Ball Quotient Compactifications With a Co-Abelian Covering

- Conjecture: (Rolf-Peter Holzapfel - 1998) ". . . up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients".
- Let us consider the complex ball

$$
\mathbb{B}=\left\{\left.\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathbb{C}^{2}| | \mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}<1\right\}=\mathrm{SU}_{2,1} / \mathrm{S}\left(\mathrm{U}_{2} \times \mathrm{U}_{1}\right)
$$

and the ball lattices $\Gamma \subset \mathrm{SU}_{2,1}$, i.e., the discrete subgroups with finite invariant measure of \mathbb{B} / Γ

- Definition: A smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ of a ball quotient \mathbb{B} / Γ is co-abelian if it has an abelian minimal model.

Holzapfel's Conjecture On Ball Quotient Surfaces

- Conjecture: (Rolf-Peter Holzapfel - 1998) ". . . up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients".
- Let us consider the complex ball

$$
\mathbb{B}=\left\{\left.\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathbb{C}^{2}| | \mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}<1\right\}=\mathrm{SU}_{2,1} / \mathrm{S}\left(\mathrm{U}_{2} \times \mathrm{U}_{1}\right)
$$

and the ball lattices $\Gamma \subset \mathrm{SU}_{2,1}$, i.e., the discrete subgroups with finite invariant measure of \mathbb{B} / Γ.

- Conjecture: (Rolf-Peter Holzapfel - 1998) ". . . up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients".
- Let us consider the complex ball

$$
\mathbb{B}=\left\{\left.\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathbb{C}^{2}| | \mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}<1\right\}=\mathrm{SU}_{2,1} / \mathrm{S}\left(\mathrm{U}_{2} \times \mathrm{U}_{1}\right)
$$

and the ball lattices $\Gamma \subset \mathrm{SU}_{2,1}$, i.e., the discrete subgroups with finite invariant measure of \mathbb{B} / Γ.

- Definition: A smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ of a ball quotient \mathbb{B} / Γ is co-abelian if it has an abelian minimal model.

Preliminary Results

- Holzapfel constructs:
- a smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$, whose abelian minimal model A_{-1} has decomposed complex multiplication by $\mathbb{Q}(i)$;
- a ball quotient compactification $\overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$, which is birational to the Kummer surface X_{-1} of A_{-1} and admits a double cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}$;
- a rational ball quotient compactification $\mathbb{B} / \Gamma_{\text {rat,-1 }}^{(6,8)}$ with $\mathbb{Z}[i]^{*} \times \mathbb{Z}\left[\left[_{i}\right]^{*}\right.$ Galois cover $\left(\mathbb{R} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{R} / \Gamma_{1-1,8)}^{(6,8)}}$
- Holzapfel constructs:
- a smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$, whose abelian minimal model A_{-1} has decomposed complex multiplication by $\mathbb{Q}(i)$;
- a ball quotient compactification $\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}$, which is birational to the Kummer surface X_{-1} of A_{-1} and adnits a double cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$;
- a rational ball quotient compactification $\mathbb{B} / \Gamma_{\text {rat,-1 }}^{(6,8)}$ with $\mathbb{T}\left[i_{i}\right]^{*} \times \mathbb{T}\left[{ }_{[i}\right]^{*}$-Galois cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{B} / \Gamma_{\Gamma a t,-1}^{(6,8)}}$
- Holzapfel constructs:
- a smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$, whose abelian minimal model A_{-1} has decomposed complex multiplication by $\mathbb{Q}(i)$;
- a ball quotient compactification $\overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$, which is birational to the Kummer surface X_{-1} of A_{-1} and admits a double cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$;

- Holzapfel constructs:
- a smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$, whose abelian minimal model A_{-1} has decomposed complex multiplication by $\mathbb{Q}(i)$;
- a ball quotient compactification $\overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$, which is birational to the Kummer surface X_{-1} of A_{-1} and admits a double cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{B} / \Gamma_{\mathrm{K} 3,-1}^{(6,8)}}$;
- a rational ball quotient compactification $\overline{\mathbb{B} / \Gamma_{\text {rat,-1 }}^{(6,8)}}$ with $\mathbb{Z}[\mathrm{i}]^{*} \times \mathbb{Z}[\mathrm{i}]^{*}$-Galois cover $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow \overline{\mathbb{B} / \Gamma_{\text {rat },-1}^{(6,8)}}$.
- Main Result - construction of ball quotient compactifications $\overline{\mathbb{B}} / \Gamma$, which are birational to hyperelliptic, Enriques or ruled surfaces with elliptic bases.
- All co-abelian smooth toroidal compactifications $(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup T^{\prime}$ with at most 3 rational (-1)-curves and minimal fundamental group of T^{\prime} are Hirzebruch's $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$ and Holzapfel's $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime}$ $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$.
- Main Result - construction of ball quotient compactifications $\overline{\mathbb{B}} / \Gamma$, which are birational to hyperelliptic, Enriques or ruled surfaces with elliptic bases.
- All co-abelian smooth toroidal compactifications $(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup \mathrm{T}^{\prime}$ with at most 3 rational (-1)-curves and minimal fundamental group of T^{\prime} are Hirzebruch's $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$ and Holzapfel's $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime},\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$.

Toroidal and Multi-Elliptic Divisors

- Let $(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup \mathrm{T}^{\prime}$ be a co-abelian smooth toroidal compactification, $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow$ A be the blow-down of the (-1)-curves to the abelian minimal model A and $\mathrm{T}=\xi\left(\mathrm{T}^{\prime}\right)$.
- Then $T=\sum_{i=1}^{h} T_{i}$ is a multi-elliptic divisor, i.e., T has smooth elliptic irreducible components T_{i} and the singular locus $T^{\text {sing }}=\sum\left(T_{i} \cap T_{j}\right)$ consists of their intersection
points.

Toroidal and Multi-Elliptic Divisors

- Let $(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup \mathrm{T}^{\prime}$ be a co-abelian smooth toroidal compactification, $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow$ A be the blow-down of the (-1)-curves to the abelian minimal model A and $\mathrm{T}=\xi\left(\mathrm{T}^{\prime}\right)$.
- Then $\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{h}} \mathrm{T}_{\mathrm{i}}$ is a multi-elliptic divisor, i.e., T has smooth elliptic irreducible components T_{i} and the singular locus $T^{\text {sing }}=\sum_{1 \leq i<j \leq h}\left(T_{i} \cap T_{j}\right)$ consists of their intersection points.

Galois Quotients Of Co-Abelian Compactifications

- The group $\mathrm{G}=\operatorname{Aut}(\mathrm{A}, \mathrm{T})$ acts on the exceptional divisor of $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathrm{A}$ and is isomorphic to Aut $\left((\mathbb{B} / \Gamma)^{\prime}, \mathrm{T}^{\prime}\right)$.
- As a result, G acts on \mathbb{B} / Γ and lifts to a ball lattice Γ_{G}, containing Γ as a normal subgroup with quotient $\Gamma_{\mathrm{G}} / \Gamma=\mathrm{C}$
- Any subgroup H of G corresponds to a ball quotient compactification $\mathbb{B} / \Gamma_{\mathrm{H}}$, which is birational to A / H and admits an H-Galois covering $(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathbb{B} / \Gamma_{\mathrm{H}}$

Galois Quotients Of Co-Abelian Compactifications

- The group $\mathrm{G}=\operatorname{Aut}(\mathrm{A}, \mathrm{T})$ acts on the exceptional divisor of $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathrm{A}$ and is isomorphic to $\operatorname{Aut}\left((\mathbb{B} / \Gamma)^{\prime}, \mathrm{T}^{\prime}\right)$.
- As a result, G acts on \mathbb{B} / Γ and lifts to a ball lattice Γ_{G}, containing Γ as a normal subgroup with quotient $\Gamma_{G} / \Gamma=G$.
- Any subgroup H of G corresponds to a ball quotient compactification $\overline{\mathbb{B}} / \Gamma_{\mathrm{H}}$, which is birational to A / H and admits an H-Galois covering $(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathbb{B} / \Gamma_{\mathrm{H}}$

