A C-Spectral Sequence Associated with Free Boundary Variational Problems

Giovanni Moreno

University of Salerno
$X^{\text {th }}$ INTERNATIONAL CONFERENCE ON
Geometry, Integrability and Quantization
Varna, June 5-10, 2009

Introduction

When a PDE is formalized as a natural geometrical object, one can use the common tools of differential calculus (e.g.: locality, differential cohomology, symmetries, etc.) to reveal some aspects of the PDE itself, which could be hardly accessed by just using analytic techniques. The right geometrical portraits of PDEs are believed to be the so-called diffieties.
However, we can provide a silly example, where no diffiety are involved.

Introduction

When a PDE is formalized as a natural geometrical object, one can use the common tools of differential calculus (e.g.: locality, differential cohomology, symmetries, etc.) to reveal some aspects of the PDE itself, which could be hardly accessed by just using analytic techniques.
diffieties.
However, we can provide a silly example, where no diffiety are involved.

Introduction

When a PDE is formalized as a natural geometrical object, one can use the common tools of differential calculus (e.g.: locality, differential cohomology, symmetries, etc.) to reveal some aspects of the PDE itself, which could be hardly accessed by just using analytic techniques. The right geometrical portraits of PDEs are believed to be the so-called diffieties.
However, we can provide a silly example, where no diffiety are involved.

Introduction

When a PDE is formalized as a natural geometrical object, one can use the common tools of differential calculus (e.g.: locality, differential cohomology, symmetries, etc.) to reveal some aspects of the PDE itself, which could be hardly accessed by just using analytic techniques. The right geometrical portraits of PDEs are believed to be the so-called diffieties.
However, we can provide a silly example, where no diffiety are involved.

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} . \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration. From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$, where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the real numbers $k \in \mathbb{R}$. Now, $H\left(i^{*}\right)$ is an isomorphism, being $H\left(r^{*}\right)$ an its inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map. So, if k is a potential of $i^{*}(\omega)$, then $r^{*}(k)$, i.e., k, must be a potential of $r^{*}\left(i^{*}(\omega)\right)$, which differs from ω by the exact form $h(\omega)$, where h is the homotopy operator associated with the homotopy ior $\simeq \mathrm{id}_{\mathbb{R}^{n}}$.

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} \tag{1}
\end{equation*}
$$

```
Then elementary analysis allows to found a family of solutions F +k,
where }k\mathrm{ is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the
differential cohomology of \mp@subsup{\mathbb{R}}{}{n}.
where i: \mathbb{R}}
real numbers }k\in\mathbb{R}\mathrm{ . Now, H(i*) is an isomorphism, being H(r*) an its
inverse, where r: \mp@subsup{\mathbb{R}}{}{n}->\mp@subsup{\mathbb{R}}{}{0}}\mathrm{ is the zero map.
So, if }k\mathrm{ is a potential of i*}(\omega)\mathrm{ , then }\mp@subsup{r}{}{*}(k)\mathrm{ , i.e., }k\mathrm{ , must be a potential of
r*}(\mp@subsup{i}{}{*}(\omega))\mathrm{ , which differs from }\omega\mathrm{ by the exact form h( }\omega)\mathrm{ , where }h\mathrm{ is the
homotopy operator associated with the homotopy
```


Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} . \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$,
where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the
real numbers $k \in \mathbb{R}$. Now, $H\left(i^{*}\right)$ is an isomorphism, being $H\left(r^{*}\right)$ an its
inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map.
So, if k is a potential of $i^{*}(\omega)$, then $r^{*}(k)$, i.e., k, must be a potential of $r^{*}\left(i^{*}(\omega)\right)$, which differs from ω by the exact form $h(\omega)$, where h is the

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} . \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$, where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the real numbers $k \in \mathbb{R}$.
inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map.
$r^{*}\left(i^{*}(\omega)\right)$, which differs from ω by the exact form $h(\omega)$, where h is the

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} . \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$, where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the real numbers $k \in \mathbb{R}$. Now, $H\left(i^{*}\right)$ is an isomorphism, being $H\left(r^{*}\right)$ an its inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map.

