ dx %|8x®| + | P1|™ + [P_1|™ + 2P| (|P1|” + [P_1]|*)
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é * >k %
b (- )l Pl + Il + ca(@iet 0+ 2t )b (2

the effective 1D couplings ¢p 2 are represented by
Co = 60/203_, Co = 62/261/3_, (3)

where a | is the size of the transverse ground state. In this expression,

co = mh*(ag + 2az)/3m, co = wh*(as — ag)/3m, (4)

where ay — s-wave scattering lengths; m is the mass of the atom.
Special (integrable) choice for the coupling constants ¢y = ¢ = —c¢ <
0, equivalently scattering lengths 2ag = —as > 0. In the dimensionless

form: ® — {®,/2®Py, ®_;}7T the corresponding GPE take the form:

i0,®1 + 02®1 + 2(|®1|* 4 2|Pp|*) P + 20* ,P: = 0,
i0;®g + 02 + 2(|P_1]* + |Po|? + |P1]%) Do + 205811 =0, (5)
10, P_1 + 070 _1 +2(|®_1|* + 2|®g|?)P_; +2PTD5 = 0.
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F' = 2 hyperfine state is described by a normalized spinor wave vector
®(:'U7 t) — ((I)2(337 t)a (1)1(517, t)) (I)()(ZE, t)a (I)—l(xa t)v (I)—Q(:Ca t))Tv (6)

whose components are labelled by the values of mp = 2,1,0,—1, —2.
Here the energy functional within mean-field theory is defined by

o0 hQ
Egp|®] = / d (%\3@\2 + %rn? + %fQ + %@\2) (7

— OO

where ¢ = £1. The number density and the singlet-pair amplitude are
defined by

n=(2,0%*) = Y PP, O=(D,50P) =205 2P, + ]

The coupling constants c; are real and can be expressed in terms of
the transverse confinement radius and the s-wave scattering lengths of
atoms. Choosing ¢ =0, ¢4 = 1 and ¢y = —2 we obtain

i0;® o + Opy®io = —26(B, B*) Dy + €(209D 5 — 20,1 + BY) iy
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10D 11 + Oy ®y1 = —26(B, D%)Dyq — €(202P_p — 20,D_; + D) D%,
i@tCIDO -+ 8m<I>0 — —26((1_)), (I)_)*)CI):I:O + 6(2(132(13_2 — 2(131(1)_1 + (I)(Q))(I)S

which is integrable by the inverse scattering method.
Lax pair is related to symmetric spaces Fordy, Kulish (1983) of BD.I-

type:
~ SO(n + 2)/SO(2) x SO(n)

with n = 3 and n = 5 respectively.

2 Symmetric and homogeneous spaces

Symmetric space: M is globally symmetric if each its point p is isolated
invariant point under an involutive isometry:

K(M) =M,  K*=1.

Cartan has classified all such involutions.
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M = &/H where & is simple and H is semisimple. Normally
H={Kec®, suchthat KJK '=J Je&H}.

Local coordinates:

Q) = [J,Q'(z)].

S G)L _0]1> )= (Q_o(x) Q+o(x))’

But for BD.I-type symmetric spaces:

Typically

10 0 0 ¢g" 0
J=100 0 |, Q=179 0 5071,
00 —1 0plsy O

Effectively it is enough to properly specify & and J in order to
determine M. The corresponding Lie algebra g acquires Zs-grading:

g=0"+g",
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gV ={X:Xeg KXKX)=X}, g¥P={X:Xeg XY)=-Y,
The grading property:

[9(0)79(0)] e g, [9(0)79(1)] e g, [g(l),g(l)] e g©
The set of positive roots A™ also splits into two subsets:
AT =AFUAT,
Al ={a: «aJ)=0} AT ={a: o)) =a>0}

3 Multicomponent nonlinear Schrodinger equations
for BD.I. series of symmetric spaces

MNLS equations for the BD.I. series of symmetric spaces (algebras of the
type so(2r+1) and J dual to e;) have the Lax representation [L, M| = 0
as follows

Ly(x,t,\) =i0,0 + (Q(x,t) — AJ)Y(x,t, A) = 0. (8)
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M(z,t, ) =100 + (Vo(z,t) + AVi(z,t) — N2 )(z,t,\) =0, (9)
,dQ 1

Vl(xat) — Q(Clj,t), Vo(ilf,t) — ia’dj % 5 [ad le,Q(x,t)](lO)
where
0 g- 0
Q=7 0 so7 ], J = diag(1,0,...0,—1). (11)
0 ﬁTSO 0

The 2r — 1-vectors ¢ and p have the form

T=(q2s- s Qs Qa1 Gra2s- - G2r)’ D= (D2, s PrsDrits PDra2s - Por)"

Y

while the matrix sy represents the metric involved in the definition of
so(2r —1), therefore it is related to the metric Sy associated with so(2r +
1) in the following manner

2r+1 0 0 1
So=> (D" Eporpop=[0-50], (Ekn)ij = Oik0nj(12)
k=1 I 0 0
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Next we will use

Eit — (E:I:(el—eg)a e 7E:I:(el—er)7 E:I:el ) E:I:(el—i—er)a s 7E:|:(€1—|—€2))7 (13)

We will use also the "scalar product"

Tr

(7 E)i) = Z(Qk(fbat)Em—ek + q2r—k+2(, t)E€1+€k) + qry1(z,t)Ee, .
k=2

Then the generic form of the potentials Q(x,t) related to these type of
symmetric spaces 1s

Q(:E,t) — ((f(ﬂj,t) ) E;f_) + (ﬁ(:lf,t) ) E;)v (14)

where E,, are the Weyl generators of the corresponding Lie algebra and
A7 is the set of all positive roots of so(2r + 1) such that (a,e;) = 1. In
fact AT ={e;, e fer, k=2,...,7}

In terms of these notations the generic MNLS type equations connected
to BD.I. acquire the form

Gt + Gex + 2(4, D)7 — (75 509) 500 = 0, (15)
q,

q
iDr — Paae — 2(¢,0)D + (P, Sop)Soq = 0,
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In the case of r = 2 if we impose the reduction p; = ¢; and introduce
the new variables ®; = g2, ®9 = q3/Vv2, ®_1 = q4 then we reproduce
the equations (119) with F' = 1, if (1)2 = ({2, (I)l = ({3, (I)Q = (4, (I)_l = ({5,
®_5 = gg then we get the F' = 2-case.