Galois Quotients Of Co-Abelian Compactifications

- The group $\mathrm{G}=\operatorname{Aut}(\mathrm{A}, \mathrm{T})$ acts on the exceptional divisor of $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathrm{A}$ and is isomorphic to $\operatorname{Aut}\left((\mathbb{B} / \Gamma)^{\prime}, \mathrm{T}^{\prime}\right)$.
- As a result, G acts on \mathbb{B} / Γ and lifts to a ball lattice Γ_{G}, containing Γ as a normal subgroup with quotient $\Gamma_{G} / \Gamma=G$.
- Any subgroup H of G corresponds to a ball quotient compactification $\overline{\mathbb{B}} / \Gamma_{\mathrm{H}}$, which is birational to A / H and admits an H-Galois covering $(\mathbb{B} / \Gamma)^{\prime} \rightarrow \overline{\mathbb{B}} / \Gamma_{\mathrm{H}}$.
- Definition: Let $\mathbb{Q}(\sqrt{-\mathrm{d}})$ be an imaginary quadratic number field with integers ring $\mathcal{O}_{-\mathrm{d}}$.
- The arithmetic lattice $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right) \subset \mathrm{SU}_{2,1}$ is called full Picard modular group over $\mathcal{O}_{-\mathrm{d}}$
- If a ball lattice Γ is commensurable with $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right)$, then Γ it is said to be a Picard modular group.
- Definition: Let $\mathbb{Q}(\sqrt{-\mathrm{d}})$ be an imaginary quadratic number field with integers ring $\mathcal{O}_{-\mathrm{d}}$.
- The arithmetic lattice $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right) \subset \mathrm{SU}_{2,1}$ is called full Picard modular group over $\mathcal{O}_{-\mathrm{d}}$.
- If a ball lattice Γ is commensurable with $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right)$, then「 it is said to be a Picard modular group.
- Definition: Let $\mathbb{Q}(\sqrt{-\mathrm{d}})$ be an imaginary quadratic number field with integers ring $\mathcal{O}_{-\mathrm{d}}$.
- The arithmetic lattice $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right) \subset \mathrm{SU}_{2,1}$ is called full Picard modular group over $\mathcal{O}_{-\mathrm{d}}$.
- If a ball lattice Γ is commensurable with $\mathrm{SU}_{2,1}\left(\mathcal{O}_{-\mathrm{d}}\right)$, then Γ it is said to be a Picard modular group.

The Automorphism Group Is Finite

Proposition: Let us suppose that the smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup\left(\sum_{\mathrm{i}=1}^{\mathrm{h}} \mathrm{T}_{\mathrm{i}}^{\prime}\right)$ has abelian minimal model $A=E \times E$, contains s rational curves $\sum_{j=1}^{s} L_{j}$ with self-intersection (-1) and each smooth elliptic irreducible component T_{i}^{\prime} intersects s_{i} among these L_{j}. If $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{h}}$ take values $\mathrm{s}_{1}^{\prime}, \ldots, \mathrm{s}_{\mathrm{t}}^{\prime}$ with multiplicities $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{t}}, \sum_{\mathrm{i}=1}^{\mathrm{t}} \mathrm{k}_{\mathrm{i}}=\mathrm{h}$, then the group $\mathrm{G}=\operatorname{Aut}\left((\mathbb{B} / \Gamma)^{\prime}, \sum_{\mathrm{i}=1}^{\mathrm{h}} \mathrm{T}_{\mathrm{i}}^{\prime}\right)$ is of cardinality

$$
\operatorname{card}(\mathrm{G}) \leq \mathrm{sk}_{1}!\ldots \mathrm{k}_{\mathrm{t}}!\operatorname{card}\left(\operatorname{End}(\mathrm{E})^{*}\right)
$$

- Corollary 1: If $(\mathbb{B} / \Gamma)^{\prime}$ is Picard modular co-abelian toroidal compactification then the ball lattice Γ_{G} with $\Gamma_{\mathrm{G}} / \Gamma=\mathrm{G}=\operatorname{Aut}\left((\mathbb{B} / \Gamma)^{\prime},(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)\right)$ is also a Picard modular group.

- Corollary 1: If $(\mathbb{B} / \Gamma)^{\prime}$ is Picard modular co-abelian toroidal compactification then the ball lattice Γ_{G} with $\Gamma_{\mathrm{G}} / \Gamma=\mathrm{G}=\operatorname{Aut}\left((\mathbb{B} / \Gamma)^{\prime},(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)\right)$ is also a Picard modular group.
- Corollary 2: The linear parts $\mathrm{g}_{\mathrm{o}}=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ of all $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A}, \mathrm{T})$ can be diagonalized.

Diagonalizing Isogeny

- Thus, g_{o} with eigenvalues $\lambda_{1}=\lambda_{2}$ are $\mathrm{g}_{\mathrm{o}}=\lambda_{1} \mathrm{I}_{2}$.
- If g_{o} has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ from $\mathcal{O}_{-\mathrm{d}}$ then any isogeny $S \in \operatorname{Isog}(A)=\operatorname{Mat}_{2 \times 2}\left(\mathcal{O}_{-\mathrm{d}}\right) \cap \mathrm{Gl}_{2}(\mathbb{Q}(\sqrt{-\mathrm{d}}))$ with

$$
D_{0}=S^{-1} g_{0} S=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is called a diagonalizing isogeny for g_{o}.

- Let $\mathbf{S}=\left(\begin{array}{cc}\beta & \beta \\ \lambda_{1}-\alpha & \lambda_{2}-\alpha\end{array}\right)$ for $\alpha \notin\left\{\lambda_{1}, \lambda_{2}\right\}$,
$\begin{aligned} \text { - } \mathbf{S} & =\left(\begin{array}{cc}\lambda_{1}-\lambda_{2} & \beta \\ \gamma & \lambda_{2}-\lambda_{1}\end{array}\right) \text { for } \alpha=\lambda_{1}, \delta=\lambda_{2}, \\ & -\mathbf{S}=\left(\begin{array}{cc}\beta & \lambda_{2}-\lambda_{1} \\ \lambda_{1}-\lambda_{2} & \gamma\end{array}\right) \text { for } \alpha=\lambda_{2}, \delta=\lambda_{1} .\end{aligned}$

Diagonalizing Isogeny

- Thus, g_{o} with eigenvalues $\lambda_{1}=\lambda_{2}$ are $\mathrm{g}_{\mathrm{o}}=\lambda_{1} \mathrm{I}_{2}$.
- If g_{o} has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ from $\mathcal{O}_{-\mathrm{d}}$ then any isogeny $S \in \operatorname{Isog}(A)=\operatorname{Mat}_{2 \times 2}\left(\mathcal{O}_{-\mathrm{d}}\right) \cap \mathrm{Gl}_{2}(\mathbb{Q}(\sqrt{-\mathrm{d}}))$ with

$$
\mathrm{D}_{\mathrm{o}}=\mathrm{S}^{-1} \mathrm{~g}_{\mathrm{o}} \mathrm{~S}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is called a diagonalizing isogeny for g_{o}.

Diagonalizing Isogeny

- Thus, g_{o} with eigenvalues $\lambda_{1}=\lambda_{2}$ are $\mathrm{g}_{\mathrm{o}}=\lambda_{1} \mathrm{I}_{2}$.
- If g_{o} has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ from $\mathcal{O}_{-\mathrm{d}}$ then any isogeny $S \in \operatorname{Isog}(A)=\operatorname{Mat}_{2 \times 2}\left(\mathcal{O}_{-\mathrm{d}}\right) \cap \mathrm{Gl}_{2}(\mathbb{Q}(\sqrt{-\mathrm{d}}))$ with

$$
\mathrm{D}_{\mathrm{o}}=\mathrm{S}^{-1} \mathrm{~g}_{\mathrm{o}} \mathrm{~S}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is called a diagonalizing isogeny for g_{o}.

