On low genus surfaces whose twistor lifts

are harmonic sections

Kazuyuki HASEGAWA (Kanazawa University)

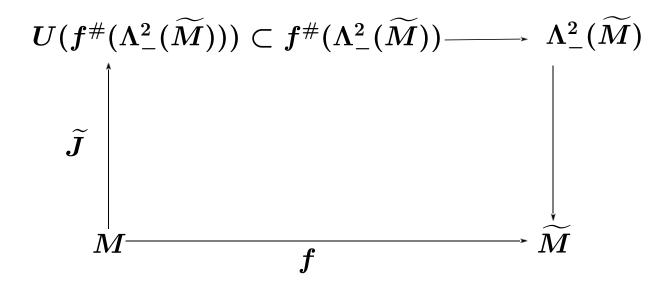
0. Introduction.

 $(\widetilde{M},\widetilde{g})$: oriented 4-dim. Riemannian manifold

(M,g) : oriented surface

 $f: M
ightarrow \widetilde{M}:$ isometric immersion

$$\begin{split} \Lambda^2_-(\widetilde{M}) &: ext{vector bundle of anti-selfdual 2-forms on } \widetilde{M} \ f^\# \Lambda^2_-(\widetilde{M}) &: ext{pull-back bundle of } \Lambda^2_-(\widetilde{M}) ext{ by } f \ U(f^\# \Lambda^2_-(\widetilde{M})) &: ext{ unit sphere bundle of } f^\# \Lambda^2_-(\widetilde{M}) \ \widetilde{J} \in \Gamma(U(f^\# \Lambda^2_-(\widetilde{M}))) : ext{ twistor lift of } M \end{split}$$



- For the study of surfaces using the twistor lifts, see the following papers:
- (1) E. Calabi (J. Diff. Geom., 1967),
- (2) R. Bryant (J. Diff. Geom., 1982),
- (3) T. Friedrich (Ann. Glob. Anal. Geom., 1984),
- (4) I. Khemar (arXiv:math:DG/0803.3341v2) and \cdots

• In this talk,

surfaces whose twistor lifts are harmonic sections

are considered. In particular, we determine such surfaces in hyperKähler manifolds for low genus cases.

- This talk is consists of
- 1. Twistor spaces and twistor lifts.
- 2. Harmonic sections.
- 3. Low genus cases.
- 4. Applications.

1. Twistor spaces and twistor lifts.

 $(\widetilde{M},\widetilde{g})$: oriented 4-dim. Riemannian manifold

 $\Lambda^2_-(\widetilde{M})$: vector bundle of anti-selfdual 2-forms on \widetilde{M}

- (M,g) : oriented surface
- $f: M
 ightarrow \widetilde{M}:$ isometric immersion

For each $x \in M$, take an orthonormal basis e_1, e_2, e_3, e_4 of $T_{f(x)}\widetilde{M}$ such that

 $\left\{egin{array}{ll} (1) \ e_1, e_2 \ {
m are \ compatible \ with \ the \ orientation \ of \ M,} \ (2) \ e_3, e_4 \ {
m are \ normal \ to \ } T_x M, \ (3) \ e_1, e_2, e_3, e_4 \ {
m are \ compatible \ with \ the \ orientation \ of \ \widetilde{M}.} \end{array}
ight.$

 $\omega_1, \omega_2, \omega_3, \omega_4$: dual basis of e_1, e_2, e_3, e_4 .

$${
m \underline{Def.}}\,:\,{
m The\ section\ }\widetilde{J}\in \Gamma(U(f^{\#}\Lambda^2_-(\widetilde{M})))\,\,{
m defined\ by}$$
 $\widetilde{J}(x):=\omega_1\wedge\omega_2-\omega_3\wedge\omega_4\quad\,(x\in M)$

is called the <u>twistor lift</u> of M.

• The unit sphere bundle $\mathcal{Z}(\widetilde{M}) := U(\Lambda^2_{-}(\widetilde{M}))$ is called the twistor space of \widetilde{M} .

- Using the metric \tilde{g} , $\Lambda^2_{-}(\widetilde{M})$ can be identified with a subbundle Q of the bundle of all skew symmetric endomorphisms of $T\widetilde{M}$.
- $U(Q)(\cong U(\Lambda_{-}^{2}(\widetilde{M})))$ is the bundle whose fiber is consists of all complex structures preserving the the metric and orientation of \widetilde{M} .

• On the twistor space $\mathcal{Z}(\widetilde{M})$, an almost complex structure $J^{\mathcal{Z}}$ can be defined as follows :

 $K: ext{ connection map of } Q \cong \Lambda^2_-(\widetilde{M})$

(w.r.t. connection induced from the Levi-Civita connection of \widetilde{M}) $p: \mathcal{Z}(\widetilde{M}) \to \widetilde{M}$: bundle projection

We have the decomposition

$$T_{\phi}\mathcal{Z}(\widetilde{M}) = T_{\phi}^{h}\mathcal{Z}(\widetilde{M}) \oplus T_{\phi}^{v}\mathcal{Z}(\widetilde{M})$$

where, $T^h_\phi \mathcal{Z}(\widetilde{M}) = \ker K_\phi$ and $T^v_\phi \mathcal{Z}(\widetilde{M}) = \ker p_{*\phi}$.

