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1 BEC with hyperfine structure
23Na ⇔ F = 1 87Rb ⇔ F = 2
see Wadati et al (2004), (2006), (2007); Ohmi & Machida (1998);
Kuwamoto et al (2004); Gerdjikov et al (2007), (2008)

The assembly of atoms in the hyperfine state of spin F is described
by a normalized spinor wave vector with 2F + 1 components

Φ(x, t) = (ΦF (x, t), ΦF−1(x, t), . . . , Φ−F (x, t))T

whose components are labeled by the values of mF = F, . . . , 1, 0,−1, . . . ,−F .
GPE-equation in the one-dimensional approximation:

i
∂Φ
∂t

=
δEGP[Φ]

δΦ∗
. (1)

where for F = 1 the energy functional is given by:

EGP =
∫

dx

{
~2

2m
|∂xΦ|2 +

c̄0 + c̄2

2

[
|Φ1|4 + |Φ−1|4 + 2|Φ0|2(|Φ1|2 + |Φ−1|2)

]
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+ (c̄0 − c̄2)|Φ1|2|Φ−1|2 +
c̄0

2
|Φ0|4 + c̄2(Φ∗1Φ

∗
−1Φ

2
0 + Φ∗0

2Φ1Φ−1)
}

. (2)

the effective 1D couplings c̄0,2 are represented by

c̄0 = c0/2a2
⊥, c̄2 = c2/2a2

⊥, (3)

where a⊥ is the size of the transverse ground state. In this expression,

c0 = π~2(a0 + 2a2)/3m, c2 = π~2(a2 − a0)/3m, (4)

where af – s-wave scattering lengths; m is the mass of the atom.
Special (integrable) choice for the coupling constants c̄0 = c̄2 ≡ −c <

0, equivalently scattering lengths 2a0 = −a2 > 0. In the dimensionless
form: Φ → {Φ1,

√
2Φ0, Φ−1}T the corresponding GPE take the form:

i∂tΦ1 + ∂2
xΦ1 + 2(|Φ1|2 + 2|Φ0|2)Φ1 + 2Φ∗−1Φ

2
0 = 0,

i∂tΦ0 + ∂2
xΦ0 + 2(|Φ−1|2 + |Φ0|2 + |Φ1|2)Φ0 + 2Φ∗0Φ1Φ−1 = 0, (5)

i∂tΦ−1 + ∂2
xΦ−1 + 2(|Φ−1|2 + 2|Φ0|2)Φ−1 + 2Φ∗1Φ

2
0 = 0.
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F = 2 hyperfine state is described by a normalized spinor wave vector

Φ(x, t) = (Φ2(x, t), Φ1(x, t), Φ0(x, t), Φ−1(x, t),Φ−2(x, t))T , (6)

whose components are labelled by the values of mF = 2, 1, 0,−1,−2.
Here the energy functional within mean-field theory is defined by

EGP[Φ] =
∫ ∞

−∞
dx

(
~2

2m
|∂xΦ|2 +

εc0

2
n2 +

c2

2
f2 +

εc4

2
|Θ|2

)
, (7)

where ε = ±1. The number density and the singlet-pair amplitude are
defined by

n = (~Φ, ~Φ∗) =
2∑

α=−2

ΦαΦ∗α, Θ = (~Φ, s0
~Φ) = 2Φ2Φ−2 − 2Φ1Φ−1 + Φ2

0.

The coupling constants ci are real and can be expressed in terms of
the transverse confinement radius and the s-wave scattering lengths of
atoms. Choosing c2 = 0, c4 = 1 and c0 = −2 we obtain

i∂tΦ±2 + ∂xxΦ±2 = −2ε(~Φ, ~Φ∗)Φ±2 + ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
∓2,
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i∂tΦ±1 + ∂xxΦ±1 = −2ε(~Φ, ~Φ∗)Φ±1 − ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
∓1,

i∂tΦ0 + ∂xxΦ0 = −2ε(~Φ, ~Φ∗)Φ±0 + ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
0.

which is integrable by the inverse scattering method.
Lax pair is related to symmetric spaces Fordy, Kulish (1983) of BD.I-

type:
' SO(n + 2)/SO(2)× SO(n)

with n = 3 and n = 5 respectively.

2 Symmetric and homogeneous spaces
Symmetric space: M is globally symmetric if each its point p is isolated
invariant point under an involutive isometry:

K(M) = M, K2 = 11.

Cartan has classified all such involutions.
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M ≡ G/H where G is simple and H is semisimple. Normally

H ≡ {K ∈ G, such that KJK−1 = J, J ∈ H}.
Local coordinates:

Q(x) = [J,Q′(x)].

Typically

J =
(

11 0
0 −11

)
, Q(x) =

(
0 Q+(x)

Q−(x) 0

)
,

But for BD.I-type symmetric spaces:

J =




1 0 0
0 0 0
0 0 −1


 , Q =




0 ~qT 0
~p 0 s0~q
0 ~pT s0 0


 ,

Effectively it is enough to properly specify G and J in order to
determine M. The corresponding Lie algebra g acquires Z2-grading:

g = g(0) + g(1),
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g(0) ≡ {X : X ∈ g K(X) = X}, g(1) ≡ {X : X ∈ g K(Y ) = −Y },
The grading property:

[g(0), g(0)] ∈ g(0), [g(0), g(1)] ∈ g(1), [g(1), g(1)] ∈ g(0)

The set of positive roots ∆+ also splits into two subsets:

∆+ = ∆+
0 ∪∆+

1 ,

∆+
0 ≡ {α : α(J) = 0} ∆+

1 ≡ {α : α(J) = a > 0}

3 Multicomponent nonlinear Schrödinger equations
for BD.I. series of symmetric spaces

MNLS equations for theBD.I. series of symmetric spaces (algebras of the
type so(2r+1) and J dual to e1) have the Lax representation [L,M ] = 0
as follows

Lψ(x, t, λ) ≡ i∂xψ + (Q(x, t)− λJ)ψ(x, t, λ) = 0. (8)
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Mψ(x, t, λ) ≡ i∂tψ + (V0(x, t) + λV1(x, t)− λ2J)ψ(x, t, λ) = 0, (9)

V1(x, t) = Q(x, t), V0(x, t) = iad−1
J

dQ

dx
+

1
2

[
ad−1

J Q,Q(x, t)
]
.(10)

where

Q =




0 ~qT 0
~p 0 s0~q
0 ~pT s0 0


 , J = diag(1, 0, . . . 0,−1). (11)

The 2r − 1-vectors ~q and ~p have the form

~q = (q2, . . . , qr, qr+1, qr+2, . . . , q2r)T , ~p = (p2, . . . , pr, pr+1, pr+2, . . . , p2r)T ,

while the matrix s0 represents the metric involved in the definition of
so(2r−1), therefore it is related to the metric S0 associated with so(2r+
1) in the following manner

S0 =
2r+1∑

k=1

(−1)k+1Ek,2r+2−k =




0 0 1
0 −s0 0
1 0 0


 , (Ekn)ij = δikδnj(12)
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Next we will use

~E±
1 = (E±(e1−e2), . . . , E±(e1−er), E±e1 , E±(e1+er), . . . , E±(e1+e2)), (13)

We will use also the "scalar product"

(~q · ~E+
1 ) =

r∑

k=2

(qk(x, t)Ee1−ek
+ q2r−k+2(x, t)Ee1+ek

) + qr+1(x, t)Ee1 .

