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Holzapfel’s Conjecture On Ball Quotient Surfaces

Conjecture: (Rolf-Peter Holzapfel - 1998) ". . . up to
birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients".

Let us consider the complex ball

B = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1} = SU2,1/S(U2 ×U1)

and the ball lattices Γ ⊂ SU2,1, i.e., the discrete subgroups
with finite invariant measure of B/Γ .

Definition: A smooth toroidal compactification (B/Γ)′ of a
ball quotient B/Γ is co-abelian if it has an abelian minimal
model.
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Preliminary Results

Holzapfel constructs:

a smooth toroidal compactification
(
B/Γ

(6,8)
−1

)′
, whose

abelian minimal model A−1 has decomposed complex
multiplication by Q(i);

a ball quotient compactification B/Γ
(6,8)
K3,−1, which is

birational to the Kummer surface X−1 of A−1 and admits a

double cover
(
B/Γ

(6,8)
−1

)′
→ B/Γ

(6,8)
K3,−1;

a rational ball quotient compactification B/Γ
(6,8)
rat,−1 with

Z[i]∗ × Z[i]∗-Galois cover
(
B/Γ

(6,8)
−1

)′
→ B/Γ

(6,8)
rat,−1.
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The Aim Of the Present Note

Main Result - construction of ball quotient
compactifications B/Γ, which are birational to hyperelliptic,
Enriques or ruled surfaces with elliptic bases.

All co-abelian smooth toroidal compactifications
(B/Γ)′ = (B/Γ) ∪ T′ with at most 3 rational (−1)-curves
and minimal fundamental group of T′ are Hirzebruch’s(
B/Γ

(1,4)
−3

)′
and Holzapfel’s

(
B/Γ

(3,6)
−3

)′
,
(
B/Γ

(3,6)
−1

)′
.
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Toroidal and Multi-Elliptic Divisors

Let (B/Γ)′ = (B/Γ) ∪ T′ be a co-abelian smooth toroidal
compactification, ξ : (B/Γ)′ → A be the blow-down of the
(−1)-curves to the abelian minimal model A and T = ξ(T′).

Then T =
h∑

i=1
Ti is a multi-elliptic divisor, i.e., T has

smooth elliptic irreducible components Ti and the singular
locus Tsing =

∑
1≤i<j≤h

(Ti ∩ Tj) consists of their intersection

points.
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Galois Quotients Of Co-Abelian Compactifications

The group G = Aut(A,T) acts on the exceptional divisor of
ξ : (B/Γ)′ → A and is isomorphic to Aut

(
(B/Γ)′ ,T′

)
.

As a result, G acts on B/Γ and lifts to a ball lattice ΓG,
containing Γ as a normal subgroup with quotient ΓG/Γ = G.

Any subgroup H of G corresponds to a ball quotient
compactification B/ΓH, which is birational to A/H and
admits an H-Galois covering (B/Γ)′ → B/ΓH.
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Picard Modular Groups

Definition: Let Q(
√
−d) be an imaginary quadratic

number field with integers ring O−d.

The arithmetic lattice SU2,1(O−d) ⊂ SU2,1 is called full
Picard modular group over O−d.

If a ball lattice Γ is commensurable with SU2,1(O−d), then
Γ it is said to be a Picard modular group.

Ball Quotient Compactifications



Picard Modular Groups

Definition: Let Q(
√
−d) be an imaginary quadratic

number field with integers ring O−d.

The arithmetic lattice SU2,1(O−d) ⊂ SU2,1 is called full
Picard modular group over O−d.

If a ball lattice Γ is commensurable with SU2,1(O−d), then
Γ it is said to be a Picard modular group.

Ball Quotient Compactifications



Picard Modular Groups

Definition: Let Q(
√
−d) be an imaginary quadratic

number field with integers ring O−d.

The arithmetic lattice SU2,1(O−d) ⊂ SU2,1 is called full
Picard modular group over O−d.