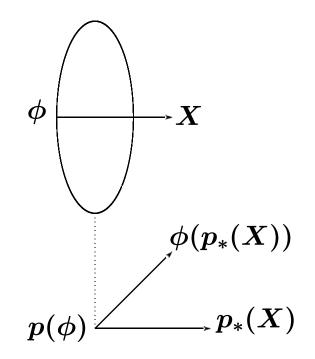
We define an almost complex structure $J^{\mathcal{Z}}$ by

$$J^\mathcal{Z}(X) = (\phi(p_*(X)))^h_\phi,$$

for $X \in T^h_\phi \mathcal{Z}(\widetilde{M})$, and

$$J^{\mathcal{Z}}(X) = \mathcal{J}(X)$$

for $X \in T^v_\phi \mathcal{Z}(\widetilde{M})$, where \mathcal{J} is the canonical complex structure on each fiber ($\cong S^2$)



• It is well-known that

$$J^{\mathcal{Z}}$$
 is integrable $\iff \widetilde{M}$ is self-dual

(M. F. Atiyah, N. J. Hitchin and I. M. Singer).

<u>Def.</u> : If the twistor lift \tilde{J} is horizontal map (that is, $\tilde{\nabla}\tilde{J} = 0$), the surface M is called superminimal.

• We define J^{\perp} by

$$J^{\perp}(e_3) = -e_4 \,\, {
m and} \,\, J^{\perp}(e_4) = e_3.$$

• Let <u>h</u> be the second fundamental form of M. Then we see that M is superminimal $\iff h(JX,Y) = J^{\perp}h(X,Y)$ for all $X, Y \in TM$ <u>Def.</u>: If $(f_{\#} \circ \widetilde{J})_* \circ J = J^{\mathcal{Z}} \circ (f_{\#} \circ \widetilde{J})_*$, then the surface M is said to be twistor holomorphic.

• Define β by

$$eta(X,Y) = h(X,JY) - J^{\perp}h(X,Y) + J^{\perp}h(JX,JY) + h(JX,Y)$$

for $X, Y \in TM$.

- *M* is twistor holomorphic $\iff \beta = 0$.
- M is superminimal $\iff M$ is minimal and twistor holomorphic.

2. Harmonic section.

(M,g) : n-dim. compact Riemannian manifold

E : Riemannian vector bundle over M

 g^E : fiber metric of E

 ∇^E : connection of E compatible with g^E

 K^E : connection map of $abla^E$

 $p: E \rightarrow M$: bundle projection

We define the canonical metric G on E by

 $G(\zeta,\zeta)=g(p_*(\zeta),p_*(\zeta))+g^E(K^E(\zeta),K^E(\zeta))$

for all $\zeta \in TE$.

U(E): unit sphere bundle of E

We give the induced metric of G on the submanifold $U(E)(\subset E)$.

 ${\mathcal E}$: the energy functional on $C^\infty(M,U(E))$

<u>Def.</u> : The section $\xi \in \Gamma(U(E))$ is said to be <u>harmonic section</u> if it holds that

$$\left.rac{d}{dt}\mathcal{E}(\xi_t)
ight|_{t=0}=0$$

for all variation $\xi_t \in \Gamma(U(E))$ of $\xi(=\xi_0)$.

- In general, harmonic sections are not harmonic maps.
- The twistor lift $\widetilde{J} \in \Gamma(U(f^{\#}\Lambda^2_{-}(\widetilde{M})))$ is harmonic section $\iff [\widetilde{J}, \overline{\bigtriangleup}^{\widetilde{\nabla}} \widetilde{J}] = 0.$

- 3. Low genus cases.
- M : compact surface

 ${\cal H}$: mean curvature vector field of ${\cal M}$

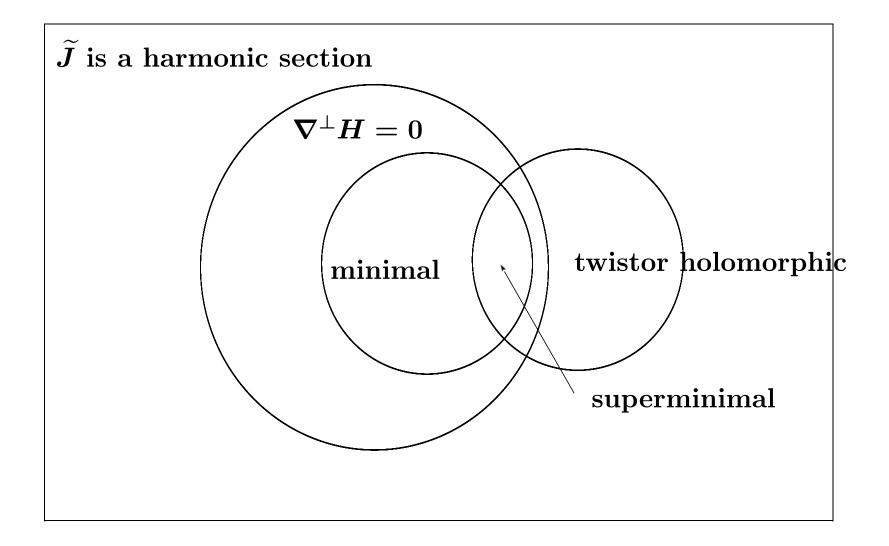
 $\boldsymbol{\nabla}^{\perp}$: normal connection

We define $\delta\beta$ by

$$(\deltaeta)(X)=-\sum_{i=1}^2(
abla'_{u_i}eta)(u_i,X)$$

for all $X \in TM$, where u_1 , u_2 is an orthonormal frame and $\nabla'\beta$ is the covariant derivative of β .