- Let $\mathrm{S}=\left(\begin{array}{cc}\beta & \beta \\ \lambda_{1}-\alpha & \lambda_{2}-\alpha\end{array}\right)$ for $\alpha \notin\left\{\lambda_{1}, \lambda_{2}\right\}$,

Diagonalizing Isogeny

- Thus, g_{o} with eigenvalues $\lambda_{1}=\lambda_{2}$ are $\mathrm{g}_{\mathrm{o}}=\lambda_{1} \mathrm{I}_{2}$.
- If g_{o} has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ from $\mathcal{O}_{-\mathrm{d}}$ then any isogeny $S \in \operatorname{Isog}(A)=\operatorname{Mat}_{2 \times 2}\left(\mathcal{O}_{-\mathrm{d}}\right) \cap \mathrm{Gl}_{2}(\mathbb{Q}(\sqrt{-\mathrm{d}}))$ with

$$
\mathrm{D}_{\mathrm{o}}=\mathrm{S}^{-1} \mathrm{~g}_{\mathrm{o}} \mathrm{~S}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is called a diagonalizing isogeny for g_{o}.

- Let $\mathrm{S}=\left(\begin{array}{cc}\beta & \beta \\ \lambda_{1}-\alpha & \lambda_{2}-\alpha\end{array}\right)$ for $\alpha \notin\left\{\lambda_{1}, \lambda_{2}\right\}$,
- $\mathrm{S}=\left(\begin{array}{cc}\lambda_{1}-\lambda_{2} & \beta \\ \gamma & \lambda_{2}-\lambda_{1}\end{array}\right)$ for $\alpha=\lambda_{1}, \delta=\lambda_{2}$,

Diagonalizing Isogeny

- Thus, g_{o} with eigenvalues $\lambda_{1}=\lambda_{2}$ are $\mathrm{g}_{\mathrm{o}}=\lambda_{1} \mathrm{I}_{2}$.
- If g_{o} has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ from $\mathcal{O}_{-\mathrm{d}}$ then any isogeny $S \in \operatorname{Isog}(A)=\operatorname{Mat}_{2 \times 2}\left(\mathcal{O}_{-\mathrm{d}}\right) \cap \mathrm{Gl}_{2}(\mathbb{Q}(\sqrt{-\mathrm{d}}))$ with

$$
\mathrm{D}_{\mathrm{o}}=\mathrm{S}^{-1} \mathrm{~g}_{\mathrm{o}} \mathrm{~S}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is called a diagonalizing isogeny for g_{o}.

- Let $\mathrm{S}=\left(\begin{array}{cc}\beta & \beta \\ \lambda_{1}-\alpha & \lambda_{2}-\alpha\end{array}\right)$ for $\alpha \notin\left\{\lambda_{1}, \lambda_{2}\right\}$,
- $\mathrm{S}=\left(\begin{array}{cc}\lambda_{1}-\lambda_{2} & \beta \\ \gamma & \lambda_{2}-\lambda_{1}\end{array}\right)$ for $\alpha=\lambda_{1}, \delta=\lambda_{2}$,
- $\mathrm{S}=\left(\begin{array}{cc}\beta & \lambda_{2}-\lambda_{1} \\ \lambda_{1}-\lambda_{2} & \gamma\end{array}\right)$ for $\alpha=\lambda_{2}, \delta=\lambda_{1}$.

Hyperelliptic Quotient

- Let $\mathrm{h}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{h}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and $\mathrm{S} \in \operatorname{Isog}(\mathrm{A})$ be a diagonilizing isogeny of $\mathrm{h}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then the Galois quotient $\mathrm{A} /\langle\mathrm{h}\rangle$ is a hyperelliptic surface if and only if
- (i) the eigenvalues of h_{o} are $\lambda_{1}=1$ and a primitive m-th root of unity $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}, \mathrm{m}>1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{\mathrm{m}-\mathrm{tor}}$,
- (iii) some (and therefore any) lifting ($\widetilde{U}, \widetilde{\mathrm{~V}}) \in \mathbb{C}^{2}$ of $(U, V) \in A$ satisfies $S_{11} \widetilde{V}-S_{21} \widetilde{U} \in S_{11} \mathcal{O}_{-d}+S_{21} \mathcal{O}_{-d}$.

Hyperelliptic Quotient

- Let $\mathrm{h}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{h}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and $\mathrm{S} \in \operatorname{Isog}(\mathrm{A})$ be a diagonilizing isogeny of $h_{o} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then the Galois quotient $\mathrm{A} /\langle\mathrm{h}\rangle$ is a hyperelliptic surface if and only if
- (i) the eigenvalues of h_{o} are $\lambda_{1}=1$ and a primitive m-th root of unity $\lambda_{2} \in \mathcal{O}_{-d}^{*} \backslash\{1\}, \mathrm{m}>1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{\mathrm{m} \text {-tor }}$,

Hyperelliptic Quotient

- Let $\mathrm{h}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{h}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and $\mathrm{S} \in \operatorname{Isog}(\mathrm{A})$ be a diagonilizing isogeny of $h_{o} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then the Galois quotient $\mathrm{A} /\langle\mathrm{h}\rangle$ is a hyperelliptic surface if and only if
- (i) the eigenvalues of h_{o} are $\lambda_{1}=1$ and a primitive m-th root of unity $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}, \mathrm{m}>1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{\mathrm{m}-\text { tor }}$,
- (iii) some (and therefore any) lifting $(\widetilde{U}, \widetilde{V}) \in \mathbb{C}^{2}$ of
$(U, V) \in A$ satisfies $S_{11} \widetilde{V}-S_{21} \widetilde{U} \in S_{11} \mathcal{O}_{-d}+S_{21} \mathcal{O}_{-d}$

Hyperelliptic Quotient

- Let $\mathrm{h}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{h}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and $\mathrm{S} \in \operatorname{Isog}(\mathrm{A})$ be a diagonilizing isogeny of $h_{o} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then the Galois quotient $\mathrm{A} /\langle\mathrm{h}\rangle$ is a hyperelliptic surface if and only if
- (i) the eigenvalues of h_{o} are $\lambda_{1}=1$ and a primitive m-th root of unity $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}, \mathrm{m}>1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{\mathrm{m}-\mathrm{tor}}$,
- (iii) some (and therefore any) lifting $(\mathbb{U}, \widetilde{V}) \in \mathbb{C}^{2}$ of
$(\mathrm{U}, \mathrm{V}) \in A$ satisfies $S_{11} \widetilde{\mathrm{~V}}-\mathrm{S}_{21} \widetilde{U} \in \mathrm{~S}_{11} \mathcal{O}_{-d}+\mathrm{S}_{21} \mathcal{O}_{-\mathrm{d}}$

Hyperelliptic Quotient

- Let $\mathrm{h}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{h}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and $\mathrm{S} \in \operatorname{Isog}(\mathrm{A})$ be a diagonilizing isogeny of $\mathrm{h}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then the Galois quotient $\mathrm{A} /\langle\mathrm{h}\rangle$ is a hyperelliptic surface if and only if
- (i) the eigenvalues of h_{o} are $\lambda_{1}=1$ and a primitive m-th root of unity $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}, \mathrm{m}>1$,
- (ii) $(U, V) \in A_{m-t o r}$,
- (iii) some (and therefore any) lifting $(\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(U, V) \in A$ satisfies $S_{11} \widetilde{V}-S_{21} \widetilde{U} \in S_{11} \mathcal{O}_{-d}+S_{21} \mathcal{O}_{-d}$.
- Any abelian surface A has automorphism $-I_{2}$ and $A /\left\langle-I_{2}\right\rangle$ is a surface with 16 ordinary double points, covered by the 2-torsion points $\mathrm{A}_{2 \text {-tor }}$ of A .