If a ball lattice Γ is commensurable with SU2,1(O−d), then
Γ it is said to be a Picard modular group.

Ball Quotient Compactifications



The Automorphism Group Is Finite

Proposition: Let us suppose that the smooth toroidal

compactification (B/Γ)′ = (B/Γ) ∪
(

h∑
i=1

T′i

)
has abelian minimal

model A = E× E, contains s rational curves
s∑

j=1
Lj with

self-intersection (−1) and each smooth elliptic irreducible
component T′i intersects si among these Lj. If s1, . . . , sh take

values s′1, . . . , s
′
t with multiplicities k1, . . . , kt,

t∑
i=1

ki = h, then

the group G = Aut
(

(B/Γ)′ ,
h∑

i=1
T′i

)
is of cardinality

card(G) ≤ s k1! . . . kt! card(End(E)∗).
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Finite Automorphism Group Implies:

Corollary 1: If (B/Γ)′ is Picard modular co-abelian toroidal
compactification then the ball lattice ΓG with
ΓG/Γ = G = Aut

(
(B/Γ)′ , (B/Γ)′ \ (B/Γ)

)
is also a Picard

modular group.

Corollary 2: The linear parts go =

(
α β
γ δ

)
∈ Gl2(O−d)

of all g = τ(U,V)go ∈ Aut(A,T) can be diagonalized.
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Diagonalizing Isogeny

Thus, go with eigenvalues λ1 = λ2 are go = λ1I2.

If go has different eigenvalues λ1 6= λ2 from O−d then any
isogeny S ∈ Isog(A) = Mat2×2(O−d) ∩Gl2(Q(

√
−d)) with

Do = S−1goS =

(
λ1 0
0 λ2

)
is called a diagonalizing isogeny for go.

Let S =

(
β β

λ1 − α λ2 − α

)
for α 6∈ {λ1, λ2},

S =

(
λ1 − λ2 β

γ λ2 − λ1

)
for α = λ1, δ = λ2,

S =

(
β λ2 − λ1

λ1 − λ2 γ

)
for α = λ2, δ = λ1.
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Hyperelliptic Quotient

Let h = τ(U,V)ho ∈ Aut(A) and S ∈ Isog(A) be a
diagonilizing isogeny of ho ∈ Gl2(O−d).

Then the Galois quotient A/〈h〉 is a hyperelliptic surface if
and only if

(i) the eigenvalues of ho are λ1 = 1 and a primitive m-th
root of unity λ2 ∈ O∗−d \ {1}, m > 1,
(ii) (U,V) ∈ Am−tor,
(iii) some (and therefore any) lifting (Ũ, Ṽ) ∈ C2 of
(U,V) ∈ A satisfies S11Ṽ − S21Ũ ∈ S11O−d + S21O−d.
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The Kummer Surface Of an Abelian Surface

Any abelian surface A has automorphism −I2 and A/〈−I2〉
is a surface with 16 ordinary double points, covered by the
2-torsion points A2−tor of A.

The quotient X = A2̂−tor/〈−I2〉 of the blow-up A2̂−tor of A
at A2−tor is a smooth K3 surface, birational to A/〈−I2〉 and
called the Kummer surface of A.

A2̂−tor A

X = A2̂−tor/〈−I2〉 A/〈−I2〉
?

〈−I2〉

-

?

〈−I2〉

-

.
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Enriques Quotient

Let X be the Kummer surface of an abelian surface A,
g = τ(U,V)go ∈ Aut(A) and S be a diagonalizing isogeny of
go ∈ Gl2(O−d).
Then Y = X/〈g〉 is an Enriques surface if and only if some
(and therefore any) lifting (Ũ, Ṽ) ∈ C2 of (U,V) ∈ A
satisfies the following conditions:

(i) the eigenvalues of go are λ1 = 1 and λ2 = −1,
(ii) (U,V) ∈ A2−tor,
(iii) go(U,V) = (U,V),
(iv) S22Ũ− S12Ṽ 6∈ S22O−d + S12O−d,
(v) S11Ṽ − S21Ũ 6∈ S11O−d + S21O−d.
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(v) S11Ṽ − S21Ũ 6∈ S11O−d + S21O−d.