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} . \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$, where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the real numbers $k \in \mathbb{R}$. Now, $H\left(i^{*}\right)$ is an isomorphism, being $H\left(r^{*}\right)$ an its inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map.
So, if k is a potential of $i^{*}(\omega)$, then $r^{*}(k)$, i.e., k, must be a potential of $r^{*}\left(i^{*}(\omega)\right)$, which differs from ω by the exact form $h(\omega)$,

Introduction

Consider the problem of finding a potential F of a closed 1 -form ω in \mathbb{R}^{n}.
When it is written in coordinates, it looks like a 1-st order PDE:

$$
\begin{equation*}
\frac{\partial F}{\partial x^{i}}=\omega_{i} \quad \omega=\omega_{i} d x^{i} \tag{1}
\end{equation*}
$$

Then elementary analysis allows to found a family of solutions $F+k$, where k is a real mumber arising from the process of integration.
From a geometrical perspective, our problem is in fact an aspect of the differential cohomology of \mathbb{R}^{n}.
If instead of the potentials of ω, we looked for the potentials of $i^{*}(\omega)$, where $i: \mathbb{R}^{0} \subseteq \mathbb{R}^{n}$, then the solution would be straightforward: all the real numbers $k \in \mathbb{R}$. Now, $H\left(i^{*}\right)$ is an isomorphism, being $H\left(r^{*}\right)$ an its inverse, where $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{0}$ is the zero map.
So, if k is a potential of $i^{*}(\omega)$, then $r^{*}(k)$, i.e., k, must be a potential of $r^{*}\left(i^{*}(\omega)\right)$, which differs from ω by the exact form $h(\omega)$, where h is the homotopy operator associated with the homotopy $i \circ r \simeq \mathrm{id}_{\mathbb{R}^{n}}$.

Introduction

The potentials of ω are then $k-h(\omega)$.
We see that the true solution of our problem is k; the function $h(\omega)$ is just an algebraic compensation due to the homotopy formula. The problem in fact lives on the 0 -dimensional manifold \mathbb{R}^{0}, where its solution is trivial, and, being formulated in terms of differential
cohomology, it took advantage of the homotopy invariance of the latter. On the other hand, the analitic machinery drew attention away from the more conceptual, and hence more interesting, aspects of the problem.

Introduction

The potentials of ω are then $k-h(\omega)$.
We see that the true solution of our problem is k; the function $h(\omega)$ is just an algebraic compensation due to the homotopy formula. The problem in fact lives on the 0 -dimensional manifold \mathbb{R}^{0}, where its solution is trivial, and, being formulated in terms of differential
cohomology, it took advantage of the homotopy invariance of the latter. On the other hand, the analitic machinery drew attention away from the more conceptual, and hence more interesting, aspects of the problem.

Introduction

The potentials of ω are then $k-h(\omega)$.
We see that the true solution of our problem is k; the function $h(\omega)$ is just an algebraic compensation due to the homotopy formula.
> problem in fact lives on the 0-dimensional manifold \mathbb{R}^{0}, where its solution is trivial, and, being formulated in terms of differential cohomology, it took advantage of the homotopy invariance of the latter. On the other hand, the analitic machinery drew attention away from the more conceptual, and hence more interesting, aspects of the problem.

Introduction

The potentials of ω are then $k-h(\omega)$.
We see that the true solution of our problem is k; the function $h(\omega)$ is just an algebraic compensation due to the homotopy formula. The problem in fact lives on the 0 -dimensional manifold \mathbb{R}^{0}, where its solution is trivial, and, being formulated in terms of differential cohomology, it took advantage of the homotopy invariance of the latter.
more conceptual, and hence more interesting, aspects of the problem.

Introduction

The potentials of ω are then $k-h(\omega)$.
We see that the true solution of our problem is k; the function $h(\omega)$ is just an algebraic compensation due to the homotopy formula. The problem in fact lives on the 0 -dimensional manifold \mathbb{R}^{0}, where its solution is trivial, and, being formulated in terms of differential cohomology, it took advantage of the homotopy invariance of the latter. On the other hand, the analitic machinery drew attention away from the more conceptual, and hence more interesting, aspects of the problem.

In this talk we present a less trivial circumstance where the use of the proper geometrical portrait of a PDE is highly advisable,

[^0]
Introduction

In this talk we present a less trivial circumstance where the use of the proper geometrical portrait of a PDE is highly advisable, since it avoids the classical analitical proofs and provides far-reaching generalizations.

Introduction

Let us state the main problem.

Introduction

Suppose that we want to reach the shore $\Gamma_{1} \ldots$

Introduction

... leaving from our shore $\Gamma_{2} \ldots$

Introduction

... by crossing the ocean E.

Introduction

With a modern ship we can follow this route.

Introduction

Where u is not a straight line!

Introduction

Probably ancient sailors

Introduction

Probably ancient sailors would have followed a straight route w.

Introduction

But looking carefully at the map...

Introduction

... it is easy to convince oneself that there exists only one straight route V...

Introduction

... which also ends at a right angle on $\Gamma_{1} \ldots$

Introduction

... and also begins at a right angle from Γ_{2}.

Introduction

In fact, such a route, is the shortest way!

The mystery of the missing boundary conditions

We have heuristically showed that the
PROBLEM OF COLUMBUS
Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v,
By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.
We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems. However, we use the problem of Columbus as a toy model.

We have heuristically showed that the

PROBLEM OF COLUMBUS

Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v,

> By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.
> We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems. However, we use the problem of Columbus as a toy model.