4 Inverse scattering method and reconstruction
of potential from minimal scattering data

Herein we remind some basic features of the inverse scattering theory
appropriate for the special case of I' = 2 spinor BEC equations.

Solving the direct and the inverse scattering problem (ISP) for L uses
the Jost solutions

lim ¢z, t,\)e? =1, lim o(x,t,\)e =1 (16)

r——00 r—0o0

and the scattering matrix T'(\,t) = ¢~ 1¢(x,t,N). Due to the special
choice of J and to the fact that the Jost solutions and the scattering
matrix take values in the group SO(2r + 1) we can use the following
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block-matrix structure of T'(\, 1)
mi T a
TAt) = bT Ta —soB™ |, (17)
& BtTsy my

where b (), t) and BE(),¢) are 2r — l-component vectors, Taa()) is a
2r — 1 x 2 — 1 block and mF()\), ¢ ()\) are scalar functions satisfying
i =1/2(b" - sobt)/mi, 7 =1/2(B~ - s0B~)/m7 .

The ISP is reduced to a Riemann-Hilbert problem (RHP) for the
fundamental analytic solution (FAS) x*(x,t,\). Their construction is
based on the generalized Gauss decomposition of T'(\,t)

T(A) =Ty (A)DF(NSF(A) =TF(A)D; (V)5S (M), (18)

Here Sf, TJi upper- and lower-block-triangular matrices, while Df()\)
are block-diagonal matrices with the same block structure as T'(\,t)
above. The explicit expressions of the Gauss factors in terms of the
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matrix elements of T'(\,t) is

a b- BY
SE(t,\) = exp (i(?i()\,t) - Ef[)) L orr=2 =2y
my my
+ 5T it T - _ By
TJ (th):eXp (:I:(IO (Aat)°E1 ))7 P — > p = ——,
mq my
mi 0 0 1/m7 0 0
D¥=1 0 my 0 , D5 = 0 m;, 0 |, (20
0 0 1/m{ 0 0 my
and o o
btop—T sob"bT1s
mj = To + — m, = T + oz~ 0
my my

Then the FAS can be defined as:

If Q(x,t) evolves according to (119) then the scattering matrix and
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its elements satisfy the following linear evolution equations

db* . dB* .
i— £ X205(t,\) =0, i + A2BE(t,\) =0,
dmi 0 idmg—L 0
1 p— —
dt ’ dt ’

so D*()) can be considered as generating functionals of the integrals of
motion.

The FAS for real X\ are linearly related

Tz, t,\) = x (2,8, \)Gs(\, 1), Go.g(A\t) = ST (A E)ST (A L)

(23

One can rewrite eq. (23) in an equivalent form for the FAS £*(x,t, \) =
x T (x,t, \)e** which satisfy also the relation

Jim X (x,t,0) = 1. (24)

Then these FAS satisfy

EF (w8, N) = € (2,6, )Gy, M 1), Gz, A t) = e "NGg (A 1)e ™"
(25)
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Obviously the sewing function G(x, A, t) is uniquely determined by the
Gauss factors ST (), t). In view of eq. (19) we arrive to the following

Lemma 1. Let the potential Q(x,t) be such that the Lax operator L has
no discrete eigenvalues. Then as minimal set of scattering data which
determines uniquely the scattering matriz T'(A,t) and the corresponding
potential Q(x,t) one can consider either one of the sets T;, i =1,2

To={pT(\t), 0 (M), XeER}, To = {77\, 1), 7 (\t), XeR}
(26)

Obviously, given T; one uniquely recovers the sewing function G ;(x,t, A).
In order to recover the corresponding scattering matrix 7'(\) one can
use the fact that the RHP (25) with canonical normalization has unique
regular solution. Then the generalized Gauss factors are recovered as
limits:

Sf]l:()\) _ xEI—nOO eiAJacg:l: (337 )\)e—i)\Jﬂc7 TjZF ()\)D}t ()\) _ xh_{go GiAJfEf:t(SU, )\)e—z’)\Jx.
(27)
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Given the solution ¢*(x,t, ) one recovers Q(x,t) via the formula

Q(z,t) = lim A (J _ eI (a8, A)) . (28)

A— 00

We impose also the standard reduction:

Q(z,t) = eQ'(z,t) © pr = €q.

As a consequence we have

p-(\t) =ep T (N, 1), 7 (\t) = eT (L),

5 Dressing method and soliton solutions

The soliton solutions can be constructed by Hirota method (Wadati,
(2005)) and also by the dressing Zakharov-Shabat method (VSG et al,
(2006).