Then the generic form of the potentials Q(x, t) related to these type of
symmetric spaces is

Q(x, t) = (~q(x, t) · ~E+
1 ) + (~p(x, t) · ~E−

1 ), (14)

where Eα are the Weyl generators of the corresponding Lie algebra and
∆+

1 is the set of all positive roots of so(2r + 1) such that (α, e1) = 1. In
fact ∆+

1 = {e1, e1 ± ek, k = 2, . . . , r}.
In terms of these notations the generic MNLS type equations connected

to BD.I. acquire the form

i~qt + ~qxx + 2(~q, ~p)~q − (~q, s0~q)s0~p = 0,

i~pt − ~pxx − 2(~q, ~p)~p + (~p, s0~p)s0~q = 0,
(15)
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In the case of r = 2 if we impose the reduction pk = q∗k and introduce
the new variables Φ1 = q2, Φ0 = q3/

√
2, Φ−1 = q4 then we reproduce

the equations (119) with F = 1; if Φ2 = q2, Φ1 = q3, Φ0 = q4, Φ−1 = q5,
Φ−2 = q6 then we get the F = 2-case.

4 Inverse scattering method and reconstruction
of potential from minimal scattering data

Herein we remind some basic features of the inverse scattering theory
appropriate for the special case of F = 2 spinor BEC equations.

Solving the direct and the inverse scattering problem (ISP) for L uses
the Jost solutions

lim
x→−∞

φ(x, t, λ)eiλJx = 11, lim
x→∞

ψ(x, t, λ)eiλJx = 11 (16)

and the scattering matrix T (λ, t) ≡ ψ−1φ(x, t, λ). Due to the special
choice of J and to the fact that the Jost solutions and the scattering
matrix take values in the group SO(2r + 1) we can use the following
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block-matrix structure of T (λ, t)

T (λ, t) =




m+
1 −~b−T c−1

~b+ T22 −s0
~B−

c+
1

~B+T s0 m−
1


 , (17)

where ~b±(λ, t) and ~B±(λ, t) are 2r − 1-component vectors, T22(λ) is a
2r − 1 × 2r − 1 block and m±

1 (λ), c±1 (λ) are scalar functions satisfying
c+
1 = 1/2(~b+ · s0

~b+)/m+
1 , c−1 = 1/2( ~B− · s0

~B−)/m−
1 .

The ISP is reduced to a Riemann-Hilbert problem (RHP) for the
fundamental analytic solution (FAS) χ±(x, t, λ). Their construction is
based on the generalized Gauss decomposition of T (λ, t)

T (λ) = T−J (λ)D+
J (λ)Ŝ+

J (λ) = T+
J (λ)D−

J (λ)Ŝ−J (λ), (18)

Here S±J , T±J upper- and lower-block-triangular matrices, while D±
J (λ)

are block-diagonal matrices with the same block structure as T (λ, t)
above. The explicit expressions of the Gauss factors in terms of the
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matrix elements of T (λ, t) is

S±J (t, λ) = exp
(
±(~τ±(λ, t) · ~E±

1 )
)

, τ+ =
b−

m+
1

, τ− =
B+

1

m−
1

(19)

T±J (t, λ) = exp
(
∓(~ρ∓(λ, t) · ~E±

1 )
)

, ρ+ =
b+

m+
1

, ρ− =
B−

1

m−
1

,

D+
J =




m+
1 0 0

0 m+
2 0

0 0 1/m+
1


 , D−

J =




1/m−
1 0 0

0 m−
2 0

0 0 m−
1


 , (20)

and

m+
2 = T22 +

~b+~b−T

m+
1

, m−
2 = T22 +

s0
~b−~b+T s0

m−
1

.

Then the FAS can be defined as:

χ±(x, t, λ) = φ(x, t, λ)S±J (t, λ) = ψ(x, t, λ)T∓J (t, λ)D±
J (λ). (21)

If Q(x, t) evolves according to (119) then the scattering matrix and

0-14



its elements satisfy the following linear evolution equations

i
d~b±

dt
± λ2~b±(t, λ) = 0, i

d ~B±

dt
± λ2 ~B±(t, λ) = 0,

i
dm±

1

dt
= 0, i

dm±
2

dt
= 0,

(22)

so D±(λ) can be considered as generating functionals of the integrals of
motion.

The FAS for real λ are linearly related

χ+(x, t, λ) = χ−(x, t, λ)GJ(λ, t), G0,J(λ, t) = S−J (λ, t)S+
J (λ, t).

(23)
One can rewrite eq. (23) in an equivalent form for the FAS ξ±(x, t, λ) =
χ±(x, t, λ)eiλJx which satisfy also the relation

lim
λ→∞

ξ±(x, t, λ) = 11. (24)

Then these FAS satisfy

ξ+(x, t, λ) = ξ−(x, t, λ)GJ (x, λ, t), GJ(x, λ, t) = e−iλJxG−0,J(λ, t)eiλJx.
(25)
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Obviously the sewing function Gj(x, λ, t) is uniquely determined by the
Gauss factors S±J (λ, t). In view of eq. (19) we arrive to the following

Lemma 1. Let the potential Q(x, t) be such that the Lax operator L has
no discrete eigenvalues. Then as minimal set of scattering data which
determines uniquely the scattering matrix T (λ, t) and the corresponding
potential Q(x, t) one can consider either one of the sets Ti, i = 1, 2

T1 ≡ {~ρ+(λ, t), ~ρ−(λ, t), λ ∈ R}, T2 ≡ {~τ+(λ, t), ~τ−(λ, t), λ ∈ R}.
(26)

Obviously, given Ti one uniquely recovers the sewing function GJ(x, t, λ).
In order to recover the corresponding scattering matrix T (λ) one can
use the fact that the RHP (25) with canonical normalization has unique
regular solution. Then the generalized Gauss factors are recovered as
limits:

S±J (λ) = lim
x→−∞

eiλJxξ±(x, λ)e−iλJx, T∓j (λ)D±
J (λ) = lim

x→∞
eiλJxξ±(x, λ)e−iλJx.

(27)
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Given the solution ξ±(x, t, λ) one recovers Q(x, t) via the formula

Q(x, t) = lim
λ→∞

λ
(
J − ξ±Jξ̂±(x, t, λ)

)
. (28)

We impose also the standard reduction:

Q(x, t) = εQ†(x, t) ⇔ pk = εq∗k.

As a consequence we have

~ρ−(λ, t) = ε~ρ+,∗(λ, t), ~τ−(λ, t) = ε~τ+,∗(λ, t).

5 Dressing method and soliton solutions
The soliton solutions can be constructed by Hirota method (Wadati,
(2005)) and also by the dressing Zakharov-Shabat method (VSG et al,
(2006).