- Any abelian surface A has automorphism $-I_{2}$ and $A /\left\langle-I_{2}\right\rangle$ is a surface with 16 ordinary double points, covered by the 2-torsion points $\mathrm{A}_{2 \text {-tor }}$ of A .
- The quotient $\mathrm{X}=\mathrm{A}_{\widehat{2-\text { tor }}} /\left\langle-\mathrm{I}_{2}\right\rangle$ of the blow-up $\mathrm{A}_{\widehat{2-\text { tor }}}$ of A at $\mathrm{A}_{2 \text {-tor }}$ is a smooth K3 surface, birational to $\mathrm{A} /\left\langle-I_{2}\right\rangle$ and called the Kummer surface of A .

$$
\begin{gathered}
\mathrm{A}_{\widehat{2-\text { tor }}}^{\left\langle-\mathrm{I}_{2}\right\rangle} \downarrow \\
\mathrm{X}=\underset{\widehat{2-\text { tor }}}{ } /\left\langle-\mathrm{I}_{2}\right\rangle \longrightarrow \mathrm{A} \\
\mathrm{~A} /\left\langle-\mathrm{I}_{2}\right\rangle \mid
\end{gathered}
$$

Enriques Quotient

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting $(\widetilde{U}, \widetilde{V}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2 \text {-tor, }}$,
- (iii) $\mathrm{g}_{\mathrm{o}}(\mathrm{U}, \mathrm{V})=(\mathrm{U}, \mathrm{V})$,

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$
- (ii) $(T, V) \in A_{2}$ tor,
- (iii) $\mathrm{g}_{\mathrm{o}}(\mathrm{U}, \mathrm{V})=(\mathrm{U}, \mathrm{V})$,
- (iv) $\mathrm{S}_{22} \widetilde{\mathrm{U}}-\mathrm{S}_{12} \widetilde{\mathrm{~V}} \notin \mathrm{~S}_{22} \mathcal{O}_{-\mathrm{d}}+\mathrm{S}_{12} \mathcal{O}_{-\mathrm{d}}$,

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2-\mathrm{tor}}$,

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2-\text { tor }}$,

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2 \text {-tor }}$,
- (iii) $\mathrm{go}_{\mathrm{o}}(\mathrm{U}, \mathrm{V})=(\mathrm{U}, \mathrm{V})$,

- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2-\text { tor }}$,
- (iii) $\mathrm{go}_{\mathrm{o}}(\mathrm{U}, \mathrm{V})=(\mathrm{U}, \mathrm{V})$,
- (iv) $\mathrm{S}_{22} \widetilde{\mathrm{U}}-\mathrm{S}_{12} \widetilde{\mathrm{~V}} \notin \mathrm{~S}_{22} \mathcal{O}_{-\mathrm{d}}+\mathrm{S}_{12} \mathcal{O}_{-\mathrm{d}}$,
- Let X be the Kummer surface of an abelian surface A, $\mathrm{g}=\tau_{(\mathrm{U}, \mathrm{V})} \mathrm{g}_{\mathrm{o}} \in \operatorname{Aut}(\mathrm{A})$ and S be a diagonalizing isogeny of $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$.
- Then $\mathrm{Y}=\mathrm{X} /\langle\mathrm{g}\rangle$ is an Enriques surface if and only if some (and therefore any) lifting ($\widetilde{\mathrm{U}}, \widetilde{\mathrm{V}}) \in \mathbb{C}^{2}$ of $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}$ satisfies the following conditions:
- (i) the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2}=-1$,
- (ii) $(\mathrm{U}, \mathrm{V}) \in \mathrm{A}_{2-\text { tor }}$,
- (iii) $\mathrm{go}_{\mathrm{o}}(\mathrm{U}, \mathrm{V})=(\mathrm{U}, \mathrm{V})$,
- (iv) $\mathrm{S}_{22} \widetilde{\mathrm{U}}-\mathrm{S}_{12} \widetilde{\mathrm{~V}} \notin \mathrm{~S}_{22} \mathcal{O}_{-\mathrm{d}}+\mathrm{S}_{12} \mathcal{O}_{-\mathrm{d}}$,
- (v) $\mathrm{S}_{11} \widetilde{\mathrm{~V}}-\mathrm{S}_{21} \widetilde{\mathrm{U}} \notin \mathrm{S}_{11} \mathcal{O}_{-\mathrm{d}}+\mathrm{S}_{21} \mathcal{O}_{-\mathrm{d}}$.
- Proposition: (i) If a finite Galois quotient $\mathrm{S}=\mathrm{A} / \mathrm{H}$ of an abelian surface A is a ruled surface then the base of S is of genus 1 or 0 .
- (ii) If $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ is a linear automorphism of A then $\mathrm{X}=\mathrm{A} /\left\langle\mathrm{g}_{0}\right\rangle$ is a ruled surface with an elliptic base if and only if the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2} \in \mathcal{O}_{-d}^{*} \backslash\{1\}$
- (iii) If $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ has eigenvalues $\lambda_{1}=1$, $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ then for any $\lambda_{3} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ the quotient $\mathrm{Y}=\mathrm{A} /\left\langle\mathrm{g}_{0}, \lambda_{3} \mathrm{I}_{2}\right\rangle$ is a ruled surface with a rational base and therefore a rational surface.
- Proposition: (i) If a finite Galois quotient $\mathrm{S}=\mathrm{A} / \mathrm{H}$ of an abelian surface A is a ruled surface then the base of S is of genus 1 or 0 .
- (ii) If $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ is a linear automorphism of A then $\mathrm{X}=\mathrm{A} /\left\langle\mathrm{g}_{\mathrm{o}}\right\rangle$ is a ruled surface with an elliptic base if and only if the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$.
- (iii) If $g_{o} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ has eigenvalues $\lambda_{1}=1$,
$\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ then for any $\lambda_{3} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ the quotient $\mathrm{Y}=\mathrm{A} /\left\langle\mathrm{g}_{\mathrm{o}}, \lambda_{3} \mathrm{I}_{2}\right\rangle$ is a ruled surface with a rational base and therefore a rational surface.
- Proposition: (i) If a finite Galois quotient $S=A / H$ of an abelian surface A is a ruled surface then the base of S is of genus 1 or 0 .
- (ii) If $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ is a linear automorphism of A then $\mathrm{X}=\mathrm{A} /\left\langle\mathrm{g}_{\mathrm{o}}\right\rangle$ is a ruled surface with an elliptic base if and only if the eigenvalues of g_{o} are $\lambda_{1}=1$ and $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$.
- (iii) If $\mathrm{g}_{\mathrm{o}} \in \mathrm{Gl}_{2}\left(\mathcal{O}_{-\mathrm{d}}\right)$ has eigenvalues $\lambda_{1}=1$, $\lambda_{2} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ then for any $\lambda_{3} \in \mathcal{O}_{-\mathrm{d}}^{*} \backslash\{1\}$ the quotient $\mathrm{Y}=\mathrm{A} /\left\langle\mathrm{g}_{\mathrm{o}}, \lambda_{3} \mathrm{I}_{2}\right\rangle$ is a ruled surface with a rational base and therefore a rational surface.

Criterion For an Abelian Ball Quotient Model

- Theorem: (Holzapfel) The blow-up of an abelian surface A at the singular locus $T^{\text {sing }}=\sum_{1 \leq i<j \leq h}\left(T_{i} \cap T_{j}\right)$ of a
multi-elliptic divisor $\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{h}} \mathrm{T}_{\mathrm{i}}$ is smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ of a ball quotient if and only if $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ and T has singularity rate

$$
\frac{\sum_{i=1}^{\mathrm{h}} \operatorname{card}\left(\mathrm{~T}_{\mathrm{i}} \cap \mathrm{~T}^{\operatorname{sing}}\right)}{\operatorname{card}\left(\mathrm{T}^{\operatorname{sing}}\right)}=4
$$

- The smooth elliptic curves on $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ are of the form $D_{a_{i}, b_{i}}+\left(P_{i}, Q_{i}\right)=\left\{\left(a_{i} P+P_{i}, b_{i} P+Q_{i}\right) \mid P \in D\right\}$

Criterion For an Abelian Ball Quotient Model

- Theorem: (Holzapfel) The blow-up of an abelian surface A at the singular locus $T^{\operatorname{sing}}=\sum_{1 \leq i<j \leq h}\left(T_{i} \cap T_{j}\right)$ of a
multi-elliptic divisor $\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{h}} \mathrm{T}_{\mathrm{i}}$ is smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ of a ball quotient if and only if $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ and T has singularity rate

$$
\frac{\sum_{i=1}^{\mathrm{h}} \operatorname{card}\left(\mathrm{~T}_{\mathrm{i}} \cap \mathrm{~T}^{\operatorname{sing}}\right)}{\operatorname{card}\left(\mathrm{T}^{\operatorname{sing}}\right)}=4
$$