We have heuristically showed that the

PROBLEM OF COLUMBUS

Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v, even though the Euler-Lagrange equations associated with the length functional are $2-$ nd order.
By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.
We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems. However, we use the problem of Columbus as a toy model.

We have heuristically showed that the

PROBLEM OF COLUMBUS

Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v, even though the Euler-Lagrange equations associated with the length functional are $2-$ nd order.
By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.

[^1]We have heuristically showed that the

PROBLEM OF COLUMBUS

Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v, even though the Euler-Lagrange equations associated with the length functional are $2-$ nd order.
By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.
We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems.
problem of Columbus as a toy model

We have heuristically showed that the

PROBLEM OF COLUMBUS

Given the curves Γ_{1} and Γ_{2} in \mathbb{R}^{2}, find, among the (non self-intersecting) (smooth) curves which start from a point of Γ_{1} and ends to a point of Γ_{2} (without crossing $\Gamma_{1} \cup \Gamma_{2}$ in any other point), those whose length is (locally) minimal.
admits a unique solution v, even though the Euler-Lagrange equations associated with the length functional are $2-$ nd order.
By manipulating the first variational formula, it has been discovered that the extremal v in fact fulfills some hidden boundary conditions, which where called transversality conditions.
We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems. However, we use the problem of Columbus as a toy model.

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of

```
FREE BOUNDARY VARIATIONAL PROBLEM P
which can be formalized in the following way: given
    - a manifold E with non-empty boundary }\partialE\mathrm{ ,
    - an integer n<dim E,
    - the set }\operatorname{Adm}(\mathcal{P})={L} such tha
    - L is an n-dimensional compact connected submanifolds of E,
    - L is nowhere tangent to \partialE,
    - and }\partialL\mathrm{ is non-empty and coincides with L }\cap\partialE
    - and, finally, an horizontal n-form }\omega\in\mp@subsup{\overline{\Lambda}}{}{n}(\mp@subsup{J}{}{\infty}(E,n))\mathrm{ ,
    we want to find the (local) extrema for the action
        Adm(\mathcal{P})\niL\mapsto}\mp@subsup{\int}{L}{}\mp@subsup{j}{\infty}{}(L\mp@subsup{)}{}{*}(\omega)\in\mathbb{R
determined by }\omega\mathrm{ on the elements of }\operatorname{Adm}(\mathcal{P})\mathrm{ .
```

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a
FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}
which can be formalized in the following way:
given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂L is non-empty and coincides with $L \cap \partial E$
- and, finally, an horizontal n-form
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

 which can be formalized in the following way: given- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact cornected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂L is non-empty and coincides with $L \cap \partial E$,
- and, finally, an horizontal n-form
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E.
- and ∂L is non-empty and coincides with $L \cap \partial E$
- and, finally, an horizontal n-form
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.
The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂l is non-emnty and coincides with $L \cap \partial E$,
- and, finally, an horizontal n-form
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- and ∂L is non-empty and coincides with $L \cap \partial E$,
- and, rinally, an horizontal form $\omega \in \bar{\Lambda}^{n}(\operatorname{son}(E, n))$,
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,

```
- and }\partialL\mathrm{ is non-empty and coincides with L }\cap\partial
```

- and, finally, an horizontal n-form
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The largest class of problems encompassed by our theory.

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂L is non-empty and coincides with $L \cap \partial E$,
- and, finally, an horizontal n-form 4
we want to find the (local) extrema for the action

$$
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R}
$$

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂L is non-empty and coincides with $L \cap \partial E$,
- and, finally, an horizontal n-form $\omega \in \bar{\Lambda}^{n}\left(J^{\infty}(E, n)\right)$,
we want to find the (local) extrema for the action

The problem of Columbus is just a naive example of a

FREE BOUNDARY VARIATIONAL PROBLEM \mathcal{P}

which can be formalized in the following way: given

- a manifold E with non-empty boundary ∂E,
- an integer $n<\operatorname{dim} E$,
- the set $\operatorname{Adm}(\mathcal{P})=\{L\}$ such that
- L is an n-dimensional compact connected submanifolds of E,
- L is nowhere tangent to ∂E,
- and ∂L is non-empty and coincides with $L \cap \partial E$,
- and, finally, an horizontal n-form $\omega \in \bar{\Lambda}^{n}\left(J^{\infty}(E, n)\right)$,
we want to find the (local) extrema for the action

$$
\begin{equation*}
\operatorname{Adm}(\mathcal{P}) \ni L \mapsto \int_{L} j_{\infty}(L)^{*}(\omega) \in \mathbb{R} \tag{2}
\end{equation*}
$$

determined by ω on the elements of $\operatorname{Adm}(\mathcal{P})$.