The main goal of the Zakharov-Shabat dressing method: starting
from a known solutions χ±0 (x, t, λ) of L0(λ) with potential Q(0)(x, t)
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to construct new singular solutions χ±1 (x, t, λ) of L with a potential
Q(1)(x, t) with two additional singularities located at prescribed positions
λ±1 ; the reduction ~p = ~q∗ ensures that λ−1 = (λ+

1 )∗. It is related to the
regular one by a dressing factor u(x, t, λ)

χ±1 (x, t, λ) = u(x, λ)χ±0 (x, t, λ)u−1
− (λ). u−(λ) = lim

x→−∞
u(x, λ) (29)

Note that u−(λ) is a block-diagonal matrix. u(x, λ) must satisfy

i∂xu + Q(1)(x)u− uQ(0)(x)− λ[J, u(x, λ)] = 0, (30)

and the normalization condition limλ→∞ u(x, λ) = 11.
The construction of u(x, λ) is based on an appropriate anzats specifying

explicitly the form of its λ-dependence:

u(x, λ) = 11+(c(λ)−1)P (x, t)+
(

1
c(λ)

− 1
)

P (x, t), P = S−1
0 PT S0,

(31)
where P (x, t) and P (x, t) are projectors whose rank s can not exceed r
and which satisfy PP (x, t) = 0. Given a set of s linearly independent

0-18



polarization vectors |nk〉 spanning the corresponding eigensubspase of L
one can define

P (x, t) =
s∑

a,b=1

|na(x, t)〉M−1
ab 〈n†b(x, t)|, Mab(x, t) = 〈n†b(x, t)|na(x, t)〉,

|na(x, t)〉 = χ+
0 (x, t, λ+)|n0,a〉, c(λ) =

λ− λ+

λ− λ−
, 〈n0,a|S0|n0,b〉 = 0.

(32)

Taking the limit λ →∞ in eq. (30) we get that

Q(1)(x, t)−Q(0)(x, t) = (λ−1 − λ+
1 )[J, P (x, t)− P (x, t)].

Below we list the explicit expressions only for the one-soliton solutions.
To this end we assume Q(0) = 0 and put λ±1 = µ± iν. As a result we get

q
(1s)
k (x, t) = −2iν

(
P1k(x, t) + (−1)kPk̄,2r+1(x, t)

)
, (33)

where k̄ = 2r + 2− k.
Repeating the above procedure N times we can obtain N soliton

solutions.
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5.1 The case of rank one solitons
In this case s = 1 so that the generic (arbitrary r) one-soliton solution
reads

qk =
−iνe−iµ(x−vt−δ0)

cosh 2z + ∆2
0

(
αkez−iφk + (−1)kαk̄e−z+iφk̄

)
,

v =
ν2 − µ2

µ
, u = −2µ, z(x, t) = ν(x− ut− ξ0), (34)

ξ0 =
1
2ν

ln
|n0,2r+1|
|n0,1| , αk =

|n0,k|√|n0,1||n0,2r+1|
, ∆2

0 =
∑2r

k=2 |n0,k|2
2|n0,1n0,2r+1| ,

and δ0 = arg n0,1/µ = − arg n0,2r+1/µ, φk = arg n0,k. The polarization
vectors satisfy the following relation

r∑

k=1

2(−1)k+1n0,kn0,k̄ + (−1)rn2
0,r+1 = 0. (35)
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Thus for r = 2 we identify Φ1 = q2, Φ0 = q3/
√

2 and Φ3 = q4 and we
obtain the following solutions for the equation (119)

Φ±1 = −2iν
√

α2α4e
−iµ(x−vt−δ±1)

cosh 2z + ∆2
0

(cos φ±1 cosh z±1 − i sin φ±1 sinh z±1) ,

δ±1 = δ0 ∓ φ2 − φ4

2µ
, φ±1 =

φ2 + φ4

2
z±1 = z ∓ 1

2
ln

α4

α2
,

Φ0 = −
√

2iνα3e
−iµ(x−vt−δ0)

cosh 2z + ∆2
0

(cosφ3 sinh z − i sin φ3 cosh z) .

For r = 3 we identify Φ2 = q2, Φ1 = q3, Φ0 = q4, Φ−1 = q5 and
Φ−2 = q6, so that the one-soliton solution for equation (??) reads

Φ±2 = −2iν
√

α2α6e
−iµ(x−vt−δ±2)

cosh 2z + ∆2
0

(cos φ±2 cosh z±2 − i sin φ±2 sinh z±2) ,

Φ±1 = −2iν
√

α3α5e
−iµ(x−vt−δ±1)

cosh 2z + ∆2
0

(cos φ±1 sinh z±1 − i sin φ±1 cosh z±1) ,

δ±2 = δ0 ∓ φ2 − φ6

2µ
, φ±2 =

φ2 + φ6

2
z±2 = z ∓ 1

2
ln

α6

α2
,
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δ±1 = δ0 ∓ φ3 − φ5

2µ
, φ±1 =

φ3 + φ5

2
, z±1 = z ∓ 1

2
ln

α5

α3
,

Φ0 = −2iνα4e
−iµ(x−vt−δ0)

cosh 2z + ∆2
0

(cosφ4 cosh z − i sin φ4 sinh z) .

Choosing appropriately the polarization vectors |n〉 we are able to reproduce
the soliton solutions obtained by Wadati et al. both for F = 1 and F = 2
BEC.

6 Effects of reductions on soliton solutions
The reduction group GR (Mikhailov, 1978) is a finite group which preserves
the Lax representation so that the reduction constraints are automatically
compatible with the evolution.
GR must have two realizations:
i) GR ⊂ Autg and
ii) GR ⊂ Conf C, i.e. as conformal mappings of the complex λ-plane. To

0-22



each gk ∈ GR we relate a reduction condition for the Lax pair:

U(x, t, λ) = [J,Q(x, t)]− λJ, V (x, t, λ) = [I, Q(x, t)]− λI, (36)

of the Lax representation:

1) C1(U†(κ1(λ))) = U(λ), C1(V †(κ1(λ))) = V (λ),
2) C2(UT (κ2(λ))) = −U(λ), C2(V T (κ2(λ))) = −V (λ),
3) C3(U∗(κ1(λ))) = −U(λ), C3(V ∗(κ1(λ))) = −V (λ),
4) C4(U(κ2(λ))) = U(λ), C4(V (κ2(λ))) = V (λ),

6.1 N-wave system related to so(5)

Impose first a reductions of class 4 that does not affect the spectral
parameter. Choose C2 = S0, κ2(λ) = λ, so

S0(UT (λ))S−1
0 + U(λ) = 0, S0 =




0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0




,
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Focus our attention on NLEE related to the so(5) algebra. Thus the
N -wave system itself consists of 8 equations. A half of them reads

i(J1 − J2)Q10,t(x, t)− i(I1 − I2)Q10,x(x, t) + kQ11(x, t)Q01(x, t) = 0,

iJ1Q11,t(x, t)− iI1Q11,x(x, t)− k(Q10Q01 + Q12Q01)(x, t) = 0,

i(J1 + J2)Q12,t(x, t)− i(I1 + I2)Q12,x(x, t)− kQ11(x, t)Q01(x, t) = 0,

iJ2Q01,t(x, t)− iI2Q01,x(x, t) + k(Q11Q12 + Q10Q11)(x, t) = 0.

(37)

where k := J1I2−J2I1 is a constant describing the wave interaction. The
other 4 can be obtained by changing Qkn ↔ Qkn. Dressing factor:

u(x, λ) = 11 + (c(λ)− 1) P (x) +
(

1
c(λ)

− 1
)

P (x) ∈ SO(5), (38)

P (x) = S0P
T (x)S−1

0 .
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Generic 1-soliton solution reads

Q10(z) =
λ− − λ+

〈m|n〉
(
e−i(λ+z1−λ−z2)n0,1m0,2 + ei(λ+z2−λ−z1)n0,4m0,5

)
,

Q11(z) =
λ− − λ+

〈m|n〉
(
e−iλ+z1n0,1m0,3 − e−iλ−z1n0,3m0,5

)
,

Q12(z) =
λ− − λ+

〈m|n〉
(
e−i(λ+z1+λ−z2)n0,1m0,4 + e−i(λ−z1+λ+z2)n0,2m0,5

)
,

Q01(z) =
λ− − λ+

〈m|n〉
(
e−iλ+z2n0,2m0,3 + e−iλ−z2n0,3m0,4

)
,

〈m|n〉 =
5∑

k=1

e−i(λ+−λ−)zkn0,km0,k, zk = Jkx + Ikt, k = 1, 2.