- The smooth elliptic curves on $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ are of the form

$$
\mathrm{E}_{\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}}+\left(\mathrm{P}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}}\right)=\left\{\left(\mathrm{a}_{\mathrm{i}} \mathrm{P}+\mathrm{P}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \mathrm{P}+\mathrm{Q}_{\mathrm{i}}\right) \mid \mathrm{P} \in \mathrm{E}\right\} .
$$

Holzapfel's Co-Abelian Compactification Over Gauss Numbers With 6 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard modular $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$, such that the contraction of the rational (-1)-curves $\xi:\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime} \rightarrow A_{-1}$ provides the abelian surface $\mathrm{A}_{-1}=\mathrm{E}_{-1} \times \mathrm{E}_{-1}, \mathrm{E}_{-1}=\mathbb{C} /(\mathbb{Z}+\mathbb{Z i})$ and the multi-elliptic divisor $\xi\left(\mathrm{T}^{\prime}\right)=\mathrm{T}_{-1}^{(6,8)}=\sum_{\mathrm{i}=1}^{8} \mathrm{~T}_{\mathrm{i}}$ with $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{i}^{\mathrm{k}}, 1}$ for $1 \leq \mathrm{k} \leq 4$, $\mathrm{T}_{\mathrm{m}+4}=\mathrm{Q}_{\mathrm{m}} \times \mathrm{E}_{-1}, \mathrm{~T}_{\mathrm{m}+6}=\mathrm{E}_{-1} \times \mathrm{Q}_{\mathrm{m}}$ for $1 \leq \mathrm{m} \leq 2$,
$\mathrm{Q}_{1}=\frac{1}{2}(\bmod \mathbb{Z}+\mathbb{Z} \mathrm{i}), \mathrm{Q}_{2}=\mathrm{i}_{1}$.

- Proposition: The group $\mathrm{G}_{-1}^{(6,8)}=\operatorname{Aut}\left(\mathrm{A}_{-1}, \mathrm{~T}_{-1}^{(6,8)}\right)$ is generated by the translation $\tau_{\mathrm{Q}_{33}}$ with $\mathrm{Q}_{33}=\left(\mathrm{Q}_{3}, \mathrm{Q}_{3}\right)$, $\mathrm{Q}_{3}=\frac{1+\mathrm{i}}{2}(\bmod \mathbb{Z}+\mathbb{Z} \mathrm{i})$, the transposition θ of the elliptic factors of $\mathrm{A}_{-1}=\mathrm{E}_{-1} \times \mathrm{E}_{-1}$ and the multiplications I, J by i on the first, respectively, the second factor of A_{-1}.

- Proposition: The group $\mathrm{G}_{-1}^{(6,8)}=\operatorname{Aut}\left(\mathrm{A}_{-1}, \mathrm{~T}_{-1}^{(6,8)}\right)$ is generated by the translation $\tau_{\mathrm{Q}_{33}}$ with $\mathrm{Q}_{33}=\left(\mathrm{Q}_{3}, \mathrm{Q}_{3}\right)$, $\mathrm{Q}_{3}=\frac{1+\mathrm{i}}{2}(\bmod \mathbb{Z}+\mathbb{Z i})$, the transposition θ of the elliptic factors of $\mathrm{A}_{-1}=\mathrm{E}_{-1} \times \mathrm{E}_{-1}$ and the multiplications I, J by i on the first, respectively, the second factor of A_{-1}.
- The representation $\varphi: \mathrm{G}_{-1}^{(6,8)} \rightarrow \mathrm{S}_{8}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{8}\right)$ has $\operatorname{Ker} \varphi=\left\langle\tau_{\mathrm{Q}_{33}}\left(\mathrm{iI}_{2}\right)\right\rangle \simeq \mathbb{Z}_{4}$ and $\operatorname{Im} \varphi$ of order 16 , which is contained in $\mathrm{S}_{4}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{4}\right) \times \mathrm{S}_{4}\left(\mathrm{~T}_{5}, \ldots, \mathrm{~T}_{8}\right)$ and surjects onto the dihedral groups $\mathrm{D}_{4}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right)$ and $\mathrm{D}_{4}\left(\mathrm{~T}_{5}, \mathrm{~T}_{7}, \mathrm{~T}_{6}, \mathrm{~T}_{8}\right)$.

New Galois Quotients Of the Co-Abelian $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)$

- Theorem: (i) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$ by the cyclic group

$$
\mathrm{H}_{1}=\left\langle\tau_{\mathrm{Q}_{33}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \subset \mathrm{G}_{-1}^{(6,8)}
$$

of order 2 is $\overline{\mathbb{B} / \Gamma_{\mathrm{HE},-1}^{(6,8)}}$ with hyperelliptic minimal model $\mathrm{A}_{-1} / \mathrm{H}_{1}$.

- (ii) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$ by the subgroup

of order 4 is $\overline{\mathbb{B} / \Gamma_{\text {Enr,-1 }}^{(6,8)}}$ with Enriques minimal model, covered by the Kummer surface X_{-1} of A_{-1}.

New Galois Quotients Of the Co-Abelian $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right.$

- Theorem: (i) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$ by the cyclic group

$$
\mathrm{H}_{1}=\left\langle\tau_{\mathrm{Q}_{33}}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \subset \mathrm{G}_{-1}^{(6,8)}
$$

of order 2 is $\overline{\mathbb{B} / \Gamma_{\mathrm{HE},-1}^{(6,8)}}$ with hyperelliptic minimal model $\mathrm{A}_{-1} / \mathrm{H}_{1}$.

- (ii) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$ by the subgroup

$$
\mathrm{H}_{2}=\left\langle-\mathrm{I}_{2}, \tau_{\mathrm{Q}_{33}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right\rangle \subset \mathrm{G}_{-1}^{(6,8)}
$$

of order 4 is $\overline{\mathbb{B} / \Gamma_{\text {Enr, }-1}^{(6,8)}}$ with Enriques minimal model, covered by the Kummer surface X_{-1} of A_{-1}.

New Galois Quotients Of the Co-Abelian $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)$

(iii) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(6,8)}\right)^{\prime}$ by the cyclic subgroup

$$
\mathrm{H}_{3}=\left\langle\left(\begin{array}{ll}
\mathrm{i} & 0 \\
0 & 1
\end{array}\right)\right\rangle \subset \mathrm{G}_{-1}^{(6,8)}
$$

of order 4 is $\overline{\mathbb{B} / \Gamma_{\text {rul, }-1}^{(6,8)}}$, birational to a ruled surface with an elliptic base.

Hirzebruch's $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$ and Holzapfel's $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime},\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ admit holomorphic involutions, leaving invariant their toroidal compactifying divisors. The corresponding orbit spaces are ball quotient compactifications $\mathbb{B} / \Gamma_{\mathrm{K} 3}$, birational to the Kummer surfaces $\mathrm{X}_{-\mathrm{d}}$ of the abelian minimal models $\mathrm{A}_{-\mathrm{d}}$.

Holzapfel's Co-Abelian Compactification Over Gauss Numbers With 3 Exceptional Curves

Proposition: (Holzapfel - 2001) There is a smooth Picard modular $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$, such that the contraction of the rational (-1)-curves $\xi:\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime} \rightarrow \mathrm{A}_{-1}$ yields the abelian surface $\mathrm{A}_{-1}=\mathrm{E}_{-1} \times \mathrm{E}_{-1}, \mathrm{E}_{-1}=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \mathrm{i})$ and the multi-elliptic divisor $\xi\left(\mathrm{T}^{\prime}\right)=\mathrm{T}_{-1}^{(3,6)}=\sum_{\mathrm{i}=1}^{6} \mathrm{~T}_{\mathrm{i}}$ with $\mathrm{T}_{1}=\mathrm{E}_{1,0}, \mathrm{~T}_{2}=\mathrm{E}_{1,1+\mathrm{i}}$, $\mathrm{T}_{3}=\mathrm{E}_{1,1}+\mathrm{Q}_{30}, \mathrm{~T}_{4}=\mathrm{E}_{1, \mathrm{i}}+\mathrm{Q}_{30}, \mathrm{~T}_{5}=\mathrm{E}_{1-\mathrm{i}, 1}, \mathrm{~T}_{6}=\mathrm{E}_{0,1}$, $\mathrm{Q}_{30}=\left(\mathrm{Q}_{3}, \mathrm{Q}_{0}\right), \mathrm{Q}_{3}=\frac{1+\mathrm{i}}{2}(\bmod \mathbb{Z}+\mathbb{Z} \mathrm{i}), \mathrm{Q}_{0}=0(\bmod \mathbb{Z}+\mathbb{Z} \mathrm{i})$.