The main goal of the Zakharov-Shabat dressing method: starting
from a known solutions xi(z,t,A) of Lg()\) with potential Q0)(z,1)
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to construct new singular solutions Xf(a:,t, A) of L with a potential
@Q(1)(x,t) with two additional singularities located at prescribed positions

AT; the reduction p = ¢* ensures that \; = (A\7)*. It is related to the
regular one by a dressing factor u(x,t, \)

Xit(:c,t,)\):u(x,)\)x(jf(az,t,)\)u:l()\). u_(A) = lim wu(x, ) (29)

r——0

Note that u_()\) is a block-diagonal matrix. u(xz, \) must satisfy
10U + Q1) (2)u — uQ ) (x) — A[J,u(x, \)] =0, (30)

and the normalization condition limy_. o u(z, A\) = 1.
The construction of u(x, A) is based on an appropriate anzats specifying
explicitly the form of its A-dependence:

u(x,\) =1+ (c(\)—1)P(x,t)+ (%)\) — 1> P(x,t), P=S5,'Pls,
(31)

(_x, t) are projectors whose rank s can not exceed r
P(x,t) = 0. Given a set of s linearly independent

where P(x,t) and P
P

and which satisty
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polarization vectors |n) spanning the corresponding eigensubspase of L
one can define

=S MG (O], Mus(a,t) = (o}, Olna 1),
a,b=1
_\t
(@, 1)) = X (@6, A )noa)s ¢N) = 22 {ng.alSolnos) = 0.

(32)
Taking the limit A — oo in eq. (30) we get that
Q(l)(xvt) T Q(O) (:C,t) — (>‘1_ o )‘ii—)[*]a P(:U,t) T ?(xvt)]

Below we list the explicit expressions only for the one-soliton solutions.
To this end we assume Qo) = 0 and put A= L iv. As a result we get

0\ (w,1) = —2iv (Pig(a,t) + (—=1)* Py gy (2,1)) (33)

where k = 2r + 2 — k.
Repeating the above procedure N times we can obtain N soliton
solutions.
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5.1 The case of rank one solitons

In this case s = 1 so that the generic (arbitrary r) one-soliton solution
reads

_,L'Ve—iu(x—’vt—(so) o .
— — 1Pk 1 k . __—z+iog
Tk cosh 2z + A2 (ake T age ) 7
V2 2
U = ) ’LLI—Q/L, Z(ajat) :V(Q?—Ut—f()), (34)
[
2
¢ = Ly Mozril _ 70,k > _ Dk N0k’
v [noa| Vinoallnosral 70 2noanoaral’
and dg = argng 1/ = —argng or+1/1, ¢ = argno . The polarization

vectors satisfy the following relation

> 2(=1) g png + (=1)"0g g = 0. (35)
k=1
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Thus for » = 2 we identify ®; = ¢, ®o = ¢3/v2 and 3 = ¢, and we
obtain the following solutions for the equation (119)

v /aigage T —vt—011) o _
b = — (cos 41 cosh z41 — isin ¢p4q sinh 241 ),

cosh 2z + A2
— 1
5i1:503|:¢2 ¢47 ¢11:¢2+¢4 ZilZZ:F—ln%,
21 2 2
2 —iu(z—vt—4ao)
b, = — fzzgs?f% Y (cos ¢3 sinh z — i sin ¢3 cosh z) .

For »r = 3 we 1dent1fy (I)Q = (2, (I)l = (3, (I)() = ({4, (I)_l = (5 and
®_, = gg, so that the one-soliton solution for equation (??) reads

2iv/agage  H(E—vt—ix2) . :
by = — (cos 4o cosh z4o — i sin ¢p4o sinh z45) ,

cosh 2z + A2
2iv\/azage (@ —vt—011)
O, = — c?;)sli P A% (cos ¢+1 sinh z4q1 — isin ¢41 cosh z11),
— 1
5i2:50:|:¢22 ¢6> ¢i2=¢2+¢6 ZiQIZ:F—ln%,
v 2 2 a9
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3 — @5 ®3 + @5 1. as

+1 0+ 2 P11 5 Z+1 Zszﬂ&S,
2 —ip(x—vt—>ag)
by = — w:(jsi 2 T A (cos ¢4 cosh z — i sin ¢4 sinh z) .

Choosing appropriately the polarization vectors |n) we are able to reproduce
the soliton solutions obtained by Wadati et al. both for F' =1 and F' = 2
BEC.

6 Effects of reductions on soliton solutions

The reduction group G g (Mikhailov, 1978) is a finite group which preserves
the Lax representation so that the reduction constraints are automatically
compatible with the evolution.

(G p must have two realizations:

i) Ggr C Autg and

ii) Ggr C Conf C, i.e. as conformal mappings of the complex A-plane. To
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each g, € Gr we relate a reduction condition for the Lax pair:
U(x,t,\) = [J,Q(x,t)] — \J, Ve, t,\) =[1,Q(x,t)] — A, (36)

of the Lax representation:

1) C1(UT(k1(N))) = U, Cr(VT(r1(N)) = V(N),
2)  Co(UT(r2(N) =-UM),  Ca(V'(k2(N) = -V(N),
3) C3(U* (k1 (V) = =U(N), C3(V7 (k1 (N)) = =V(N),
4) Ca(U(r2(N))) = U(A), Ca(V(r2(A))) = V(N),

6.1 N-wave system related to so(5)

Impose first a reductions of class 4 that does not affect the spectral
parameter. Choose Cy = Sy, ka(A) = A, so

So(UT(A\)Sg ' +U(N) =0, Sy =

—_—oc o oo
ol coo
co—~ oo
cocoo |l o
cCo oo =
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Focus our attention on NLEE related to the so(5) algebra. Thus the
N-wave system itself consists of 8 equations. A half of them reads

i(J1 — J2)Quo(x,t) — iy — I2)Qro,z (2, 1) + kQ11(x,t)Qar(x, 1) = 0,
iJ1Q11,4(x,t) — i11Q11,2(7,t) — k(Q10Qo01 + Q12Q7)(x, 1) = 0,
i(J1+ J2)Quz(x,t) — (L1 + I2)Q12.x(x,t) — kQ11(2, 1) Qo1 (x,t) = 0,
iJ2Qo1,t (7, 1) — 112Qo1,2(x,t) + k(Q77Q12 + Q1gQ11)(x,t) = 0.