Rectification of the Columbus problem

A nice idea to attack the problem of Columbus would be to transform the ocean E...

Rectification of the Columbus problem

Rectification of the Columbus problem

Rectification of the Columbus problem

Rectification of the Columbus problem

Rectification of the Columbus problem

Rectification of the Columbus problem

\ldots into the total space of the trivial bundle $\pi:[0,1] \times(0,1) \rightarrow[0,1]$.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model.

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
- the horizontal 1 -form $\omega \in \bar{\Lambda}^{1}\left(J^{\infty}(\pi)\right)$ is given by $\omega=f\left(x, y, y^{\prime}\right) d x$, where $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$
and we want to find the (local) extrema for the action

$$
\Gamma(\pi) \ni u \mapsto \int_{0}^{1} j_{\infty}(u)^{*}(\omega) \in \mathbb{R} .
$$

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
and we want to find the (local) extrema for the action

$$
\Gamma(\pi) \ni u \mapsto \int_{0}^{1} j_{\infty}(u)^{*}(\omega) \in \mathbb{R} .
$$

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$,
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
and we want to find the (local) extrema for the action

$$
\Gamma(\pi) \ni u \mapsto \int_{0}^{1} j_{\infty}(u)^{*}(\omega) \in \mathbb{R} .
$$

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$,
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
and we want to find the (local) extrema for the action

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$,
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
- the horizontal 1-form $\omega \in \bar{\Lambda}^{1}\left(J^{\infty}(\pi)\right)$ is given by $\omega=f\left(x, y, y^{\prime}\right) d x$, where $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$,
and we want to find the (local) extrema for the action

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$,
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
- the horizontal 1-form $\omega \in \bar{\Lambda}^{1}\left(J^{\infty}(\pi)\right)$ is given by $\omega=f\left(x, y, y^{\prime}\right) d x$, where $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$,
and we want to find the (local) extrema for the action

$$
\begin{equation*}
\Gamma(\pi) \ni u \mapsto \int_{0}^{1} j_{\infty}(u)^{*}(\omega) \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

The rectified problem of Columbus

Since our theory is a natural construction, the rectified problem of Columbus is equivalent to the original one, and we can use it as a toy model. Its data are the following:

- $E=[0,1] \times(0,1)$, and $\partial E=\{0,1\} \times(0,1)$,
- $n=1$,
- $\operatorname{Adm}(\mathcal{P})=\Gamma(\pi)$
- the horizontal 1-form $\omega \in \bar{\Lambda}^{1}\left(J^{\infty}(\pi)\right)$ is given by $\omega=f\left(x, y, y^{\prime}\right) d x$, where $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$,
and we want to find the (local) extrema for the action

$$
\begin{equation*}
\Gamma(\pi) \ni u \mapsto \int_{0}^{1} j_{\infty}(u)^{*}(\omega) \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Problems \mathcal{P} in which only sections of a fiber bundle π are involved belongs to the so-called fibered case.

Example of a more general setting

Consider the following problem \mathcal{P} :

- E is the 2 -dimensional closed disk D^{2},

Example of a more general setting

Consider the following problem \mathcal{P} :

- ∂E is the circle S^{1},

Example of a more general setting

Consider the following problem \mathcal{P} :

- and $n=1$.

Example of a more general setting

In such a case, the red submanifolds belong to $\operatorname{Adm}(\mathcal{P})$.

Example of a more general setting

But not the yellow one, for it is tangent to ∂E in some point.

Example of a more general setting

Nor the purple one, since its boundary is not the set of its common points with ∂E.

Example of a more general setting

Nor the green one, since it has got empty boundary!

Example of a more general setting

However, our theory can be localized. Consider, e.g., the subset U of E.

Example of a more general setting

And also the subset V.

Example of a more general setting

Observe that U has got a fiber bundle structure over $[0,1)$.

Example of a more general setting

As well as V.

Example of a more general setting

Notice also that $\partial[0,1)$ is just $\{0\}$, so that $\pi^{-1}(\partial[0,1))$ coincides with $U \cap \partial E$.

Example of a more general setting

So, nearby a point of ∂E, an admissible submanifold for the problem \mathcal{P}...

Example of a more general setting

... coincide with the graph of a (local) section of π in a neighborhood of 0.

Example of a more general setting

In such a setting, we can, for instance, write down the transversality conditions for the problem of stationary chords.

At this point, it should be clear that the rectified problem of Columbus is not such a restrictive toy model, since by localization and naturality, any problem \mathcal{P} can be reduced to the fibered case.