Ball Quotient Compactifications



Enriques Quotient

Let X be the Kummer surface of an abelian surface A,
g = τ(U,V)go ∈ Aut(A) and S be a diagonalizing isogeny of
go ∈ Gl2(O−d).
Then Y = X/〈g〉 is an Enriques surface if and only if some
(and therefore any) lifting (Ũ, Ṽ) ∈ C2 of (U,V) ∈ A
satisfies the following conditions:

(i) the eigenvalues of go are λ1 = 1 and λ2 = −1,
(ii) (U,V) ∈ A2−tor,
(iii) go(U,V) = (U,V),
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Ruled Quotient With an Elliptic Or a Rational Base

Proposition: (i) If a finite Galois quotient S = A/H of an
abelian surface A is a ruled surface then the base of S is of
genus 1 or 0.

(ii) If go ∈ Gl2(O−d) is a linear automorphism of A then
X = A/〈go〉 is a ruled surface with an elliptic base if and
only if the eigenvalues of go are λ1 = 1 and λ2 ∈ O∗−d \ {1}.

(iii) If go ∈ Gl2(O−d) has eigenvalues λ1 = 1,
λ2 ∈ O∗−d \ {1} then for any λ3 ∈ O∗−d \ {1} the quotient
Y = A/〈go, λ3I2〉 is a ruled surface with a rational base and
therefore a rational surface.
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Y = A/〈go, λ3I2〉 is a ruled surface with a rational base and
therefore a rational surface.
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Criterion For an Abelian Ball Quotient Model

Theorem: (Holzapfel) The blow-up of an abelian surface A
at the singular locus Tsing =

∑
1≤i<j≤h

(Ti ∩ Tj) of a

multi-elliptic divisor T =
h∑

i=1
Ti is smooth toroidal

compactification (B/Γ)′ of a ball quotient if and only if
A = E× E and T has singularity rate

h∑
i=1

card(Ti ∩ Tsing)

card(Tsing)
= 4.

The smooth elliptic curves on A = E× E are of the form

Eai,bi + (Pi,Qi) = {(aiP + Pi, biP + Qi) |P ∈ E}.
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Holzapfel’s Co-Abelian Compactification
Over Gauss Numbers With 6 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard

modular
(
B/Γ

(6,8)
−1

)′
, such that the contraction of the rational

(−1)-curves ξ :
(
B/Γ

(6,8)
−1

)′
→ A−1 provides the abelian surface

A−1 = E−1 × E−1, E−1 = C/(Z + Zi) and the multi-elliptic

divisor ξ(T′) = T(6,8)
−1 =

8∑
i=1

Ti with Tk = Eik,1 for 1 ≤ k ≤ 4,

Tm+4 = Qm × E−1, Tm+6 = E−1 ×Qm for 1 ≤ m ≤ 2,
Q1 = 1

2(modZ + Zi), Q2 = iQ1.
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The Automorphism Group Of
(
B/Γ

(6,8)
−1

)′
Proposition: The group G(6,8)

−1 = Aut(A−1,T
(6,8)
−1 ) is

generated by the translation τQ33 with Q33 = (Q3,Q3),
Q3 = 1+i

2 (modZ + Zi), the transposition θ of the elliptic
factors of A−1 = E−1 ×E−1 and the multiplications I, J by i
on the first, respectively, the second factor of A−1.