(37)

where k := J, 1o — Jo14 is a constant describing the wave interaction. The
other 4 can be obtained by changing (), < ()z-. Dressing factor:

1

u(x,A) =1+ (¢(A) —1) P(x) + (@ — 1) P(z) € SO(5), (38)

P(x) = SoP'(x)S; .
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Generic 1-soliton solution reads

A — At | _ | _

QlO(z) — <m‘n> (6—1()\+21—>\ 22)n071m0’2 4+ GZ(A+22—>\ 21)n074m075) :
AT = AT -

Q11(z) = (min) (6 A Fpgame s — e Z1n0,3m0,5)7

>\_ o )\+ —’i(>\+21—|—)\_22) —i(>\_21—|—)\+22)
Q12(z) = () (6 10,104 T € n0,2m0,5) ;

AT = AT —iXTz —iA" 2z
Qo1(2) = () (6 A *Np2mop3 +e A 2n0,3m0,4) ;
° +
(m|n) = ZB_Z(A —A )Z’“n07/€m0,k, 2 = Jpx + Iit, kE=1,2.
k=1

The other 4 field can be formally constructed by doing the following
transformation

—ixT 2 N 2z
Qrn — Q- e e e TR, No,j <> Mo, ;-

A typical Zy reduction: KUT(A\*)K~! = U()\) where K = diag (€1, €2, 1, €9, €1)
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with ¢, = +1.
Jp =Jp, Qu=—aeQiy Qj=-—-€Qy, Qr=-ali, U=
Reduced NLEE is given by 4 equation

i(J1 — J2)Quot(z,t) — (L1 — 12)Quo,u(x,t) — keaQr1(x, ) Qo (
1J1Q11 (2, t) —i[1Q11 (2, 1) — E(Q10Q01 + €2Q12Q01)(

(

(

:,U, Y

8

Y

0
0
0,
0

8

i(J1+ J2)Qra4(z,t) —i(l1 + I2)Qi2.2(x,t) — kQ11(2, 1) Qo1
1J2Qo1¢(2,t) — ilaQo1 2 (x,t) — ke1 (Q11 Q12 + €2Q10Q11)

Y

t)
)
t)
t)

L,

0-26
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Then A\* = p+iv, and |m) = K|n)* and 1-soliton solution becomes

Q10(z) = <n:|212Tn> (€2€_i(A+Z1_(/\+)*Z2)no,1n8,2 + 6167;(A+22_(/\+)*Z1)no,4n$,5> ,
Qi1(2) = <n:|212Tn> (e_iA+Zl7’LO,1n8,3 N Ele—i(A+)*z1n0,3n8,5) |

Q12(2) = <n:|2léTn> (eze—i(A+z1+(>\+)*z2)n0’1n8,4 + 616_73(()\"‘)*,21+>\+z2)n0’2n2‘),5> ,
Qou(2) = <n:|iéTn> (e Somgami + 2~ O g gni ),

(n*|K|n) = e1|no,1|*e*** + e2ng2|?e®** + |ng 3|* + €2lno a?e™*"** + e1|ng 5%,
Solitons associated with subalgebras of so(5):

1. Suppose ng.1 = ngs = 0. The only nonzero waves are Qo1, Qg7
related to the simple root ay — a so(3) soliton.

2. Another sl(2) soliton is derived when ngs = ngs4 = 0. Then
()11, Q77 are nonvanishing; the so(3) subalgebra is connected with
the root e; = a1 + as.
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3. Let ng3 = 0. Then Q10,Q15 and Q12, Q15 are nonzero waves. The
corresponding subalgebra is so(3) @ so(3) ~ so(4).

4. If no.1 = 10,5, Moo = No,4 and ng3 = 10,3 then

—V

Q10(z) = A sinh 20 cosh v(zq + 2o )e #H{F1=22=01492)
1
24/ 21 .
Q11(z) = — \Afw sinh A sinh vz, e #(Z1701)
1
- _ZV ] —i,LL(Zl—l—ZQ—(Sl—(SQ)
Q12(z) = A sinh 26y cosh v(z1 — 22)e 7
1
—2v/21 .
Qo1(z) = [W cosh 6 cosh vzge #(22792)
1
__ o3 . i1 _ No3 i 162
— sinh Gpe**°1 ng2 = —~= cosh 0pe""°2, 6, € R,

n
Aq(z,t) =2 (simh2 Ao sinh*(vz;1) + cosh? COShQ(VZQ)) :
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If 5 = 0 then a single wave remains nontrivial:

_fZV Z/,L(z2—52).

cosh VZQ

Qoi(z,t) =

6.2 7, X Zs reductions and Doublet Solitons
An additional Z, symmetry:

X (@, ) = Ky (D), A%) 7 Ry

X (@, ) = Ko (D) (2, =N) Ky

where K;5 € SO(5) and [Ky,Ks] = 0. Also U(x,\) satisfies both
symmetry conditions. The Zs X Zs-reduced 4-wave system reads

(J1 — J2)ai0,¢(,t) — (L1 — L2)di0,2 (2, t) + kdii(x, t)dor
Jidire(z,t) — Liquy o (2, t) + k(qi2(2,t) — qio(2,t))qo1
(J1 + J2)qie(x,t) — (I1 + I2)q12,2 (2, 1) — kq11(x, t)qo
Joqo1,t(z,t) — I2qo1,z (2, t) + k(qio(z,t) + qi2(,t))q11
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where qio(x,t), qi1(x,t), qi2(z,t) and qo1(x,t) are real valued fields.
The dressing factor u(x, A) must be invariant under the action of
ZQ X ZQ, 1.e.