Now we will show that the theory which describe the problems \mathcal{P} is just an aspect of the Secondary Calculus over a certain diffiety, wich we will call (B, \mathcal{C}), naturally associated to the problem \mathcal{P}, problem d F is an aspect of the differential cohomology

Now we will show that the theory which describe the problems \mathcal{P} is just an aspect of the Secondary Calculus over a certain diffiety, wich we will call (B, \mathcal{C}), naturally associated to the problem \mathcal{P}, much as the problem $d F=\omega$ is an aspect of the differential cohomology of \mathbb{R}^{n}.

We stress that natural here means that if the data of the problem \mathcal{P} undergo a transformation, then the objects and morphisms which constitute the theory which describe \mathcal{P} also undergo a transformation, and the theory which describe the transformed problem is obtained.

What is Secondary Calculus?

The \mathcal{C}-spectral sequence is a cohomological theory naturally associated with any space of infinite jets, thanks to the presence of the distribution \mathcal{C}, which allows to write down many concepts of the variational calculus by using the same logic of the standard differential calculus.

What is Secondary Calculus?

The \mathcal{C}-spectral sequence is a cohomological theory naturally associated with any space of infinite jets, thanks to the presence of the distribution \mathcal{C}, which allows to write down many concepts of the variational calculus by using the same logic of the standard differential calculus. The resulting language is called Secondary Calculus.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, C_{\partial B}\right)$, where $\partial B \stackrel{\text { det }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of
∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.
These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which
influences the cohomological theory associated with them. This last fact will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety
$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { det }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of
∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.
These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which
influences the cohomological theory associated with them. This last fact will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { def }}{=} \pi_{\infty}^{-1}(\partial M)$
∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.
These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which
influences the cohomological theory associated with them. This last fact will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { def }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of ∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.

These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which
influences the cohomological theory associated with them. This last fact will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { def }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of ∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.

These are the geometrical objects we need to achieve our purpose.
together with such objects, also comes some interrelationship, which
influences the cohomological theory associated with them. This last fact will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { def }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of ∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.

These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which influences the cohomological theory associated with them.
will become clear in a moment.

Our equipment

The secondary objects associated with a free boundary variational problem are:

The main diffiety

(B, \mathcal{C}), where $B \stackrel{\text { def }}{=} J^{\infty}(\pi), \pi: E \rightarrow M$, and \mathcal{C} is the Cartan distribution.

The sub-diffiety

$\left(\partial B, \mathcal{C}_{\partial B}\right)$, where $\partial B \stackrel{\text { def }}{=} \pi_{\infty}^{-1}(\partial M)$ is a sort of "infinite prolongation" of ∂M, and $\mathcal{C}_{\partial B}$ is the restriction of \mathcal{C} to ∂B.

These are the geometrical objects we need to achieve our purpose. But, together with such objects, also comes some interrelationship, which influences the cohomological theory associated with them. This last fact will become clear in a moment.

The term E_{0} of the relative \mathcal{C}-spectral sequence

Much as to any submanifold it is possible to associate a short exact sequence of differential forms, to the sub-diffiety ∂B it is possible to assoclate a
short exact sequence of E_{0} terms of \mathcal{C}-spectral sequences:

$$
\begin{equation*}
0 \rightarrow E_{0}^{P}(B, \partial B) \xrightarrow{i} E_{0}^{p} \xrightarrow{\alpha} E_{0}^{p}(\partial B) \rightarrow 0 . \tag{4}
\end{equation*}
$$

The term $E_{0}^{P}(B, \partial B)$, which is defined as

$$
\begin{equation*}
E_{0}^{p}(B, \partial B)=\frac{C^{n} \cap \Lambda(B, \partial B)+C^{p+1}}{C^{p+1}} \tag{5}
\end{equation*}
$$

can be understood as the sub-complex of E_{0}^{P} whose elements vanish
when they are restricted to ∂B, in fully accordance with the definition of
a relative (with respect to the boundary) form on a standard manifold Inspired by this analogy, we call $E_{0}^{P}(B, \partial B)$ the E_{0} term of the relative (with respect to $\partial B) \mathcal{C}$-spectral sequence associated with B.

The term E_{0} of the relative \mathcal{C}-spectral sequence

Much as to any submanifold it is possible to associate a short exact sequence of differential forms, to the sub-diffiety ∂B it is possible to associate a
short exact sequence of E_{0} terms of \mathcal{C}-spectral sequences:

$$
\begin{equation*}
0 \rightarrow E_{0}^{p}(B, \partial B) \xrightarrow{i} E_{0}^{p} \xrightarrow{\alpha} E_{0}^{p}(\partial B) \rightarrow 0 . \tag{4}
\end{equation*}
$$

The term $E_{0}^{P}(B, \partial B)$, which is defined as

can be understood as the sub-complex of E_{0}^{p} whose elements vanish
when they are restricted to ∂B, in fully accordance with the definition of
a relative (with respect to the boundary) form on a standard manifold
Inspired by this analogy, we call $E_{0}^{p}(B, \partial B)$ the E_{0} term of the relative
(with respect to ∂B) \mathcal{C}-spectral sequence associated with B.