The other 4 field can be formally constructed by doing the following
transformation

Qkn ↔ Qkn, e−iλ+zk ↔ eiλ−zk , n0,j ↔ m0,j .

A typical Z2 reduction: KU†(λ∗)K−1 = U(λ) where K = diag (ε1, ε2, 1, ε2, ε1)
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with εk = ±1.

Jk = J∗k , Q10 = −ε1ε2Q
∗
10, Q01 = −ε2Q

∗
01, Q11 = −ε1Q

∗
11, Q12 = −ε1ε2Q

∗
12.

Reduced NLEE is given by 4 equation

i(J1 − J2)Q10,t(x, t)− i(I1 − I2)Q10,x(x, t)− kε2Q11(x, t)Q∗01(x, t) = 0,

iJ1Q11,t(x, t)− iI1Q11,x(x, t)− k(Q10Q01 + ε2Q12Q
∗
01)(x, t) = 0,

i(J1 + J2)Q12,t(x, t)− i(I1 + I2)Q12,x(x, t)− kQ11(x, t)Q01(x, t) = 0,

iJ2Q01,t(x, t)− iI2Q01,x(x, t)− kε1(Q∗
11Q12 + ε2Q

∗
10Q11)(x, t) = 0.
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Then λ± = µ± iν, and |m〉 = K|n〉∗ and 1-soliton solution becomes

Q10(z) =
−2iν

〈n∗|K|n〉
(
ε2e

−i(λ+z1−(λ+)∗z2)n0,1n
∗
0,2 + ε1e

i(λ+z2−(λ+)∗z1)n0,4n
∗
0,5

)
,

Q11(z) =
−2iν

〈n∗|K|n〉
(
e−iλ+z1n0,1n

∗
0,3 − ε1e

−i(λ+)∗z1n0,3n
∗
0,5

)
,

Q12(z) =
−2iν

〈n∗|K|n〉
(
ε2e

−i(λ+z1+(λ+)∗z2)n0,1n
∗
0,4 + ε1e

−i((λ+)∗z1+λ+z2)n0,2n
∗
0,5

)
,

Q01(z) =
−2iν

〈n∗|K|n〉
(
e−iλ+z2n0,2n

∗
0,3 + ε2e

−i(λ+)∗z2n0,3n
∗
0,4

)
,

〈n∗|K|n〉 = ε1|n0,1|2e2νz1 + ε2|n0,2|2e2νz2 + |n0,3|2 + ε2|n0,4|2e−2νz2 + ε1|n0,5|2e−2νz1 ,

Solitons associated with subalgebras of so(5):

1. Suppose n0,1 = n0,5 = 0. The only nonzero waves are Q01, Q01

related to the simple root α2 – a so(3) soliton.

2. Another sl(2) soliton is derived when n0,2 = n0,4 = 0. Then
Q11, Q11 are nonvanishing; the so(3) subalgebra is connected with
the root e1 = α1 + α2.
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3. Let n0,3 = 0. Then Q10, Q10 and Q12, Q12 are nonzero waves. The
corresponding subalgebra is so(3)⊕ so(3) ≈ so(4).

4. If n∗0,1 = n0,5, n∗0,2 = n0,4 and n∗0,3 = n0,3 then

Q10(z) =
−iν

∆1
sinh 2θ0 cosh ν(z1 + z2)e−iµ(z1−z2−δ1+δ2),

Q11(z) = −2
√

2iν

∆1
sinh θ0 sinh νz1e

−iµ(z1−δ1),

Q12(z) =
−iν

∆1
sinh 2θ0 cosh ν(z1 − z2)e−iµ(z1+z2−δ1−δ2),

Q01(z) =
−2
√

2iν

∆1
cosh θ0 cosh νz2e

−iµ(z2−δ2),

n0,1 =
n0,3√

2
sinh θ0e

iµδ1 , n0,2 =
n0,3√

2
cosh θ0e

iµδ2 , θ0 ∈ R,

∆1(x, t) = 2
(
sinh2 θ0 sinh2(νz1) + cosh2 θ0 cosh2(νz2)

)
.
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If θ0 = 0 then a single wave remains nontrivial:

Q01(x, t) =
−√2iν

cosh νz2
e−iµ(z2−δ2).

6.2 Z2 × Z2 reductions and Doublet Solitons
An additional Z2 symmetry:

χ−(x, λ) = K1

(
(χ+)†(x, λ∗)

)−1
K−1

1

χ−(x, λ) = K2

(
(χ+)T (x,−λ)

)−1
K−1

2

where K1,2 ∈ SO(5) and [K1,K2] = 0. Also U(x, λ) satisfies both
symmetry conditions. The Z2 × Z2-reduced 4-wave system reads

(J1 − J2)q10,t(x, t)− (I1 − I2)q10,x(x, t) + kq11(x, t)q01(x, t) = 0,

J1q11,t(x, t)− I1q11,x(x, t) + k(q12(x, t)− q10(x, t))q01(x, t) = 0,

(J1 + J2)q12,t(x, t)− (I1 + I2)q12,x(x, t)− kq11(x, t)q01(x, t) = 0,

J2q01,t(x, t)− I2q01,x(x, t) + k(q10(x, t) + q12(x, t))q11(x, t) = 0,
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where q10(x, t), q11(x, t), q12(x, t) and q01(x, t) are real valued fields.
The dressing factor u(x, λ) must be invariant under the action of

Z2 × Z2, i.e.

K1

(
u†(x, λ∗)

)−1
K−1

1 = u(x, λ), (39)

K2

(
uT (x,−λ)

)−1
K−1

2 = u(x, λ). (40)

If K1 = K2 = 11 one way to satisfy both conditions is to choose the poles
of u(x, λ) at λ± = ±iν and |m(x, t)〉 = |n(x, t)〉 = eν(Jx+It)|n0〉 real.
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The doublet solution becomes

q10(x, t) = − 4ν

〈n|n〉N1N2 cosh ν[(J1 + J2)x + (I1 + I2)t− ξ1 − ξ2],

q11(x, t) = − 4ν

〈n|n〉N1n0,3 sinh ν(J1x + I1t− ξ1),

q12(x, t) = − 4ν

〈n|n〉N1N2 cosh ν[(J1 − J2)x + (I1 − I2)t− ξ1 + ξ2],

q01(x, t) = − 4ν

〈n|n〉N2n0,3 cosh ν(J2x + I2t− ξ2),

〈n(x, t)|n(x, t)〉 = 2N2
1 cosh 2ν(J1x + I1t− ξ1) + 2N2

2 cosh 2ν(J2x + I2t− ξ2) + n2
0,3,

where

ξ1 :=
1
2ν

ln
n0,5

n0,1
, ξ2 :=

1
2ν

ln
n0,4

n0,2
, N1 =

√
n0,1n0,5, N2 =

√
n0,2n0,4.
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6.3 Z2 × Z2 reductions and Quadruplet Solitons
Now the Z2 × Z2-invariance of u(x, t, λ) is ensured by adding two more
terms:

u(x, t, λ) = 11 +
A(x, t)
λ− λ+

+
K1SA∗(x, t)(K1S)−1

λ− (λ+)∗
− K2SA(x, t)(K2S)−1

λ + λ+

− K1K2A
∗(x, t)(K1K2)−1

λ + (λ+)∗
.

where A(x, t) = |X(x, t)〉〈F (x, t)| and

|F (x, t)〉 = eiλ+(Jx+It)|F0〉.