Ky (u'(z, )\*))_1 Kt =u(z, ), (39)
Ky (uT (2, -\)) " Kyt = u(x, \). (40)

If K1 = K5 = 1 one way to satistfy both conditions is to choose the poles
of u(x,\) at AT = +iv and |m(z,t)) = |n(x,t)) = e+ |ng) real.
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The doublet solution becomes

4y
(nfn)

4y
(n|n)

4y
(n|n)

4y
qoi(x,t) = — ) Nong 3 coshv(Joz + Iot — &2),

qio(x,t) = — NiNgcoshv|(Jy + Jo)x + (I + )t — & — &),

qll(ZIZ,t) = — N1n0,3 SinhV(J1x+Ilt—£1),

qlg(x,t) = — N1 N5 cosh V[(Jl — JQ)Q? -+ (Il — Ig)t — 51 + 62],

(n(z,t)|n(x,t)) = 2N7 cosh 2v(Jix + L1t — &) + 2N3 cosh 2uv(Jox + Int — &) + n(2)73,

where

1 10,5 1 10,4
fl = 2_V In —, 52 = 5% In y Nl = 4/10,1M0,5, N2 = 4/10,2710,4-

no,1 no,2
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6.3 Zsy X Zs reductions and Quadruplet Solitons

Now the Zs X Zso-invariance of u(z,t, \) is ensured by adding two more
terms:

Alw,t) | KiSA" (@, 0(K1S) ™" KaSA(e,t)(KaS) ™!

ulw, A =1+ 7 A — (A A+ AT
B KleA*(JZ,t)<K1K2)_1
A+ (AT)* '

where A(x,t) = | X (z,t))(F(x,t)| and
F(z,1)) = e VTHO|Fy),

For | X (z,t)) we get a linear system of equations. Skipping the details we
obtain the generic quadruplet solution to the 4-wave system associated
with the Bo algebra

4 1mN{

qio0 = KIm CL*Nl COSh(gOl -+ QDQ) — Iy
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imAT
ny

4 5 1mNT{
qi2 = Zlm a® Ny cosh(p1 — pg) — 1

4 : * s x
qi1 = ZIm a* Ny sinh(p1) — N7 Smh(gpl)] mg

(1 cosh(py — p2) —ivcosh(p] + ¢2)) | N2

4 B . )\+*
Qo1 = ZIm _CL*NQ cosh(ps) — ZWLV N3 Cosh(gz);)] mg.
where
Fy m(x,t)
t) = N2 cosh 2¢; + N2 cosh 2 22 () = ——

olayt) = —— | NEcosh 21 + N cosh2pn + 2 b(w.0) = 00,

t 312
c(x,t) = m(z, ), m(x,t) = |N1|? cosh(2Re ¢1)+|Na|? cosh(2Re 902)—|—‘m20| :

L

6—0o?

1 o
N, = \/mgmg_a, Yo (x,t) := i)\+(JU:I:—|—Iat)—I—§ log 0 oc=1,2.
My

_ Other inequivalent reductions: we can use automorphisms K, and /or
K5 taking values in the Weyl group.
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7 The Generalized Fourier Transforms for
Non-regular J

We show that the ISM can be viewed as generalized Fourier transform
(GFT). We determine explicitly the proper generalizations of the usual
exponents. We also introduce a skew—scalar product on M which provides
it with a symplectic structure.

7.1 The Wronskian relations

Along with the Lax operator we consider associated systems:

z@ — (x, t, \)U(z,t,\) = 0, U(x,\) =Q(x) — \J, (41)

dax
(O U, A )+ Ut o0t N) =0 (42)
i% Tt N) + U (@ £ A £ A) = 0 (43)
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where d1) corresponds to a given variation §Q(x,t) of the potential, while
by dot we denote the derivative with respect to the spectral parameter.
We start with the identity:

(XN = DI =i T et Q@) (@), (44)

— 00

where x(z, A) can be any fundamental solution of L.
One can use the asymptotics of x*(z, \) for z — Footo express the
l.h.sides of the Wronskian relations in terms of the scattering data. Then

(&N = B =i [ de((1.Q@led @ )))
(@I @) = D) B =i [ ded(1Qles @ 1))

(45)
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s (@A) = X B (@, )),  ef(@,A) = Py (xTEg* (z, 1)),

e (1,0 = X FER F (@), e (@) = Py (X Es (2, ),
(46)

are the natural generalization of the ‘squared solutions’ introduced first
for the sl(2)-case. By Py; we have denoted the projector FPy; = ad jlad g
on the block-off-diagonal part of the corresponding matrix-valued function.

The right hand sides of eq. (46) can be written down with the skew—
scalar product:

oo

TX,Y] = / da (X (2), [J.Y (2)]). (47)

— OO

where (X,Y) is the Killing form; in what follows we assume that the
Cartan-Weyl generators satisfy (E,, E_g) = 0q.8 and (H;, Hy) = d;x.
The product is skew-symmetric [[X : Yﬂ = — [[Y, X ﬂ and is non-degenerate
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on the space of allowed potentials M. Thus we find

ph =—i[[Q),e;t]],  p; =—i[Qz), €3],
5 =—i[Qx).efg], 5 =-i[Q),e5], (48)
LB B b Bt
A A

Thus the mappings § : Q(x,t) — T; can be viewed as generalized
Fourier transform in which e?(m,)\) and e i(x A) can be viewed as

generalizations of the standard exponentials.
We apply ideas similar to the ones above and get:

o0 =~ 300w 4], dpy =ilad 0@ 5],
ot = ilad0QG), e, dry = —iffad'6QU), 5]

where 3 € AT.
These relations are basic in the analysis of the related NLEE and

their Hamiltonian structures. Assume that

5Q(z,t) = Qudt + O((51)2). (50)
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Keeping only the first order terms with respect to 6t we find:

dp* do~
% = —i[[ad let(:C),e’B’JF]], % = Z'[[ad let(x),e/_’gﬂ, -
dry drg

—r=ifad; Q@) e ], —F = —iad ' Qi) e5]],

7.2 Completeness of the ‘squared solutions’
Let us introduce the sets of ‘squared solutions’
{\Ij} — {\Ij}c U {\Ij}da {(I)} — {(I)}c U {(I)}da (52)
{¥}. = {efa(a:,)\), e, (r,\), ANeR, a«ac Air} :

{\Il}d = {eﬂiFoz;j (:13), éia;j(x)’ éia;j(x)’ .éia;j(x)’ o< A;r’ } ’
(53)

®l.={et(x,N), e”_(x,\), NER, aecAT},
a o 1

{(I)}d = {eia;j (:C)v éia;j(x)v éia;j (CC)? ‘éia;j('x)v Q€ Ai—’ } ?
(54)
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where 5 = 1,..., N and the subscripts ‘c’ and ‘d’ refer to the continuous

and discrete spectrum of L, the latter consisting of 2/V discrete eigenvalues
)\;-t e C4.