The term E_{0} of the relative \mathcal{C}-spectral sequence

Much as to any submanifold it is possible to associate a short exact sequence of differential forms, to the sub-diffiety ∂B it is possible to associate a
short exact sequence of E_{0} terms of \mathcal{C}-spectral sequences:

$$
\begin{equation*}
0 \rightarrow E_{0}^{p}(B, \partial B) \xrightarrow{i} E_{0}^{p} \xrightarrow{\alpha} E_{0}^{p}(\partial B) \rightarrow 0 . \tag{4}
\end{equation*}
$$

The term $E_{0}^{p}(B, \partial B)$, which is defined as

$$
\begin{equation*}
E_{0}^{p}(B, \partial B)=\frac{\mathcal{C}^{p} \cap \Lambda(B, \partial B)+\mathcal{C}^{p+1}}{\mathcal{C}^{p+1}} \tag{5}
\end{equation*}
$$

can be understood as the sub-complex of E_{0}^{P} whose elements vanish
when they are restricted to ∂B, in fully accordance with the definition of
a relative (with respect to the boundary) form on a standard manifold. Inspired by this analogy, we call $E_{0}^{P}(B, \partial B)$ the E_{0} term of the relative

The term E_{0} of the relative \mathcal{C}-spectral sequence

Much as to any submanifold it is possible to associate a short exact sequence of differential forms, to the sub-diffiety ∂B it is possible to associate a
short exact sequence of E_{0} terms of \mathcal{C}-spectral sequences:

$$
\begin{equation*}
0 \rightarrow E_{0}^{p}(B, \partial B) \xrightarrow{i} E_{0}^{p} \xrightarrow{\alpha} E_{0}^{p}(\partial B) \rightarrow 0 . \tag{4}
\end{equation*}
$$

The term $E_{0}^{p}(B, \partial B)$, which is defined as

$$
\begin{equation*}
E_{0}^{p}(B, \partial B)=\frac{\mathcal{C}^{p} \cap \Lambda(B, \partial B)+\mathcal{C}^{p+1}}{\mathcal{C}^{p+1}} \tag{5}
\end{equation*}
$$

can be understood as the sub-complex of E_{0}^{p} whose elements vanish when they are restricted to ∂B, in fully accordance with the definition of a relative (with respect to the boundary) form on a standard manifold.

The term E_{0} of the relative \mathcal{C}-spectral sequence

Much as to any submanifold it is possible to associate a short exact sequence of differential forms, to the sub-diffiety ∂B it is possible to associate a
short exact sequence of E_{0} terms of \mathcal{C}-spectral sequences:

$$
\begin{equation*}
0 \rightarrow E_{0}^{p}(B, \partial B) \xrightarrow{i} E_{0}^{p} \xrightarrow{\alpha} E_{0}^{p}(\partial B) \rightarrow 0 . \tag{4}
\end{equation*}
$$

The term $E_{0}^{p}(B, \partial B)$, which is defined as

$$
\begin{equation*}
E_{0}^{p}(B, \partial B)=\frac{\mathcal{C}^{p} \cap \Lambda(B, \partial B)+\mathcal{C}^{p+1}}{\mathcal{C}^{p+1}} \tag{5}
\end{equation*}
$$

can be understood as the sub-complex of E_{0}^{p} whose elements vanish when they are restricted to ∂B, in fully accordance with the definition of a relative (with respect to the boundary) form on a standard manifold. Inspired by this analogy, we call $E_{0}^{P}(B, \partial B)$ the E_{0} term of the relative (with respect to $\partial B) \mathcal{C}$-spectral sequence associated with B.

The long exact sequence of E_{1} terms

But the analogy with standard manifolds goes even further. Analogously
to the cohomology long exact sequence, we have the
long exact sequence of E_{1} terms:

The new object here is $E_{1}^{P}(B, \partial B)$, the E_{1} term of the relative \mathcal{C}-spectral sequence, which is the \mathcal{C}-spectral sequence appearing in the title of this talk!

The long exact sequence of E_{1} terms

But the analogy with standard manifolds goes even further. Analogously to the cohomology long exact sequence, we have the
long exact sequence of E_{1} terms:

$$
\begin{equation*}
E_{1}^{p}(B, \partial B) \xrightarrow{H(i)} E_{1}^{p} \tag{6}
\end{equation*}
$$

The new object here is $E_{1}^{P}(B, \partial B)$, the E_{1} term of the relative \mathcal{C}-spectral sequence, which is the \mathcal{C}-spectral sequence appearing in the title of this talk!