The representation ϕ : G(6,8)
−1 → S8(T1, . . . ,T8) has

Kerϕ = 〈τQ33(iI2)〉 ' Z4 and Imϕ of order 16, which is
contained in S4(T1, . . . ,T4)× S4(T5, . . . ,T8) and surjects
onto the dihedral groups D4(T1,T2,T3,T4) and
D4(T5,T7,T6,T8).
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New Galois Quotients Of the Co-Abelian
(
B/Γ

(6,8)
−1

)′
Theorem: (i) The quotient of

(
B/Γ

(6,8)
−1

)′
by the cyclic

group

H1 = 〈τQ33

(
0 1
1 0

)
〉 ⊂ G(6,8)

−1

of order 2 is B/Γ
(6,8)
HE,−1 with hyperelliptic minimal model

A−1/H1.

(ii) The quotient of
(
B/Γ

(6,8)
−1

)′
by the subgroup

H2 = 〈−I2, τQ33

(
−1 0
0 1

)
〉 ⊂ G(6,8)

−1

of order 4 is B/Γ
(6,8)
Enr,−1 with Enriques minimal model,

covered by the Kummer surface X−1 of A−1.
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New Galois Quotients Of the Co-Abelian
(
B/Γ

(6,8)
−1

)′

(iii) The quotient of
(
B/Γ

(6,8)
−1

)′
by the cyclic subgroup

H3 = 〈
(

i 0
0 1

)
〉 ⊂ G(6,8)

−1

of order 4 is B/Γ
(6,8)
rul,−1, birational to a ruled surface with an

elliptic base.
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Kummer Quotients Of Co-Abelian Ball Quotients

Hirzebruch’s
(
B/Γ

(1,4)
−3

)′
and Holzapfel’s

(
B/Γ

(3,6)
−3

)′
,
(
B/Γ

(3,6)
−1

)′
admit holomorphic involutions, leaving invariant their toroidal
compactifying divisors. The corresponding orbit spaces are ball
quotient compactifications B/ΓK3, birational to the Kummer
surfaces X−d of the abelian minimal models A−d.
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Holzapfel’s Co-Abelian Compactification
Over Gauss Numbers With 3 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard

modular
(
B/Γ

(3,6)
−1

)′
, such that the contraction of the rational

(−1)-curves ξ :
(
B/Γ

(3,6)
−1

)′
→ A−1 yields the abelian surface

A−1 = E−1 × E−1, E−1 = C/(Z + Zi) and the multi-elliptic

divisor ξ(T′) = T(3,6)
−1 =

6∑
i=1

Ti with T1 = E1,0, T2 = E1,1+i,

T3 = E1,1 + Q30, T4 = E1,i + Q30, T5 = E1−i,1, T6 = E0,1,
Q30 = (Q3,Q0), Q3 = 1+i

2 (modZ + Zi), Q0 = 0(modZ + Zi).
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The Automorphism Group And
a Hyperelliptic Quotient Of

(
B/Γ

(3,6)
−1

)′
Proposition: The group G(3,6)

−1 = Aut(A−1,T
(3,6)
−1 ) =

〈iI2, τQ30

(
−i 1
−i 1 + i

)
, τQ03

(
1 0
1 i

)
, τQ03

(
1 −1 + i
1 −1

)
〉

is of order 96 and ϕ : G(3,6)
−1 → S6(T1, . . . ,T6) has

Kerϕ = 〈iI2〉 ' Z4 and Imϕ ' S4.

Proposition: (i) The quotient of
(
B/Γ

(3,6)
−1

)′
by the cyclic

group

H1 = 〈τQ30

(
−i 1
0 1

)
〉 ⊂ G(3,6)

−1

is B/Γ
(3,6)
HE,−1 with hyperelliptic minimal model A−1/H1.
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Existence And Non-Existence Of
(
B/Γ

(3,6)
−1

)′
/H

(ii) The involution h(3,6)
−1 =

(
1 0

1 + i −1

)
∈ G(3,6)

−1

determines the ruled surface with an elliptic base(
B/Γ

(3,6)
−1

)′
/〈h(3,6)
−1 〉 = B/Γ

(3,6)
rul,−1 and the rational surface(

B/Γ
(3,6)
−1

)′
/〈h(3,6)
−1 , iI2〉 = B/Γ

(3,6)
rat,−1.