The Automorphism Group And a Hyperelliptic Quotient Of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$

- Proposition: The group $\mathrm{G}_{-1}^{(3,6)}=\operatorname{Aut}\left(\mathrm{A}_{-1}, \mathrm{~T}_{-1}^{(3,6)}\right)=$
$\left\langle\mathrm{iI}_{2}, \tau_{\mathrm{Q}_{30}}\left(\begin{array}{cc}-\mathrm{i} & 1 \\ -\mathrm{i} & 1+\mathrm{i}\end{array}\right), \tau_{\mathrm{Q}_{03}}\left(\begin{array}{cc}1 & 0 \\ 1 & \mathrm{i}\end{array}\right), \tau_{\mathrm{Q}_{03}}\left(\begin{array}{cc}1 & -1+\mathrm{i} \\ 1 & -1\end{array}\right)\right\rangle$
is of order 96 and $\varphi: \mathrm{G}_{-1}^{(3,6)} \rightarrow \mathrm{S}_{6}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{6}\right)$ has $\operatorname{Ker} \varphi=\left\langle\mathrm{iI}_{2}\right\rangle \simeq \mathbb{Z}_{4}$ and $\operatorname{Im} \varphi \simeq \mathrm{S}_{4}$.
- Proposition: (i) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ by the cyclic group

is $\overline{\mathbb{B} / \Gamma_{\mathrm{HE},-1}^{(3,6)}}$ with hyperelliptic minimal model $\mathrm{A}_{-1} / \mathrm{H}_{1}$

The Automorphism Group And

a Hyperelliptic Quotient Of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$

- Proposition: The group $\mathrm{G}_{-1}^{(3,6)}=\operatorname{Aut}\left(\mathrm{A}_{-1}, \mathrm{~T}_{-1}^{(3,6)}\right)=$
$\left\langle\mathrm{iI}_{2}, \tau_{\mathrm{Q}_{30}}\left(\begin{array}{cc}-\mathrm{i} & 1 \\ -\mathrm{i} & 1+\mathrm{i}\end{array}\right), \tau_{\mathrm{Q}_{03}}\left(\begin{array}{cc}1 & 0 \\ 1 & \mathrm{i}\end{array}\right), \tau_{\mathrm{Q}_{03}}\left(\begin{array}{cc}1 & -1+\mathrm{i} \\ 1 & -1\end{array}\right)\right\rangle$
is of order 96 and $\varphi: \mathrm{G}_{-1}^{(3,6)} \rightarrow \mathrm{S}_{6}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{6}\right)$ has
$\operatorname{Ker} \varphi=\left\langle\mathrm{iI}_{2}\right\rangle \simeq \mathbb{Z}_{4}$ and $\operatorname{Im} \varphi \simeq \mathrm{S}_{4}$.
- Proposition: (i) The quotient of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ by the cyclic group

$$
\mathrm{H}_{1}=\left\langle\tau_{\mathrm{Q}_{30}}\left(\begin{array}{cc}
-\mathrm{i} & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset \mathrm{G}_{-1}^{(3,6)}
$$

is $\overline{\mathbb{B} / \Gamma_{\mathrm{HE},-1}^{(3,6)}}$ with hyperelliptic minimal model $\mathrm{A}_{-1} / \mathrm{H}_{1}$.

Existence And Non-Existence Of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right) / \mathrm{H}$

- (ii) The involution $\mathrm{h}_{-1}^{(3,6)}=\left(\begin{array}{cc}1 & 0 \\ 1+\mathrm{i} & -1\end{array}\right) \in \mathrm{G}_{-1}^{(3,6)}$ determines the ruled surface with an elliptic base $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{h}_{-1}^{(3,6)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul },-1}^{(3,6)}}$ and the rational surface $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{h}_{-1}^{(3,6)}, \mathrm{iI}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rat },-1}^{(3,6)}}$.
- (iii) The co-abelian smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ is not a finite Galo

Existence And Non-Existence Of $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right) / \mathrm{H}$

- (ii) The involution $h_{-1}^{(3,6)}=\left(\begin{array}{cc}1 & 0 \\ 1+\mathrm{i} & -1\end{array}\right) \in \mathrm{G}_{-1}^{(3,6)}$ determines the ruled surface with an elliptic base $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{h}_{-1}^{(3,6)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul,-1 }}^{(3,6)}}$ and the rational surface $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{h}_{-1}^{(3,6)}, \mathrm{iI}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rat },-1}^{(3,6)}}$.
- (iii) The co-abelian smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ is not a finite Galois cover of a ball quotient with Enriques minimal model.

Hirzebruch's Co-Abelian Compactification Over Eisenstein Numbers With 1 Exceptional Curve

- The ring of Eisenstein integers $\mathcal{O}_{-3}=\mathbb{Z}+\rho \mathbb{Z}$ with $\rho=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{6}}$ is the integers ring of $\mathbb{Q}(\sqrt{-3})$.
- Proposition: (Hirzebruch - 1984) There is a smooth Picard modular $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$, such that contraction of the rational (-1)-curves $\xi:\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} \rightarrow \mathrm{A}_{-3}$ produces the abelian surface $\mathrm{A}_{-3}=\mathrm{E}_{-3} \times \mathrm{E}_{-3}, \mathrm{E}_{-3}=\mathbb{C} / \mathcal{O}_{-3}$ and the multi-elliptic divisor $\xi\left(T^{\prime}\right)=T_{-3}^{(1,4)}=\sum_{i=1}^{4} T_{i}$ with

$$
\mathrm{T}_{1}=\mathrm{E}_{1,0}, \quad \mathrm{~T}_{2}=\mathrm{E}_{1,1}, \quad \mathrm{~T}_{3}=\mathrm{E}_{\rho, 1}, \quad \mathrm{~T}_{4}=\mathrm{E}_{0,1}
$$

Hirzebruch's Co-Abelian Compactification Over Eisenstein Numbers With 1 Exceptional Curve

- The ring of Eisenstein integers $\mathcal{O}_{-3}=\mathbb{Z}+\rho \mathbb{Z}$ with $\rho=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{6}}$ is the integers ring of $\mathbb{Q}(\sqrt{-3})$.
- Proposition: (Hirzebruch-1984) There is a smooth Picard modular $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$, such that contraction of the rational (-1)-curves $\xi:\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} \rightarrow \mathrm{A}_{-3}$ produces the abelian surface $\mathrm{A}_{-3}=\mathrm{E}_{-3} \times \mathrm{E}_{-3}, \mathrm{E}_{-3}=\mathbb{C} / \mathcal{O}_{-3}$ and the multi-elliptic divisor $\xi\left(\mathrm{T}^{\prime}\right)=\mathrm{T}_{-3}^{(1,4)}=\sum_{\mathrm{i}=1}^{4} \mathrm{~T}_{\mathrm{i}}$ with

$$
\mathrm{T}_{1}=\mathrm{E}_{1,0}, \quad \mathrm{~T}_{2}=\mathrm{E}_{1,1}, \quad \mathrm{~T}_{3}=\mathrm{E}_{\rho, 1}, \quad \mathrm{~T}_{4}=\mathrm{E}_{0,1}
$$

Proposition: The group

$$
\mathrm{G}_{-3}^{(1,4)}=\operatorname{Aut}\left(\mathrm{A}_{-3}, \mathrm{~T}_{-3}^{(1,4)}\right)=\left\langle\rho \mathrm{I}_{2},\left(\begin{array}{cc}
1 & 0 \\
1 & -\rho
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\right\rangle
$$

is of order 72 and $\varphi: \mathrm{G}_{-3}^{(1,4)} \rightarrow \mathrm{S}_{4}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{4}\right)$ has
$\operatorname{Ker} \varphi=\left\langle\rho \mathrm{I}_{2}\right\rangle \simeq \mathbb{Z}_{6}$ and $\operatorname{Im} \varphi=\mathrm{A}_{4}$.