The long exact sequence of E_{1} terms

But the analogy with standard manifolds goes even further. Analogously to the cohomology long exact sequence, we have the
long exact sequence of E_{1} terms:

The new object here is $E_{1}^{p}(B, \partial B)$, the E_{1} term of the relative \mathcal{C}-spectral sequence,

The long exact sequence of E_{1} terms

But the analogy with standard manifolds goes even further. Analogously to the cohomology long exact sequence, we have the
long exact sequence of E_{1} terms:

The new object here is $E_{1}^{p}(B, \partial B)$, the E_{1} term of the relative \mathcal{C}-spectral sequence, which is the \mathcal{C}-spectral sequence appearing in the title of this talk!

The equipment is complete

All the objects needed to build up the theory, are now ready. Observe that, together with few new objects (the 0-th and the first terms of the relative \mathcal{C}-spectral sequence), we have also introduced (in a more or less explicit way) new differentials and morphisms.
In a moment, we shall see how such objects and differentials and morphisms can encode all the known information about the problem \mathcal{F}
and also reveal some new aspects.

All the objects needed to build up the theory, are now ready. Observe that, together with few new objects (the 0-th and the first terms of the relative \mathcal{C}-spectral sequence), we have also introduced (in a more or less explicit way) new differentials and morphisms.
In a moment, we shall see how such objects and differentials and
morphisms can encode all the known information about the problem \mathcal{P}
and also reveal some new aspects.

All the objects needed to build up the theory, are now ready. Observe that, together with few new objects (the 0-th and the first terms of the relative \mathcal{C}-spectral sequence), we have also introduced (in a more or less explicit way) new differentials and morphisms.
In a moment, we shall see how such objects and differentials and morphisms can encode all the known information about the problem \mathcal{P}, and also reveal some new aspects.

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian.
(almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved.
Observe that, for any $u \in \Gamma(\pi)$, the map $j_{\infty}(u)$ sends ∂M into ∂B. So, if
ω is the differential of some form vanishing on ∂B, then $j_{\infty}(u)^{*}(\omega)$ will
be the differential of some form vanishing on ∂M. By Stokes formula, the
action determined by ω, evaluated on M, is zero.
In other words, the action of ω is given only by its cohomology class
modulo ∂B. Then we can say that the

Lagrangian associated with P

is the relative to ∂B cohomology class $[\omega] \in E_{1}^{0, n}(B, \partial B)$.

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.

```
In the statement of \mathcal{P}\mathrm{ , only the Lagrangian density }\omega\mathrm{ was involved}\mathrm{ ,}\mathrm{ ,}\mathrm{ ,}\mp@code{l}
Observe that, for any }u\in\Gamma(\pi)\mathrm{ , the map jo(u) sends }\partialM\mathrm{ into }\partialB\mathrm{ . So, if
\omega}\mathrm{ is the differential of some form vanishing on }\partialB\mathrm{ , then }\mp@subsup{j}{\infty}{}(u\mp@subsup{)}{}{*}(\omega)\mathrm{ will
be the differential of some form vanishing on \partialM. By Stokes formula, the
action determined by }\omega\mathrm{ , evaluated on }M\mathrm{ , is zero.
In other words, the action of }\omega\mathrm{ is given only by its cohomology class
modulo \partialB. Then we can say that the
```


Lagrangian associated with \mathcal{P}

\square
is the rolative to ∂B eohomology class $[\omega] \in E_{1}^{0, n}(B, \partial B)$

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved.
ω is the differential of some form vanishing on ∂B, then $j_{\infty}(u)^{*}(\omega)$ will
be the differential of some form vanishing on ∂M. By Stokes formula, the
action determined by ω, evaluated on M, is zero.
In other words,
modulo ∂B. Then we can say that the

Lagrangian associated with \boldsymbol{P}

is the relative to ∂B cohomology class $[\omega] \in E_{1}^{0, n}(B, \partial B)$

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved. Observe that, for any $u \in \Gamma(\pi)$, the map $j_{\infty}(u)$ sends ∂M into ∂B.
\square
be the differential of some form vanishing on ∂M. By Stokes formula, the
action determined by ω, evaluated on M, is zero.
In other words, the action of ω is given only by its cohomology class
modulo ∂B. Then we can say that the

Lagranglan associated with P
is the relative to ∂B cohomology class $[\omega] \in E_{1}^{0, n}(B, \partial B)$

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved. Observe that, for any $u \in \Gamma(\pi)$, the map $j_{\infty}(u)$ sends ∂M into ∂B. So, if ω is the differential of some form vanishing on ∂B, then $j_{\infty}(u)^{*}(\omega)$ will be the differential of some form vanishing on ∂M.
action determined by ω, evaluated on M, is zero.
In other words, the action of ω is given only by its cohomology class
modulo ∂B. Then we can say that the