(iii) The co-abelian smooth toroidal compactification(
B/Γ

(3,6)
−1

)′
is not a finite Galois cover of a ball quotient

with Enriques minimal model.
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Hirzebruch’s Co-Abelian Compactification
Over Eisenstein Numbers With 1 Exceptional Curve

The ring of Eisenstein integers O−3 = Z + ρZ with ρ = e
2πi
6

is the integers ring of Q(
√
−3).

Proposition: (Hirzebruch - 1984) There is a smooth Picard

modular
(
B/Γ

(1,4)
−3

)′
, such that contraction of the rational

(−1)-curves ξ :
(
B/Γ

(1,4)
−3

)′
→ A−3 produces the abelian

surface A−3 = E−3 × E−3, E−3 = C/O−3 and the

multi-elliptic divisor ξ(T′) = T(1,4)
−3 =

4∑
i=1

Ti with

T1 = E1,0, T2 = E1,1, T3 = Eρ,1, T4 = E0,1.
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The Automorphism Group Of
(
B/Γ

(1,4)
−3

)′

Proposition: The group

G(1,4)
−3 = Aut(A−3,T

(1,4)
−3 ) = 〈ρI2,

(
1 0
1 −ρ

)
,

(
1 −1
1 0

)
〉

is of order 72 and ϕ : G(1,4)
−3 → S4(T1, . . . ,T4) has

Kerϕ = 〈ρI2〉 ' Z6 and Imϕ = A4.
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Galois Quotients Of
(
B/Γ

(1,4)
−3

)′

Proposition: (i) The element g(1,4)
−3 =

(
1 0
1 −ρ

)
∈ G(1,4)

−3

of order 3 determines a ruled surface with an elliptic base(
B/Γ

(1,4)
−3

)′
/〈g(1,4)
−3 〉 = B/Γ

(1,4)
rul,−3 and a rational surface(

B/Γ
(1,4)
−3

)′
/〈g(1,4)
−3 , −I2〉 = B/Γ

(1,4)
rat,−3.

(ii) There are no hyperelliptic or Enriques ball quotient

compactifications, covered by
(
B/Γ

(1,4)
−3

)′
.
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Holzapfel’s Co-Abelian Compactification
Over Eisenstein Numbers With 3 Exceptional Curves

Proposition (Holzapfel - 1986) There is a smooth Picard

modular
(
B/Γ

(3,6)
−3

)′
, such that the contraction of the rational

(−1)-curves ξ :
(
B/Γ

(3,6)
−3

)′
→ A−3 results in the abelian surface

A−3 = E−3 × E−3, E−3 = C/O−3 and the multi-elliptic divisor

ξ(T′) = T(3,6)
−3 =

6∑
i=1

Ti with T1 = E1,0, T2 = E1,0 + P01,

T3 = E1,0 + 2P01, T4 = E√−3,1, T5 = Eρ√−3,1, T6 = E0,1,
P01 = (P0,P1), P0 = 0(modO−3), P1 = 1+ρ

3 (modO−3).
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The Automorphism Group Of
(
B/Γ

(3,6)
−3

)′
.

Proposition: The group

G(3,6)
−3 = Aut(A−3,T

(3,6)
−3 ) = 〈τP01 , ρI2,

(
1 −ρ

√
−3

0 −ρ

)
〉 with

ρ = e
2πi
6 , P01 = (P0,P1), P0 = 0(modO−3), P1 = 1+ρ

3 (modO−3)

is of order 54 and ϕ : G(3,6)
−3 → S6(T1, . . . ,T6) has

Kerϕ = 〈ρ2I2〉 ' Z3 and Imϕ = S3(T1,T2,T3)×A3(T4,T5,T6).
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Galois Quotients Of
(
B/Γ

(3,6)
−3

)′
Proposition: (i) The element

g(3,6)
−3 =

(
1 −

√
−3

0 ρ2

)
∈ G(3,6)

−3 of order 3 determines the

ruled surface with an elliptic base(
B/Γ

(3,6)
−3

)′
/〈g(3,6)
−3 〉 = B/Γ

(3,6)
rul,−3 and the rational surface(

B/Γ
(3,6)
−3

)′
/〈g(3,6)
−3 , ρI2〉 = B/Γ

(3,6)
rat,−3.