Galois Quotients Of $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)$

- Proposition: (i) The element $\mathrm{g}_{-3}^{(1,4)}=\left(\begin{array}{cc}1 & 0 \\ 1 & -\rho\end{array}\right) \in \mathrm{G}_{-3}^{(1,4)}$ of order 3 determines a ruled surface with an elliptic base $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(1,4)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul, }-3}^{(1,4)}}$ and a rational surface $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(1,4)},-\mathrm{I}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rat },-3}^{(1,4)}}$.
- (ii) There are no hyperelliptic or Enriques ball quotient compactifications, covered by $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$

Galois Quotients Of $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)$

- Proposition: (i) The element $g_{-3}^{(1,4)}=\left(\begin{array}{cc}1 & 0 \\ 1 & -\rho\end{array}\right) \in \mathrm{G}_{-3}^{(1,4)}$ of order 3 determines a ruled surface with an elliptic base $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(1,4)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul, }-3}^{(1,4)}}$ and a rational surface $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(1,4)},-\mathrm{I}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rat },-3}^{(1,4)}}$.
- (ii) There are no hyperelliptic or Enriques ball quotient compactifications, covered by $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$.

Holzapfel's Co-Abelian Compactification Over Eisenstein Numbers With 3 Exceptional Curves

Proposition (Holzapfel - 1986) There is a smooth Picard modular $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime}$, such that the contraction of the rational (-1)-curves $\xi:\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime} \rightarrow \mathrm{A}_{-3}$ results in the abelian surface $\mathrm{A}_{-3}=\mathrm{E}_{-3} \times \mathrm{E}_{-3}, \mathrm{E}_{-3}=\mathbb{C} / \mathcal{O}_{-3}$ and the multi-elliptic divisor $\xi\left(\mathrm{T}^{\prime}\right)=\mathrm{T}_{-3}^{(3,6)}=\sum_{\mathrm{i}=1}^{6} \mathrm{~T}_{\mathrm{i}}$ with $\mathrm{T}_{1}=\mathrm{E}_{1,0}, \mathrm{~T}_{2}=\mathrm{E}_{1,0}+\mathrm{P}_{01}$, $\mathrm{T}_{3}=\mathrm{E}_{1,0}+2 \mathrm{P}_{01}, \mathrm{~T}_{4}=\mathrm{E}_{\sqrt{-3}, 1}, \mathrm{~T}_{5}=\mathrm{E}_{\rho \sqrt{-3,1}}, \mathrm{~T}_{6}=\mathrm{E}_{0,1}$, $\mathrm{P}_{01}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right), \mathrm{P}_{0}=0\left(\bmod \mathcal{O}_{-3}\right), \mathrm{P}_{1}=\frac{1+\rho}{3}\left(\bmod \mathcal{O}_{-3}\right)$.

Proposition: The group
$\mathrm{G}_{-3}^{(3,6)}=\operatorname{Aut}\left(\mathrm{A}_{-3}, \mathrm{~T}_{-3}^{(3,6)}\right)=\left\langle\tau_{\mathrm{P}_{01}}, \rho \mathrm{I}_{2},\left(\begin{array}{cc}1 & -\rho \sqrt{-3} \\ 0 & -\rho\end{array}\right)\right\rangle$ with
$\rho=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{6}}, \mathrm{P}_{01}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right), \mathrm{P}_{0}=0\left(\bmod \mathcal{O}_{-3}\right), \mathrm{P}_{1}=\frac{1+\rho}{3}\left(\bmod \mathcal{O}_{-3}\right)$
is of order 54 and $\varphi: \mathrm{G}_{-3}^{(3,6)} \rightarrow \mathrm{S}_{6}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{6}\right)$ has
$\operatorname{Ker} \varphi=\left\langle\rho^{2} \mathrm{I}_{2}\right\rangle \simeq \mathbb{Z}_{3}$ and $\operatorname{Im} \varphi=\mathrm{S}_{3}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right) \times \mathrm{A}_{3}\left(\mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}\right)$.

Galois Quotients Of $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)$

- Proposition: (i) The element
$\mathrm{g}_{-3}^{(3,6)}=\left(\begin{array}{cc}1 & -\sqrt{-3} \\ 0 & \rho^{2}\end{array}\right) \in \mathrm{G}_{-3}^{(3,6)}$ of order 3 determines the ruled surface with an elliptic base
$\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(3,6)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul },-3}^{(3,6)}}$ and the rational surface $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(3,6)}, \rho \mathrm{I}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\mathrm{rat},-3}^{(3,6)}}$.
- (ii) The co-abelian smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-}^{(3,6)}\right)^{\prime}$ does not admit finite Galois quotients, which are hyperelliptic or Enriques ball quotient compactifications.
- Proposition: (i) The element
$\mathrm{g}_{-3}^{(3,6)}=\left(\begin{array}{cc}1 & -\sqrt{-3} \\ 0 & \rho^{2}\end{array}\right) \in \mathrm{G}_{-3}^{(3,6)}$ of order 3 determines the
ruled surface with an elliptic base
$\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(3,6)}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rul, }-3}^{(3,6)}}$ and the rational surface
$\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime} /\left\langle\mathrm{g}_{-3}^{(3,6)}, \rho \mathrm{I}_{2}\right\rangle=\overline{\mathbb{B} / \Gamma_{\text {rat },-3}^{(3,6)}}$.
- (ii) The co-abelian smooth toroidal compactification $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime}$ does not admit finite Galois quotients, which are hyperelliptic or Enriques ball quotient compactifications.
- Lemma: Let $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathrm{A}=\mathrm{E} \times \mathrm{E}$ be the blow-down of the (-1)-curves on a smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ and $\mathrm{T}=\xi\left(\mathrm{T}^{\prime}\right)$ be the image of the toroidal compactifying divisor $\mathrm{T}^{\prime}=(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)$ on the abelian minimal model A.
- Then any smooth elliptic irreducible component T_{i} of T and its proper transform $\mathrm{T}_{\mathrm{i}}^{\prime} \subset \mathrm{T}^{\prime}$ admit a finite (not necessary Galois) covering $\mathrm{E} \rightarrow \mathrm{T}_{\mathrm{i}} \simeq \mathrm{T}_{\mathrm{i}}^{\prime}$.
- Lemma: Let $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow \mathrm{A}=\mathrm{E} \times \mathrm{E}$ be the blow-down of the (-1)-curves on a smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ and $T=\xi\left(\mathrm{T}^{\prime}\right)$ be the image of the toroidal compactifying divisor $\mathrm{T}^{\prime}=(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)$ on the abelian minimal model A.
- Then any smooth elliptic irreducible component T_{i} of T and its proper transform $\mathrm{T}_{\mathrm{i}}^{\prime} \subset \mathrm{T}^{\prime}$ admit a finite (not necessary Galois) covering $\mathrm{E} \rightarrow \mathrm{T}_{\mathrm{i}} \simeq \mathrm{T}_{\mathrm{i}}^{\prime}$.
- Lemma: Let $A_{-d}=E_{-d} \times \mathrm{E}_{-\mathrm{d}}$ be an abelian surface with decomposed complex multiplication by $\mathbb{Q}(\sqrt{-\mathrm{d}})$,
- $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}}+\left(\mathrm{P}_{\mathrm{k}}, \mathrm{Q}_{\mathrm{k}}\right)$ with $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}} \in \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right), \mathrm{k} \in\{\mathrm{i}, \mathrm{j}\}$ be elliptic curves on $\mathrm{A}_{-\mathrm{d}}$,

$$
\Lambda_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)+\mathrm{b}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right) \subset \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)
$$