Theorem 1 (see V.S.G. (1998)). The sets {¥} and {®} form complete
sets of functions in M. The completeness relation has the form:

o=y =~ [ T NG 2y, \) - G (2,9,0))

N (55)
j=1
gy = Z (Ea QFE_o—E_4® Ea);
aEA+
y (56
Gy (z,y,A) = > ei (z,))®el, (y,N),
a€A+
Grj(@y) = ) (ei,,;(2) ® e, ;(y) + ey, (@) ® et (y). (57)

ozEAii'
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Idea of the proof. Apply the contour integration method to the function
G*(2,,)) = GY (2,5, MOy — x) — G5 (2,3, M)0(z — y),
Gy (z,9,A) = Y ein(2,)) ®ex,(y, ),

ozEAi"

Gy(z,y,N) = > ef(z.N)®er,(y,\)+ > hi(z,N)@h](y,N),

CXEAQUAl_ j:1

hy (2, A) = x* (2, NV H; R (2, X),

(58)
and calculate the integral
Jo(,y) = — 7{ NG (2,9, \) — — ]f G (2,9, 7). (59)
x,Y) = — x — —
G\, Y 9 . » Y 9 . LY, )

in two ways: i) via the Cauchy residue theorem and ii) integrating along
the contours. []
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V+,00

YIY
Y
Y

A

Y—,00

@urypa 1: The contours 7+ = R U V4.
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Remark 1. There is a dual completeness relation for the ‘squared solutions’
obtained by replacing all e (x, \) with ;% (z, \).
7.3 Expansions over the ,squared” solutions

Using the completeness relations one can expand any generic element
F(z) of the phase space M over each of the sets of ‘squared solutions’:

F(z) = l/ XY (ed @ N o) = 2ol V). ()
a€A] (60)
_222 Z Z?V’_oz,] _I_ZFa ( ))
J= 10¢EA+
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where

YraN) = [€2aW: N FO)], . = [exa,2), F)], (62)

Zi;(t) = Res e (2, 7520 (N):  Zp () = Res eXo (2, M7h (N,

A=A >\—>\

(63)

Proposition 1. The function F(x) = 0 if and only if all its expansion
coefficients vanish, 1.e.:

o) =15V =0, ac€A; Zp, (@) = Zp, (@) =0;
;j/l-*t,a(A) — /?E;—ox)\) — 07 Q€ Ai—? Zl;l’_;oz,j(x) — Z;;a,j($> — 07
where 3 =1,...,N.
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7.4 Expansions of Q(z) and ad ;'0Q(x).

Q) === [ ix 3 (mE el () - 7 (Ve w0)
a€A+
N (64)
— 2;a§+ (Fe/\sj el (xz,\) + ,\IEGASJ— T e (x A))
Q) =2 [~ an Y (s eh e h) — oy (el ()
o (65)
+ ZEQGEA% (}\Re}\s;r plelt (z,\) + )\Re/\s_ P el (x A))
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ad ;'0Q(z) = i/ d\ Z (67 (z,A) + 075 (NeZ (z,\))

a€A+

N
—|—2Z Z (Res otrel (z,\) — Res 5Ta€a($,)\)> :

Hoeay VN
(66)

ad 7'6Q(x) = i/_ d\ Z (6pd (A e (x,\) +dp, (Nes (z,N))

T

a€A+
N
— 2 Res dpte’™ (z, ) Res dp_ el (x, A
;;A;(AVP al®A) = >\>\_p ( )>

(67)

These expansions combined with the proposition above give another
way to establish the one-to-one correspondence between Q)(x) and each
of the minimal sets of scattering data J; and Ts.
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oC ozEAi"
N
drr dr=
2 —a ot _ Qe
+ Z Z (/\Re)\st o e’ (x,\) /\Iie;\s‘_ ¥ e a(m,A)),
71=1 a€A+ J J
(68)
1dQ 1 [T dpq, dpg ) -
adjld_ — ;/oodA ZAJF (d—el__'(;(ﬂf,)\) + d—e/a (ZC,)\))
acAy
N
d,ij_ + d o 1—
_ QZ Z <>\Re)\s'+ € (e, N) — )\fie)\s_ — € (x, \)
71=1 aEA+ J J
(69)
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7.5 The generating operators

Introduce the generating operators A4 through:

(A+ o )‘)ei_a(xv )‘) =0, (A+ o )‘)e; (ZC, )‘) =0,

(A_ —Nel(x,\) =0, (A —Ne~(,\) = 0. (70)

Their derivation starts by introducing the splitting:

eX(x, ) = edE (2, \) + e (x, N, edE (2, \) = (1 — Pyy)e(x, ),
(71)

into the equation

deg,
Z —_—
dx

+ Q(x) — A, eq(z,\)] = 0. (72)

which is obviously satisfied by the ‘squared solutions’. Then eq. (72)
splits into:

d,+
idea
dx

+ [Q(x),ef(x,)\)] = 0, (7?’)



dex
— 2 4+ [Q(x), edE (2, N)] = A[J, eE(z, \)], (74)

de

Eq. (73) can be integrated formally with the result

edE (2, ) = C4F(N) + i / dy [Q(y), e (y, )], (75)
CHEN) = lim ed™E(y, ), e =+1. (76)
’ Y—>€00

Next insert (75) into (74) and act on both sides by ad ;'. This gives us:
(As = Neg (z,A) = i[Co (V) ad ;7 Q ()], (77)

where the generating operators A4 are given by:

AeX(@) =3 (¢ +i Q). [ dview). xwl]).
(Ay —Nef (2,)\) =0, (AL —XNe, (z,\) =0, (79)
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(A_ —Nel(xz,\) =0, (A —NeZ,(z,\) =0, (80)

Thus the sets {¥} and {®} are the complete sets of eigen- and adjoint
functions of Ay and A_.