(ii) The co-abelian smooth toroidal compactification(
B/Γ

(3,6)
−3

)′
does not admit finite Galois quotients, which are

hyperelliptic or Enriques ball quotient compactifications.
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Lower Bound On the Fundamental Groups

Lemma: Let ξ : (B/Γ)′ → A = E× E be the blow-down of
the (−1)-curves on a smooth toroidal compactification
(B/Γ)′ and T = ξ(T′) be the image of the toroidal
compactifying divisor T′ = (B/Γ)′ \ (B/Γ) on the abelian
minimal model A.

Then any smooth elliptic irreducible component Ti of T
and its proper transform T′i ⊂ T′ admit a finite (not
necessary Galois) covering E→ Ti ' T′i.
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Intersection Number

Lemma: Let A−d = E−d × E−d be an abelian surface with
decomposed complex multiplication by Q(

√
−d),

Tk = Eak,bk + (Pk,Qk) with ak, bk ∈ End(E−d), k ∈ {i, j} be
elliptic curves on A−d,

Λk = akπ1(E−d) + bkπ1(E−d) ⊂ π1(E−d).

∆ij = det
(

ai aj
bi bj

)
, NQ(

√
−d)

Q : End(E−d)→ Z≥0,

Then

TiTj =
NQ(

√
−d)

Q (∆ij)

[π1(Ti) : π1(E−d)][(∆−1
ij Λi ∩ π1(Tj)) : (∆−1

ij Λi ∩ π1(E−d))]
.
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Lemma: Let A−d = E−d × E−d be an abelian surface with
decomposed complex multiplication by Q(

√
−d),

Tk = Eak,bk + (Pk,Qk) with ak, bk ∈ End(E−d), k ∈ {i, j} be
elliptic curves on A−d,

Λk = akπ1(E−d) + bkπ1(E−d) ⊂ π1(E−d).

∆ij = det
(

ai aj
bi bj

)
, NQ(

√
−d)

Q : End(E−d)→ Z≥0,

Then

TiTj =
NQ(

√
−d)

Q (∆ij)

[π1(Ti) : π1(E−d)][(∆−1
ij Λi ∩ π1(Tj)) : (∆−1

ij Λi ∩ π1(E−d))]
.
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Multi-Elliptic And Toroidal Divisors
With Minimal Fundamental Groups

Definition: The irreducible components T′i of T
′ or,

equivalently, Ti of T have minimal fundamental groups if
T′i ' Ti ' E are isomorphic to the elliptic factor of the
abelian minimal model A = E× E of (B/Γ)′.

If π1(Ti) = π1(Tj) = π1(E) are minimal then
TiTj = NQ(

√
−d)

Q (∆ij).
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Uniqueness Result

Theorem: Up to an automorphism and a complex conjugation,
Hirzebruch’s

(
B/Γ

(1,4)
−3

)′
and Holzapfel’s

(
B/Γ

(3,6)
−3

)′
,
(
B/Γ

(3,6)
−1

)′
are the only co-abelian smooth toroidal compactifications (B/Γ)′

with at most three rational (−1)-curves and minimal
fundamental groups of T′i ⊂ T′ = (B/Γ)′ \ (B/Γ).
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Towards The Ultimate Proof Of Holzapfel’s Conjecture

There remains to be shown

the existence of ball quotient compactifications,

which are birational to elliptic surfaces or ruled surfaces
with bases of genus at least 2.
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