For |X(x, t)〉 we get a linear system of equations. Skipping the details we
obtain the generic quadruplet solution to the 4-wave system associated
with the B2 algebra

q10 =
4
∆
Im

[
a∗N1 cosh(ϕ1 + ϕ2)− imN∗

1

µν
(µ cosh(ϕ∗1 + ϕ2)− iν cosh(ϕ∗1 − ϕ2))

]
N2
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q11 =
4
∆
Im

[
a∗N1 sinh(ϕ1)− imλ+

µν
N∗

1 sinh(ϕ∗1)
]

m3
0

q12 =
4
∆
Im

[
a∗N1 cosh(ϕ1 − ϕ2)− imN∗

1

µν
(µ cosh(ϕ∗1 − ϕ2)− iν cosh(ϕ∗1 + ϕ2))

]
N2

q01 =
4
∆
Im

[
a∗N2 cosh(ϕ2)− imλ+∗

µν
N∗

2 cosh(ϕ∗2)
]

m3
0.

where

a(x, t) =
1

µ + iν

[
N2

1 cosh 2ϕ1 + N2
2 cosh 2ϕ2 +

F 2
0,3

2

]
, b(x, t) =

m(x, t)
iν

,

c(x, t) =
m(x, t)

µ
, m(x, t) = |N1|2 cosh(2Re ϕ1)+|N2|2 cosh(2Re ϕ2)+

|m3
0|2
2

,

Nσ :=
√

mσ
0m6−σ

0 , ϕσ(x, t) := iλ+(Jσx+Iσt)+
1
2

log
mσ

0

m6−σ
0

, σ = 1, 2.

Other inequivalent reductions: we can use automorphisms K̃1 and/or
K̃2 taking values in the Weyl group.
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7 The Generalized Fourier Transforms for
Non-regular J

We show that the ISM can be viewed as generalized Fourier transform
(GFT). We determine explicitly the proper generalizations of the usual
exponents. We also introduce a skew–scalar product on M which provides
it with a symplectic structure.

7.1 The Wronskian relations
Along with the Lax operator we consider associated systems:

i
dψ̂

dx
− ψ̂(x, t, λ)U(x, t, λ) = 0, U(x, λ) = Q(x)− λJ, (41)

i
dδψ

dx
+ δU(x, t, λ)ψ(x, t, λ) + U(x, t, λ)δψ(x, t, λ) = 0 (42)

i
dψ̇

dx
− λJψ(x, t, λ) + U(x, t, λ)ψ̇(x, t, λ) = 0 (43)
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where δψ corresponds to a given variation δQ(x, t) of the potential, while
by dot we denote the derivative with respect to the spectral parameter.

We start with the identity:

(χ̂Jχ(x, λ)− J)|∞x=−∞ = i

∫ ∞

−∞
dx χ̂[J,Q(x)]χ(x, λ), (44)

where χ(x, λ) can be any fundamental solution of L.
One can use the asymptotics of χ±(x, λ) for x → ±∞to express the

l.h.sides of the Wronskian relations in terms of the scattering data. Then

〈(χ̂±Jχ±(x, λ)− J
)
Eβ〉

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx 〈

(
[J,Q(x)]e±β (x, λ)

)
〉,

〈(χ̂′,±Jχ′,±(x, λ)− J
)
Eβ〉

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx 〈

(
[J,Q(x)]e′,±β (x, λ)

)
〉,
(45)
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where

e±β (x, λ) = χ±Eβχ̂±(x, λ), e±β (x, λ) = P0J(χ±Eβχ̂±(x, λ)),

e′,±β (x, λ) = χ′,±Eβχ̂′,±(x, λ), e′,±β (x, λ) = P0J (χ′,±Eβχ̂′,±(x, λ)),
(46)

are the natural generalization of the ‘squared solutions’ introduced first
for the sl(2)-case. By P0J we have denoted the projector P0J = ad−1

J ad J

on the block-off-diagonal part of the corresponding matrix-valued function.
The right hand sides of eq. (46) can be written down with the skew–

scalar product:

[[
X, Y

]]
=

∫ ∞

−∞
dx〈X(x), [J, Y (x)]〉, (47)

where 〈X, Y 〉 is the Killing form; in what follows we assume that the
Cartan-Weyl generators satisfy 〈Eα, E−β〉 = δα,β and 〈Hj ,Hk〉 = δjk.
The product is skew-symmetric

[[
X, Y

]]
= −[[

Y, X
]]
and is non-degenerate
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on the space of allowed potentials M. Thus we find

ρ+
β = −i

[[
Q(x), e′,+β

]]
, ρ−β = −i

[[
Q(x), e′,−−β

]]
,

τ+
β = −i

[[
Q(x), e+

−β

]]
, τ−β = −i

[[
Q(x), e−β

]]
,

~ρ+ =
~b+

m+
1

, ~ρ− =
~B−

m−
1

, ~τ+ =
~b−

m+
1

, ~τ− =
~B+

m−
1

.

(48)

Thus the mappings F : Q(x, t) → Ti can be viewed as generalized
Fourier transform in which e±β (x, λ) and e′,±β (x, λ) can be viewed as
generalizations of the standard exponentials.

We apply ideas similar to the ones above and get:

δρ+
β = −i

[[
ad−1

J δQ(x), e′,+β

]]
, δρ−β = i

[[
ad−1

J δQ(x),e′,−−β

]]
,

δτ+
β = i

[[
ad−1

J δQ(x),e+
−β

]]
, δτ−β = −i

[[
ad−1

J δQ(x),e−β
]]
,

(49)

where β ∈ ∆+
1 .

These relations are basic in the analysis of the related NLEE and
their Hamiltonian structures. Assume that

δQ(x, t) = Qtδt + O((δt)2). (50)
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Keeping only the first order terms with respect to δt we find:

dρ+
β

dt
= −i

[[
ad−1

J Qt(x), e′,+β

]]
,

dρ−β
dt

= i
[[
ad−1

J Qt(x), e′,−−β

]]
,

dτ+
β

dt
= i

[[
ad−1

J Qt(x),e+
−β

]]
,

dτ−β
dt

= −i
[[
ad−1

J Qt(x), e−β
]]
,

(51)

7.2 Completeness of the ‘squared solutions’
Let us introduce the sets of ‘squared solutions’

{Ψ} = {Ψ}c ∪ {Ψ}d, {Φ} = {Φ}c ∪ {Φ}d, (52)

{Ψ}c ≡
{
e+
−α(x, λ), e−α (x, λ), λ ∈ R, α ∈ ∆+

1

}
,

{Ψ}d ≡
{
e±∓α;j(x), ė±∓α;j(x), ë±∓α;j(x), ...

e±∓α;j(x), α ∈ ∆+
1 ,

}
,

(53)

{Φ}c ≡
{
e+

α (x, λ), e−−α(x, λ), λ ∈ R, α ∈ ∆+
1

}
,

{Φ}d ≡
{
e±±α;j(x), ė±±α;j(x), ë±±α;j(x), ...

e±±α;j(x), α ∈ ∆+
1 ,

}
,

(54)
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where j = 1, . . . , N and the subscripts ‘c’ and ‘d’ refer to the continuous
and discrete spectrum of L, the latter consisting of 2N discrete eigenvalues
λ±j ∈ C±.
Theorem 1 (see V.S.G. (1998)). The sets {Ψ} and {Φ} form complete
sets of functions in MJ . The completeness relation has the form:

δ(x− y)Π0J =
1
π

∫ ∞

−∞
dλ(G+

1 (x, y, λ)−G−1 (x, y, λ))

− 2i
N∑

j=1

(G+
1,j(x, y) + G−1,j(x, y)),

(55)

Π0J =
∑

α∈∆+
1

(Eα ⊗ E−α − E−α ⊗ Eα),

G±1 (x, y, λ) =
∑

α∈∆+
1

e±±α(x, λ)⊗ e+
∓α(y, λ),

(56)

G±1,j(x, y) =
∑

α∈∆+
1

(ė±±α;j(x)⊗ e±∓α;j(y) + e±±α;j(x)⊗ ė±∓α;j(y). (57)

0-39



Idea of the proof. Apply the contour integration method to the function

G±(x, y, λ) = G±1 (x, y, λ)θ(y − x)−G±2 (x, y, λ)θ(x− y),

G±1 (x, y, λ) =
∑

α∈∆+
1

e±±α(x, λ)⊗ e±∓α(y, λ),

G±2 (x, y, λ) =
∑

α∈∆0∪∆−1

e−±α(x, λ)⊗ e−∓α(y, λ) +
r∑

j=1

h±j (x, λ)⊗ h±j (y, λ),

h±j (x, λ) = χ±(x, λ)Hjχ̂
±(x, λ),

(58)

and calculate the integral

JG(x, y) =
1

2πi

∮

γ+

dλG+(x, y, λ)− 1
2πi

∮

γ−
dλG−(x, y, λ), (59)

in two ways: i) via the Cauchy residue theorem and ii) integrating along
the contours.
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λγ+,∞

γ−,∞

--
-

6
Y

-

¼

Фигура 1: The contours γ± = R ∪ γ±∞.
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Remark 1. There is a dual completeness relation for the ‘squared solutions’
obtained by replacing all e±α (x, λ) with e′,±α (x, λ).

7.3 Expansions over the „squared” solutions
Using the completeness relations one can expand any generic element
F (x) of the phase space M over each of the sets of ‘squared solutions’:

F (x) =
1
π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
e+

α (x, λ)γ+
F ;−α(λ)− e−−α(x, λ)γ−F ;α(λ)

)

− 2i
N∑

j=1

∑

α∈∆+
1

(Z+
F ;α,j(x) + Z−F ;α,j(x)),

(60)
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F (x) = − 1
π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
e+
−α(x, λ)γ̃+

F ;α(λ)− e−α (x, λ)γ̃−F ;−α(λ)
)

+ 2i
N∑

j=1

∑

α∈∆+
1

(Z̃+
F ;α,j(x) + Z̃−F ;α,j(x)),

(61)

where

γ±F ;α(λ) =
[[
e±±α(y, λ), F (y)

]]
, γ̃±F ;α(λ) =

[[
e±∓α(y, λ), F (y)

]]
, (62)

Z±F ;j(x) = Res
λ=λ±j

e±∓α(x, λ)γ±F ;∓α(λ), Z̃±F ;j(x) = Res
λ=λ+

j

e±±α(x, λ)γ+
F ;±α(λ),

(63)

Proposition 1. The function F (x) ≡ 0 if and only if all its expansion
coefficients vanish, i.e.:

γ+
F ;−α(λ) = γ−F ;α(λ) = 0, α ∈ ∆+

1 ; Z+
F ;α,j(x) = Z−F ;α,j(x) = 0;

γ̃+
F ;α(λ) = γ̃−F ;−α(λ) = 0, α ∈ ∆+

1 ; Z̃+
F ;α,j(x) = Z̃−F ;α,j(x) = 0;

where j = 1, . . . , N .
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7.4 Expansions of Q(x) and ad −1
J δQ(x).

Q(x) = − i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
τ+
α (λ)e+

α (x, λ)− τ−α (λ)e−−α(x, λ)
)

− 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

τ+
α e+

α (x, λ) + Res
λ=λ−j

τ−α e−−α(x, λ)

)
,

(64)

Q(x) =
i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
ρ+

α (λ)e′,+−α(x, λ)− ρ−α (λ)e′,−α (x, λ)
)

+ 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

ρ+
α e′,+α (x, λ) + Res

λ=λ−j
ρ−α e′,−α (x, λ)

)
,

(65)
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ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
δτ+

α (λ)e+
α (x, λ) + δτ−α (λ)e−−α(x, λ)

)

+ 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

δτ+
α e+

α (x, λ)− Res
λ=λ−j

δτ−α e−−α(x, λ)

)
,

(66)

ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
δρ+

α (λ)e′,+−α(x, λ) + δρ−α (λ)e′,−α (x, λ)
)

− 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

δρ+
α e′,+−α(x, λ)− Res

λ=λ−j
δρ−α e′,−α (x, λ)

)
.

(67)

These expansions combined with the proposition above give another
way to establish the one-to-one correspondence between Q(x) and each
of the minimal sets of scattering data T1 and T2.
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ad−1
J

dQ

dt
=

i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
dτ+

α

dt
e+

α (x, λ) +
dτ−α
dt

e−−α(x, λ)
)

+ 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

dτ+
α

dt
e+

α (x, λ)− Res
λ=λ−j

dτ−α
dt

e−−α(x, λ)

)
,

(68)

ad−1
J

dQ

dt
=

i

π

∫ ∞

−∞
dλ

∑

α∈∆+
1

(
dρ+

α

dt
e′,+−α(x, λ) +

dρ−α
dt

e′,−α (x, λ)
)

− 2
N∑

j=1

∑

α∈∆+
1

(
Res
λ=λ+

j

dρ+
α

dt
e′,+−α(x, λ)− Res

λ=λ−j

dρ−α
dt

e′,−α (x, λ)

)
.

(69)

0-46



7.5 The generating operators
Introduce the generating operators Λ± through:

(Λ+ − λ)e+
−α(x, λ) = 0, (Λ+ − λ)e−α (x, λ) = 0,

(Λ− − λ)e+
α (x, λ) = 0, (Λ− − λ)e−−α(x, λ) = 0.

(70)

Their derivation starts by introducing the splitting:

e±α (x, λ) = ed,±
α (x, λ) + e±α (x, λ), ed,±

α (x, λ) = (11− P0J)e±α (x, λ),
(71)

into the equation

i
deα

dx
+ [Q(x)− λJ, eα(x, λ)] = 0. (72)

which is obviously satisfied by the ‘squared solutions’. Then eq. (72)
splits into:

i
ded,±

α

dx
+ [Q(x), e±α (x, λ)] = 0, (73)
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i
de±α
dx

+ [Q(x), ed,±
α (x, λ)] = λ[J, e±α (x, λ)], (74)

Eq. (73) can be integrated formally with the result

ed,±
α (x, λ) = Cd,±

α;ε (λ) + i

∫ x

ε∞
dy [Q(y), e±α (y, λ)], (75)

Cd,±
α;ε (λ) = lim

y→ε∞
ed,±
α (y, λ), ε = ±1. (76)

Next insert (75) into (74) and act on both sides by ad−1
J . This gives us:

(Λ± − λ)e±α (x, λ) = i[Cd,±
α;ε (λ), ad−1

J Q(x)], (77)

where the generating operators Λ± are given by:

Λ±X(x) ≡ ad−1
J

(
i
dX

dx
+ i

[
Q(x),

∫ x

±∞
dy [Q(y), X(y)]

])
. (78)

(Λ+ − λ)e+
−α(x, λ) = 0, (Λ+ − λ)e−α (x, λ) = 0, (79)

0-48



(Λ− − λ)e+
α (x, λ) = 0, (Λ− − λ)e−−α(x, λ) = 0, (80)

Thus the sets {Ψ} and {Φ} are the complete sets of eigen- and adjoint
functions of Λ+ and Λ−.