8 Fundamental properties of the MINLS equations
8.1 The principal class of NLEE

By principle class of NLEE we mean the ones whose dispersion laws take
the form:

F(A) = f(A)J, (81)

where f(A) may be rational functions of A whose poles lie outside the
spectrum of L. The corresponding NLEE is

iad 7' Q; + f(A+)Q(z,t) = 0. (82)

Theorem 2. The NLEE (82) are equivalent to: i) the equations (22)
and 1) to the following evolution equations for the generalized Gauss
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factors of T'(\):

dST dT';
i 957 +[F(\),ST1=0, i—L +[F(\),T;]=0, (83)
dt dt
and
dS; dT'y
L po).ss =0 DL )T =0, (81)

8.2 The integrals of motion Hamiltonian properties
of the MNLS eqs.

The block-diagonal Gauss factors DT ()\) are generating functionals of
the integrals of motion. The principal series of integrals is generated by

my (A):

tlnmi =) Lia™k (85)

k=1
Let us outline a way to calculate their densities as functionals of Q(x, ).
Use a third type of Wronskian identities involving x*(z, \). They have
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the form:

(Xixi(x, A) +iJx) ‘Zo:—oo = —z'/ dr (xJx(x,\) —J), (86)
which gives
i% InmE(\) = —i/ dr ((x(z,\)JxJ) —1). (87)

Note that in the integrand of the above equation we have in fact (h(x, \)J).
Splitting hi (z, ) = hY= (2, A)+hi (2, ) into ‘block-diagonal” and ‘block-
off-diagonal’ parts we get

4 s d,+ ad 71O(x
(A = Nh (7)) = i kafoohl 2 A)ad QW
— i[J, ad le(iU)] = Q(ZL’),

1.e.

(A — MRt (z,)) = Q(),

=) =+ [ aylQu) hi ) (89
+ o0
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Using eq. (89) and inverting formally the operator (AL — \) we obtain
the relations:

iilnmli()\) = —z'/oo dx (<J+/x dy [Q(y),hf(m,)\)],J> - 1)

dA — 00 + oo

:_dfmdx/xdyqu@%hﬂ%A»
— 00 +oo

_ _Z-/_OO oz /i dy {([7,Q)), (A — V7' Q(x)).
(90)

This procedure allows us to express the integrals of motion as functionals
of Q(x) in compact form:

L= [ o [ dy (0.0 85Q0). (91)

Note: the operators Ay and A_ produce the same integrals of motion.
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Using the explicit form of A4 we find that:
1dQ idQ+ B idQ_

AQ =riad, dr = dr dr ’
A2 dZQ + — + _
iQ:_@_I_[Q _Q7[Q 7Q H:
d3 + d3 —
Q=i il i [0n (08, Q) +3i [Q7, 107, 071).
(92)
Q" (wt) = (. t)- Ef),  Q (x,1) = (Bla,1) - E}).
Thus for the first three integrals of motion we get:
h=-i d(Q@.Q (),
1 ©.@)

L= do(Qf0).Q @)~ (@"(x).Q; @), (93)



117 — is the density of the particles, I5 is the momentum and —i/3 is the
Hamiltonian of the MNLS equations. Indeed, taking Hy = —il3 with
the Poissson brackets

{ak(y,t),pj(z,t)} = idk0(x — y), (94)

coincide with the MNLS equations (15). The above Poisson brackets are
dual to the canonical symplectic form:

Qo = i / T dwtr (55(2) A 03())

— %/_OO dx tr (ad jléQ(x) A |J, ad }1562(37)) (95)
— 1 ad7'6Q(x) Aad 716Q()] . (96)

(4

The last expression for () is preferable to us because it makes obvious
the interpretation of 6Q)(x,t) as local coordinate on the co-adjoint orbit
passing through J. It can be evaluated in terms of the scattering data
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variations.

Qp = i h d\ (5 (N) — Qg (V) —QZ (Res QF (M) + Res QO()\)> :

T ) _ oo

Qg (\) = >, o (ND, Aopy, Dy

a,wEAf

Hierarchy of Hamiltonian formulations of MNLS:

Q) = l[[adjldQAAkadjléQﬂ, A= %(A+ +A), (97

1
Hy, = i* 31, 5. (98)

We can also calculate {2 in terms of the scattering data variations. Doing
this we will need also egs. (79) and (80). The answer is

1 ) | )
O = o | N (O - 25 () —i ) 1: (9 + 955 5 (99)
j:
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QF . = Res XAQ7(N). (100)
’ A=AF

This allows one to prove that if we are able to cast )y in canonical
form then all 2, will also be cast in canonical form and will be pair-wise
equivalent.

I1. Equations with Coxeter type reduction
This reduction is of the form:
1) GiU(ks(N)) =UR),  Cu(V(ka(N))) =V(A),

where Cy is the Coxeter automorphism:
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9 Recursion operator for generalized Zakharov-
Shabat system with a 7Z; Coxeter type reduction

Generalized Zakharov-Shabat system associated with a simple Lie algebra
g of rank r

Lip = i)+ (q — M) = 0, (101)
where i
¢=) ¢H;, J=)> E.. (102)
Jj=1 acA
The generators H; for j =1,...,r and E, for any root a € A represent

Cartan-Weyl’s basis of the algebra g. The subset A C A is formed by all
admissible roots, so
A = {Ckl, . ,aT,Oéo},

where «g is the minimal root of g
The above potential is obtained form a generic one by applying a Zj,

reduction .
CqC™t =g¢, cJjet =~ (103)

w
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T 2
w=eh, C = exp (—%ZH ) : (po, ;) =1, (104)
where aq,...,q, are the simple roots of g. Any root g = Z;Zl njo.
Then
57 pO an — ht
l.e.