<u>Thm.</u> : If \widetilde{M} is a self-dual Einstein manifold, then the following conditions are mutually equivariant : (1) The twistor lift \widetilde{J} of M is harmonic section. (2) For all $X \in TM$, it holds that $\nabla_{JX}^{\perp}H = J^{\perp}\nabla_{X}^{\perp}H$. (3) $\delta\beta = 0$.



 \widetilde{M} : hyperkähler manifold

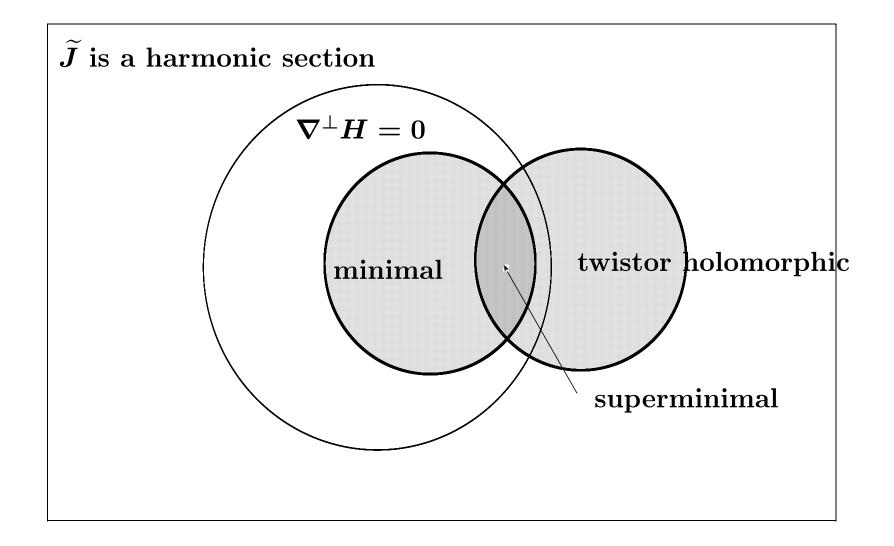
M: oriented, connected and compact surface in \widetilde{M}

 $\chi(T^{\perp}M): ext{ Euler number of the normal bundle } T^{\perp}M$

q : genus of M

 $ullet \chi(T^{\perp}M)\in 2{
m Z}.$

Thm. : Assume that the twistor lift \tilde{J} is a harmonic section and q = 0. Then we have (1) $\chi(T^{\perp}M) \ge 4 \Rightarrow M$ is a non-superminimal minimal surface. (2) $\chi(T^{\perp}M) = 2 \Rightarrow M$ is superminimal. (3) $\chi(T^{\perp}M) \le 0 \Rightarrow M$ is a non-superminimal twistor holomorphic surface.



Similarly, we have

<u>Thm</u>: Assume that the twistor lift \widetilde{J} is a harmonic section and q = 1. Then we have (1) $\chi(T^{\perp}M) \ge 2 \Rightarrow M$ is a non-superminimal minimal surface. (2) $\chi(T^{\perp}M) = 0 \Rightarrow \nabla^{\perp}H = 0$. (3) $\chi(T^{\perp}M) \le -2 \Rightarrow M$ is a non-superminimal twistor holomorphic surface.

• There is a noncompact surface such that

(1) $[\widetilde{J}, \overline{\bigtriangleup}^{\widetilde{
abla}} \widetilde{J}] = 0$ (\widetilde{J} is a harmonic section),

- (2) not twistor holomorphic,
- (3) *H* is not parallel w.r.t. ∇^{\perp} .

4. Applications.

When $\widetilde{M} = \mathbb{R}^4$, we have

<u>Cor.</u> : Assume that M is an oriented, connected and compact surface in \mathbb{R}^4 . If the twistor lift of M is a harmonic section and q = 0, then M is twistor holomorphic.

<u>Cor.</u>: Assume that M is an oriented, connected and compact surface in \mathbb{R}^4 . If the twistor lift of M is a harmonic section and q = 1, then M is twistor holomorphic or CMC surface in \mathbb{R}^3 or $S^3(r)$. Moreover, using this corollary, we also obtain the following results corresponding to "Hopf's Theorem" for a CMC surface in \mathbb{R}^3 .

<u>Cor.</u> (cf. D. Hoffman) : Assume that M is an oriented, connected and compact surface in \mathbb{R}^4 . If $\nabla^{\perp} H = 0$ and q = 0, then M is totally umbilic.