8 Fundamental properties of the MNLS equations

8.1 The principal class of NLEE
By principle class of NLEE we mean the ones whose dispersion laws take
the form:

F (λ) = f(λ)J, (81)

where f(λ) may be rational functions of λ whose poles lie outside the
spectrum of L. The corresponding NLEE is

iad−1
J Qt + f(Λ±)Q(x, t) = 0. (82)

Theorem 2. The NLEE (82) are equivalent to: i) the equations (22)
and ii) to the following evolution equations for the generalized Gauss
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factors of T (λ):

i
dS+

J

dt
+ [F (λ), S+

J ] = 0, i
dT−J
dt

+ [F (λ), T−J ] = 0, (83)

and

i
dS−J
dt

+ [F (λ), S−J ] = 0, i
dT+

J

dt
+ [F (λ), T+

J ] = 0. (84)

8.2 The integrals of motion Hamiltonian properties
of the MNLS eqs.

The block-diagonal Gauss factors D±
J (λ) are generating functionals of

the integrals of motion. The principal series of integrals is generated by
m±

1 (λ):

± ln m±
1 =

∞∑

k=1

Ikλ−k. (85)

Let us outline a way to calculate their densities as functionals of Q(x, t).
Use a third type of Wronskian identities involving χ̇±(x, λ). They have
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the form:
(
χ̂±χ̇±(x, λ) + iJx

)∣∣∞
x=−∞ = −i

∫ ∞

−∞
dx (χ̂Jχ(x, λ)− J) , (86)

which gives

± d

dλ
ln m±

1 (λ) = −i

∫ ∞

−∞
dx (〈χ(x, λ)Jχ̂J〉 − 1). (87)

Note that in the integrand of the above equation we have in fact 〈h±1 (x, λ)J〉.
Splitting h±1 (x, λ) = hd,±

1 (x, λ)+h±1 (x, λ) into ‘block-diagonal’ and ‘block-
off-diagonal’ parts we get

(Λ+ − λ)h±1 (x, λ) = i

[
lim

y→±∞
hd,±

1 (x, λ), ad−1
J Q(x)

]

= i[J, ad−1
J Q(x)] ≡ Q(x),

(88)

i.e.
(Λ± − λ)h±1 (x, λ) = Q(x),

hd,±
1 (x, λ) = J +

∫ x

±∞
dy [Q(y), h±1 (x, λ)].

(89)
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Using eq. (89) and inverting formally the operator (Λ± − λ) we obtain
the relations:

± d

dλ
ln m±

1 (λ) = −i

∫ ∞

−∞
dx

(〈
J +

∫ x

±∞
dy [Q(y),h±1 (x, λ)], J

〉
− 1

)

= −i

∫ ∞

−∞
dx

∫ x

±∞
dy

〈
[J,Q(y)], h±1 (x, λ)

〉

= −i

∫ ∞

−∞
dx

∫ x

±∞
dy

〈
[J,Q(y)], (Λ± − λ)−1Q(x)

〉
.

(90)

This procedure allows us to express the integrals of motion as functionals
of Q(x) in compact form:

Is =
1
s

∫ ∞

−∞
dx

∫ x

±∞
dy

〈
[J,Q(y)],Λs

±Q(x)
〉
. (91)

Note: the operators Λ+ and Λ− produce the same integrals of motion.
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Using the explicit form of Λ± we find that:

Λ±Q = iad−1
J

dQ

dx
= i

dQ+

dx
− i

dQ−

dx
,

Λ2
±Q = −d2Q

dx2
+

[
Q+ −Q−, [Q+, Q−]

]
,

Λ3
±Q = −i

d3Q+

dx3
+ i

d3Q−

dx3
+ 3i

[
Q+, [Q+

x , Q−]
]
+ 3i

[
Q−, [Q+, Q−

x ]
]
,

(92)

Q+(x, t) = (~q(x, t) · ~E+
1 ), Q−(x, t) = (~p(x, t) · ~E−

1 ).

Thus for the first three integrals of motion we get:

I1 = −i

∫ ∞

−∞
dx 〈Q+(x), Q−(x)〉,

I2 =
1
2

∫ ∞

−∞
dx

(〈Q+
x (x), Q−(x)〉 − 〈Q+(x), Q−x (x)〉) , (93)

I3 = i

∫ ∞

−∞
dx

(
−〈Q+

x (x), Q−
x (x)〉+

1
2
〈[Q+(x), Q−(x)], [Q+(x), Q−(x)]〉

)
.
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iI1 – is the density of the particles, I2 is the momentum and −iI3 is the
Hamiltonian of the MNLS equations. Indeed, taking H(0) = −iI3 with
the Poissson brackets

{qk(y, t), pj(x, t)} = iδkjδ(x− y), (94)

coincide with the MNLS equations (15). The above Poisson brackets are
dual to the canonical symplectic form:

Ω0 = i

∫ ∞

−∞
dx tr (δ~p(x) ∧ δ~q(x))

=
1
i

∫ ∞

−∞
dx tr

(
ad−1

J δQ(x) ∧ [J, ad−1
J δQ(x)

)
(95)

=
1
i

[[
ad−1

J δQ(x)∧
′
ad−1

J δQ(x)
]]
, (96)

The last expression for Ω0 is preferable to us because it makes obvious
the interpretation of δQ(x, t) as local coordinate on the co-adjoint orbit
passing through J . It can be evaluated in terms of the scattering data
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variations.

Ω0 =
1
πi

∫ ∞

−∞
dλ

(
Ω+

0 (λ)− Ω−0 (λ)
)− 2

N∑

j=1

(
Res
λ=λ+

j

Ω+
0 (λ) + Res

λ=λ−j
Ω−0 (λ)

)
,

Ω±0 (λ) =
∑

α,γ∈∆+
1

δτ±(λ)D±
α,γ ∧ δρ±γ , D±

α,γ =
〈
D̂±E∓γD±(λ)E±α

〉
,

Hierarchy of Hamiltonian formulations of MNLS:

Ωk =
1
i

[[
ad−1

J δQ∧
′
Λkad−1

J δQ
]]
, Λ =

1
2
(Λ+ + Λ−), (97)

Hk = ik+3Ik+3. (98)

We can also calculate Ωk in terms of the scattering data variations. Doing
this we will need also eqs. (79) and (80). The answer is

Ωk =
1

2πi

∫ ∞

−∞
dλλk

(
Ω+

0 (λ)− Ω−0 (λ)
)− i

N∑

j=1

(
Ω+

k,j + Ω−k;j

)
, (99)
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Ω±k,j = Res
λ=λ±j

λkΩ±0 (λ). (100)

This allows one to prove that if we are able to cast Ω0 in canonical
form then all Ωk will also be cast in canonical form and will be pair-wise
equivalent.