(akaﬁO) — 17 (a()aﬁ()) =h—1.

Taking into account the famous formula
eBae=B = ads g

it follows

CJe ! = Z exp (_T) Eo,=w""J. (105)

aceA
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Consider the algebra sl(r + 1). For sl(r + 1) we have
A:{Gi—€i+1, izl,...,T; 67~_|_1—61}.
Choosing a = e — ex11 we obtain pg = Z;Zl w;. The minimal root is
O = Ompin =— €r41 — €1.

The Coxeter automorphism has a finite order h = n, the so-called
Coxeter number. Hence it induces a Z; grading in g as follows

h—1
g:ng, gk:{XGg; GXG_lzwa}. (106)
k=0

Comparing the reduction condition (103) with the definition of splitting

of g we see that
geg’, Jeghh (107)
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The Z;, reduction affects the spectral properties of L — its continuous
spectrum consists in 2h rays l, (e = 1,...,2h) through the origin of
coordinate system in the complex A-plane. The angles between any adjacent
rays are equal to m/h. The rays split into 2h sectors €2,. In each sector €2,
there exists a fundamental analytic solution x*(z, A). The fundamental
analytic solutions of adjacent sectors are interrelated via a local Riemman-
Hilbert problem

X (2, ) = X @, N)GUN). (108)

Thus with each sector is associated "squared"solutions as follows

ea (@A) = m(X"(z, \)Eax®(z, X)), hj(@,A) = 7(x* (2, \)H;x*(x, A)),

(109)

where 7 : g — g/ ker(ad ;). Introducing
&L = X"Eax® =eg +di,  Hj=x"H;x*=hi+ [ (110)

we immediately convince ourselves that
10,2 4+ [q — AJ,E2] =0, (111)

0-61



10,35 + [q — AJ, H]] = 0. (112)

Further on we shall skip the upper index a in the squared solutions for
the sake of simplicity. After applying the splitting (110) to (111) we
derive

10z€q + T|q, ea] + g, do| = Am[J, eql, (113)
10xde, + (1 — 7)[q, eq] = 0. (114)

Obviously, e, and d, possess the representation

h—1
eq(T,\) = Z eq k(T, N, ear(z,N) € g~

h—1

do(x, ) = Z Aok (T, N), do 1 (z,\) € g".
k=0

As a result we obtain the following equalities

i0zeq 0+ [, eq0] = A[J, €0.1], (115)
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i0r€a,k + T|q, €ak] + T|q, da k] = AT|J, € kt1]; (116)
k=1,...,h—1. Since d, belongs to the centralizer C'; of J it is a linear
combination of the following type

do =) die;, & egh, [1&]=0. (117)

g=1

Consider the sl(r + 1) case again (h = r 4+ 1). Now the adapted basis
has the form

Ep = Jh=F ¢ gk.
It follows from (114) that

i0,d" + %tr ([q,ea]Jk) =0, = df = %/ dytr ([q, ea]Jk)
F+oo
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On the other hand we have

iaxea,o -+ W[Qa eOé,O] — )‘W[“L 604,1]7

. 0 P
i0z€q 1 + ET&'[(], J" k]/ dytr ([q, ea,r]J") + (g, €ax) = AT[J, €akr1)-
Fo0

As a result one obtains

1 1
01 = —MNoeqo, aktl = —Ageaqr, k=1,....,h—1,
€a,l )\ 0€a,0 Ca,k+1 )\ E€a,k

where
AO — ad,;l (’L@x + W[Q) ]) )

Ap =ad ;" (z’@x + %7‘(’ (lg, J"~%]) /;OO dytr ([g,.]J") + g, ]) :

Therefore
Aea,o = )\hea,(), A= Ah_lAh_Q c. Ao.
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From Wronskian relations we get:

a=1 la
a a—1
(S;Lﬁae(ﬁa)o(x’ A+ s, —Bae(—ﬂa ())(:1:, )\)) ,
. h
APad 7' [J¥, q(x)] = 2L > (=)t g, (JF) / dAN"P
n l
a=1 a
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and

. h
— ? a - N
ad J15Q(Qj) — 2— Z(_l) /l d>\ (58 76& (6a)7h/ 1([137 )\) o 5Saa_ﬁa (_/Ba:t)

a=1

If 5q(z) ~ q(z,t + 6t) — q(z,t) = q:0t + O((5t)?), then

. h
1 a—1
ad ;"¢ (z) = %Z(_ ) /d)\( Sa,84;:t e(ﬁa)h (@A) — Bate( ﬁa)

a=1 la

Therefore the NLEE:

iAh_lad jlqt -+ Z CkAhAh—l c. Akad jl[Jk, q(x,t)] — O,
k

is equivalent to the linear evolution egs. for s:{ 5,

ds
a,Bq h—k+1 k
= iE o) Ba(J%)sy 5 (A1) = 0.
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Examples of such NLEE:
The two-dimensional Toda field theory (Mikhailov, 1979):

82
&Elgz = exp(urs1 — ur) — exp(ur — Ug_1), k=1,....,h (118)
Upg = Up,
Zyp-NLS eq.:
mk N-1
iUk,t+7<N-Uk,$+izupUkp> :O, ]{:1,2,...,]\[—1,
p=1
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buiaronapsi Thank you
34, for

BHUMAHUETO attention!
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