- Then

- Lemma: Let $\mathrm{A}_{-\mathrm{d}}=\mathrm{E}_{-\mathrm{d}} \times \mathrm{E}_{-\mathrm{d}}$ be an abelian surface with decomposed complex multiplication by $\mathbb{Q}(\sqrt{-\mathrm{d}})$,
- $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}}+\left(\mathrm{P}_{\mathrm{k}}, \mathrm{Q}_{\mathrm{k}}\right)$ with $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}} \in \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right), \mathrm{k} \in\{\mathrm{i}, \mathrm{j}\}$ be elliptic curves on $\mathrm{A}_{-\mathrm{d}}$,

$$
\Lambda_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)+\mathrm{b}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right) \subset \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)
$$

- Then

- Lemma: Let $\mathrm{A}_{-\mathrm{d}}=\mathrm{E}_{-\mathrm{d}} \times \mathrm{E}_{-\mathrm{d}}$ be an abelian surface with decomposed complex multiplication by $\mathbb{Q}(\sqrt{-\mathrm{d}})$,
- $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}}+\left(\mathrm{P}_{\mathrm{k}}, \mathrm{Q}_{\mathrm{k}}\right)$ with $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}} \in \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right), \mathrm{k} \in\{\mathrm{i}, \mathrm{j}\}$ be elliptic curves on $\mathrm{A}_{-\mathrm{d}}$,
-

$$
\Lambda_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)+\mathrm{b}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right) \subset \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)
$$

- Then

- Lemma: Let $\mathrm{A}_{-\mathrm{d}}=\mathrm{E}_{-\mathrm{d}} \times \mathrm{E}_{-\mathrm{d}}$ be an abelian surface with decomposed complex multiplication by $\mathbb{Q}(\sqrt{-\mathrm{d}})$,
- $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}}+\left(\mathrm{P}_{\mathrm{k}}, \mathrm{Q}_{\mathrm{k}}\right)$ with $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}} \in \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right), \mathrm{k} \in\{\mathrm{i}, \mathrm{j}\}$ be elliptic curves on $\mathrm{A}_{-\mathrm{d}}$,
-

$$
\Lambda_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)+\mathrm{b}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right) \subset \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)
$$

\bullet

$$
\Delta_{\mathrm{ij}}=\operatorname{det}\left(\begin{array}{ll}
\mathrm{a}_{\mathrm{i}} & \mathrm{a}_{\mathrm{j}} \\
\mathrm{~b}_{\mathrm{i}} & \mathrm{~b}_{\mathrm{j}}
\end{array}\right), \quad \mathrm{N}_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-\mathrm{d}})}: \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right) \rightarrow \mathbb{Z}^{\geq 0}
$$

- Then

$$
\left[\pi_{1}\left(\mathrm{~T}_{\mathrm{i}}\right): \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)\right]\left[\left(\Delta_{\mathrm{ij}}^{-1} \Lambda_{\mathrm{i}} \cap \pi_{1}\left(\mathrm{~T}_{\mathrm{j}}\right)\right):\left(\Delta_{\mathrm{ij}}^{-1} \Lambda_{\mathrm{i}} \cap \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)\right)\right]
$$

- Lemma: Let $A_{-d}=E_{-d} \times \mathrm{E}_{-\mathrm{d}}$ be an abelian surface with decomposed complex multiplication by $\mathbb{Q}(\sqrt{-\mathrm{d}})$,
- $\mathrm{T}_{\mathrm{k}}=\mathrm{E}_{\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}}+\left(\mathrm{P}_{\mathrm{k}}, \mathrm{Q}_{\mathrm{k}}\right)$ with $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}} \in \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right), \mathrm{k} \in\{\mathrm{i}, \mathrm{j}\}$ be elliptic curves on $\mathrm{A}_{-\mathrm{d}}$,

$$
\Lambda_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)+\mathrm{b}_{\mathrm{k}} \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right) \subset \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)
$$

$$
\Delta_{\mathrm{ij}}=\operatorname{det}\left(\begin{array}{ll}
\mathrm{a}_{\mathrm{i}} & a_{\mathrm{j}} \\
\mathrm{~b}_{\mathrm{i}} & \mathrm{~b}_{\mathrm{j}}
\end{array}\right), \quad \mathrm{N}_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-\mathrm{d}})}: \operatorname{End}\left(\mathrm{E}_{-\mathrm{d}}\right) \rightarrow \mathbb{Z}^{\geq 0}
$$

- Then

$$
\mathrm{T}_{\mathrm{i}} \mathrm{~T}_{\mathrm{j}}=\frac{\mathrm{N}_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-\mathrm{d}})}\left(\Delta_{\mathrm{ij}}\right)}{\left[\pi_{1}\left(\mathrm{~T}_{\mathrm{i}}\right): \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)\right]\left[\left(\Delta_{\mathrm{ij}}^{-1} \Lambda_{\mathrm{i}} \cap \pi_{1}\left(\mathrm{~T}_{\mathrm{j}}\right)\right):\left(\Delta_{\mathrm{ij}}^{-1} \Lambda_{\mathrm{i}} \cap \pi_{1}\left(\mathrm{E}_{-\mathrm{d}}\right)\right)\right]}
$$

Multi-Elliptic And Toroidal Divisors With Minimal Fundamental Groups

- Definition: The irreducible components $\mathrm{T}_{\mathrm{i}}^{\prime}$ of T^{\prime} or, equivalently, T_{i} of T have minimal fundamental groups if $\mathrm{T}_{\mathrm{i}}^{\prime} \simeq \mathrm{T}_{\mathrm{i}} \simeq \mathrm{E}$ are isomorphic to the elliptic factor of the abelian minimal model $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ of $(\mathbb{B} / \Gamma)^{\prime}$.
- If $\pi_{1}\left(\mathrm{~T}_{\mathrm{i}}\right)=\pi_{1}\left(\mathrm{~T}_{\mathrm{j}}\right)=\pi_{1}(\mathrm{E})$ are minimal then

Multi-Elliptic And Toroidal Divisors With Minimal Fundamental Groups

- Definition: The irreducible components $\mathrm{T}_{\mathrm{i}}^{\prime}$ of T^{\prime} or, equivalently, T_{i} of T have minimal fundamental groups if $T_{i}^{\prime} \simeq T_{i} \simeq E$ are isomorphic to the elliptic factor of the abelian minimal model $\mathrm{A}=\mathrm{E} \times \mathrm{E}$ of $(\mathbb{B} / \Gamma)^{\prime}$.
- If $\pi_{1}\left(\mathrm{~T}_{\mathrm{i}}\right)=\pi_{1}\left(\mathrm{~T}_{\mathrm{j}}\right)=\pi_{1}(\mathrm{E})$ are minimal then

$$
\mathrm{T}_{\mathrm{i}} \mathrm{~T}_{\mathrm{j}}=\mathrm{N}_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-\mathrm{d}})}\left(\Delta_{\mathrm{ij}}\right)
$$

Uniqueness Result

Theorem: Up to an automorphism and a complex conjugation, Hirzebruch's $\left(\mathbb{B} / \Gamma_{-3}^{(1,4)}\right)^{\prime}$ and Holzapfel's $\left(\mathbb{B} / \Gamma_{-3}^{(3,6)}\right)^{\prime},\left(\mathbb{B} / \Gamma_{-1}^{(3,6)}\right)^{\prime}$ are the only co-abelian smooth toroidal compactifications $(\mathbb{B} / \Gamma)^{\prime}$ with at most three rational (-1)-curves and minimal fundamental groups of $T_{i}^{\prime} \subset T^{\prime}=(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)$.

Towards The Ultimate Proof Of Holzapfel's Conjecture

- There remains to be shown
- the existence of ball quotient compactifications,
- which are birational to elliptic surfaces or ruled surfaces with bases of genus at least 2 .

Towards The Ultimate Proof Of Holzapfel's Conjecture

- There remains to be shown
- the existence of ball quotient compactifications,
- which are birational to elliptic surfaces or ruled surfaces with bases of genus at least 2 .
- There remains to be shown
- the existence of ball quotient compactifications,
- which are birational to elliptic surfaces or ruled surfaces with bases of genus at least 2 .