II. Equations with Coxeter type reduction
This reduction is of the form:

4) C4(U(κ4(λ))) = U(λ), C4(V (κ4(λ))) = V (λ),

where C4 is the Coxeter automorphism:

Ch
4 = 11, κ4(λ) = ωλ, ωh = 1.
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9 Recursion operator for generalized Zakharov-
Shabat system with a Zh Coxeter type reduction

Generalized Zakharov-Shabat system associated with a simple Lie algebra
g of rank r

Lψ = i∂xψ + (q − λJ)ψ = 0, (101)

where

q =
r∑

j=1

qjHj , J =
∑

α∈A

Eα. (102)

The generators Hj for j = 1, . . . , r and Eα for any root α ∈ ∆ represent
Cartan-Weyl’s basis of the algebra g. The subset A ⊂ ∆ is formed by all
admissible roots, so

A = {α1, . . . , αr, α0},
where α0 is the minimal root of g

The above potential is obtained form a generic one by applying a Zh

reduction
CqC−1 = q, CJC−1 =

1
ω

J, (103)
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where

ω = e
2πi
h , C = exp

(
−2πi

h
H~ρ0

)
, (~ρ0, αj) = 1, (104)

where α1, . . . , αr are the simple roots of g. Any root β =
∑r

j=1 njαj .
Then

(β, ~ρ0) =
r∑

j=1

nj = ht (β),

i.e.
(αk, ~ρ0) = 1, (α0, ~ρ0) = h− 1.

Taking into account the famous formula

eBAe−B = ead BA

it follows
CJC−1 =

∑

α∈A

exp
(
−2πi

h

)
Eα = ω−1J. (105)
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Consider the algebra sl(r + 1). For sl(r + 1) we have

A = {ei − ei+1, i = 1, . . . , r; er+1 − e1}.

Choosing α = ek − ek+1 we obtain ~ρ0 =
∑r

j=1 ωj . The minimal root is
α = αmin = er+1 − e1.

The Coxeter automorphism has a finite order h = n, the so-called
Coxeter number. Hence it induces a Zh grading in g as follows

g =
h−1∑

k=0

gk, gk =
{
X ∈ g; CXC−1 = ωkJ

}
. (106)

Comparing the reduction condition (103) with the definition of splitting
of g we see that

q ∈ g0, J ∈ gh−1. (107)
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The Zh reduction affects the spectral properties of L — its continuous
spectrum consists in 2h rays la (a = 1, . . . , 2h) through the origin of
coordinate system in the complex λ-plane. The angles between any adjacent
rays are equal to π/h. The rays split into 2h sectors Ωa. In each sector Ωa

there exists a fundamental analytic solution χa(x, λ). The fundamental
analytic solutions of adjacent sectors are interrelated via a local Riemman-
Hilbert problem

χa(x, λ) = χa−1(x, λ)Ga(λ). (108)

Thus with each sector is associated "squared"solutions as follows

ea
α(x, λ) = π(χa(x, λ)Eαχ̂a(x, λ)), ha

j (x, λ) = π(χa(x, λ)Hjχ̂a(x, λ)),
(109)

where π : g 7→ g/ ker(ad J). Introducing

Ea
α = χaEαχ̂a = ea

α + da
α, Ha

j = χaHjχ̂a = ha
j + fa

j . (110)

we immediately convince ourselves that

i∂xEa
α + [q − λJ,Ea

α] = 0, (111)
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i∂xHa
j + [q − λJ,Ha

j ] = 0. (112)

Further on we shall skip the upper index a in the squared solutions for
the sake of simplicity. After applying the splitting (110) to (111) we
derive

i∂xeα + π[q, eα] + π[q, dα] = λπ[J, eα], (113)
i∂xdα + (11− π)[q, eα] = 0. (114)

Obviously, eα and dα possess the representation

eα(x, λ) =
h−1∑

k=0

eα,k(x, λ), eα,k(x, λ) ∈ gk,

dα(x, λ) =
h−1∑

k=0

dα,k(x, λ), dα,k(x, λ) ∈ gk.

As a result we obtain the following equalities

i∂xeα,0 + π[q, eα,0] = λπ[J, eα,1], (115)
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i∂xeα,k + π[q, eα,k] + π[q, dα,k] = λπ[J, eα,k+1], (116)

k = 1, . . . , h− 1. Since dα belongs to the centralizer CJ of J it is a linear
combination of the following type

dα =
r∑

j=1

dj
αEj , Ej ∈ gkj , [J,Ej ] = 0. (117)

Consider the sl(r + 1) case again (h = r + 1). Now the adapted basis
has the form

Ek = Jh−k ∈ gk.

It follows from (114) that

i∂xdk
α +

1
h
tr

(
[q, eα]Jk

)
= 0, ⇒ dk

α =
i

h

∫ x

±∞
dytr

(
[q, eα]Jk

)
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On the other hand we have

i∂xeα,0 + π[q, eα,0] = λπ[J, eα,1],

i∂xeα,k +
i

h
π[q, Jh−k]

∫ x

±∞
dytr

(
[q, eα,k]Jk

)
+ π[q, eα,k] = λπ[J, eα,k+1].

As a result one obtains

eα,1 =
1
λ

Λ0eα,0, eα,k+1 =
1
λ

Λkeα,k, k = 1, . . . , h− 1,

where
Λ0 = ad−1

J (i∂x + π[q, .]) ,

Λk = ad−1
J

(
i∂x +

i

h
π

(
[q, Jh−k]

) ∫ x

±∞
dytr

(
[q, .]Jk

)
+ π[q, .]

)
.

Therefore
Λeα,0 = λheα,0, Λ = Λh−1Λh−2 . . . Λ0.
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From Wronskian relations we get:

q(x) =
i

2π

h∑
a=1

(−1)(a+1)βa(J)
∫

la

dλβa(J)

(
s+

a,βa
e
(a)
βa,0(x, λ) + s−a,−βa

e
(a−1)
−βa,0(x, λ)

)
,

ad−1
J [Jk, q(x)] =

i

2π

h∑
a=1

(−1)(a+1)βa(Jk)
∫

la

dλβa(J)

(
s+

a,βa
e
(a)
βa,0(x, λ) + s−a,−βa

e
(a−1)
−βa,0(x, λ)

)
,

Λpad−1
J [Jk, q(x)] =

i

2π

h∑
a=1

(−1)(a+1)βa(Jk)
∫

la

dλλhp

(
s+

a,βa
e
(a)
βa,0(x, λ) + s−a,−βa

e
(a−1)
−βa,0(x, λ)

)
,
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and

ad−1
J δq(x) =

i

2π

h∑
a=1

(−1)a

∫

la

dλ
(
δs+

a,βa
e
(a)
βa,h−1(x, λ)− δs−a,−βa

e
(a−1)
−βa,h−1(x, λ)

)
.

If δq(x) ' q(x, t + δt)− q(x, t) = qtδt + O((δt)2), then

ad−1
J qt(x) =

i

2π

h∑
a=1

(−1)a

∫

la

dλ
(
s+

a,βa;te
(a)
βa,h−1(x, λ)− s−a,−βa;te

(a−1)
−βa,h−1(x, λ)

)
.

Therefore the NLEE:

iΛh−1ad−1
J qt +

∑

k

ckΛhΛh−1 . . . Λkad−1
J [Jk, q(x, t)] = 0,

is equivalent to the linear evolution eqs. for s+
a,βa

:

i
ds+

a,βa

dt
±

∑

k

ckλh−k+1βa(Jk)s+
a,βa

(λ, t) = 0.
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Examples of such NLEE:
The two-dimensional Toda field theory (Mikhailov, 1979):

∂2uk

∂x∂t
= exp(uk+1 − uk)− exp(uk − uk−1), k = 1, . . . , h (118)

u0 ≡ uh;
Zh-NLS eq.:

iuk,t + γ

(
πk

N
· uk,x + i

N−1∑
p=1

upuk−p

)

x

= 0, k = 1, 2, . . . , N − 1,

(119)
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