The right definition of the Lagrangian

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved. Observe that, for any $u \in \Gamma(\pi)$, the map $j_{\infty}(u)$ sends ∂M into ∂B. So, if ω is the differential of some form vanishing on ∂B, then $j_{\infty}(u)^{*}(\omega)$ will be the differential of some form vanishing on ∂M. By Stokes formula, the action determined by ω, evaluated on M, is zero.
modulo ∂B. Then we can say that the
\square

The right definition of the Lagrangian

In some sense, the whole theory of the free boundary variational problems depends on a good definition of the Lagrangian. All the rest, is an (almost) algorithmic consequence of this definition.
In the statement of \mathcal{P}, only the Lagrangian density ω was involved. Observe that, for any $u \in \Gamma(\pi)$, the map $j_{\infty}(u)$ sends ∂M into ∂B. So, if ω is the differential of some form vanishing on ∂B, then $j_{\infty}(u)^{*}(\omega)$ will be the differential of some form vanishing on ∂M. By Stokes formula, the action determined by ω, evaluated on M, is zero.
In other words, the action of ω is given only by its cohomology class modulo ∂B. Then we can say that the

Lagrangian associated with \mathcal{P}

is the relative to ∂B cohomology class $[\omega] \in E_{1}^{0, n}(B, \partial B)$.

In the language of Secondary Calculus, all the information about \mathcal{P} is kept by the element $[\omega]$ of $E_{1}^{0, n}(B, \partial B)$.
Moreover, the logic of Secondary Calculus dictates the procedure to get
the equation for the extrema of \mathcal{P} : just apply the differential $d_{1, \text { rel }}^{0, n}$ to $[\omega]$
much as we apply the standard differential d to a function f on a smooth
manifold M to get the equation for the extrema of f
This way we discovered the
(left-hand side of the) relative (or "graded") Euler-Lagrange equations associated with \mathcal{P} :

$$
\begin{equation*}
d_{1, \text { rel }}^{0, n}([\omega]) \in E_{1}^{1, n}(B, \partial B) . \tag{7}
\end{equation*}
$$

Good news: if we "look inside" $d_{1, \text { rel }}^{0, n}([\omega])$, we can see both the
(standard) Euler-Lagrange equations, and the (generalized) transversality conditions.

In the language of Secondary Calculus, all the information about \mathcal{P} is kept by the element $[\omega]$ of $E_{1}^{0, n}(B, \partial B)$.
Moreover, the logic of Secondary Calculus dictates the procedure to get the equation for the extrema of \mathcal{P} :
much as we apply the standard differential d to a function f on a smooth
manifold M to get the equation for the extrema of f
This way we discovered the

(left-hand side of the) relative (or "graded") Euler-Lagrange equations associated with P

$$
\left.d_{1, \text { rel }}^{0, n}[\omega]\right) \in E_{1}^{1, n}(B, \partial B) .
$$

Good news: if we "look inside" $d_{1, \text { rel }}^{0, n}([\omega])$, we can see both the

(standard) Euler-Lagrange equations, and the (generalized) transversality
conditions.

The relative (or "graded") Euler-Lagrange equations

In the language of Secondary Calculus, all the information about \mathcal{P} is kept by the element $[\omega]$ of $E_{1}^{0, n}(B, \partial B)$.
Moreover, the logic of Secondary Calculus dictates the procedure to get the equation for the extrema of \mathcal{P} : just apply the differential $d_{1, \text { rel }}^{0, n}$ to $[\omega]$, much as we apply the standard differential d to a function f on a smooth manifold M to get the equation for the extrema of f.

\square
(standard) Euler-Lagrange equations, and the (generalized) transversality conditions.

The relative (or "graded") Euler-Lagrange equations

In the language of Secondary Calculus, all the information about \mathcal{P} is kept by the element $[\omega]$ of $E_{1}^{0, n}(B, \partial B)$.
Moreover, the logic of Secondary Calculus dictates the procedure to get the equation for the extrema of \mathcal{P} : just apply the differential $d_{1, \text { rel }}^{0, n}$ to $[\omega]$, much as we apply the standard differential d to a function f on a smooth manifold M to get the equation for the extrema of f.
This way we discovered the
(left-hand side of the) relative (or "graded") Euler-Lagrange equations associated with \mathcal{P} :

$$
\begin{equation*}
d_{1, \mathrm{rel}}^{0, n}([\omega]) \in E_{1}^{1, n}(B, \partial B) \tag{7}
\end{equation*}
$$

Good news: if we "look inside" $d_{1, \text { rel }}^{0, n}([\omega])$, we can see both the (standard) Euler-Lagrange equations, and the (generalized) transversality conditions.

The relative (or "graded") Euler-Lagrange equations

In the language of Secondary Calculus, all the information about \mathcal{P} is kept by the element $[\omega]$ of $E_{1}^{0, n}(B, \partial B)$.
Moreover, the logic of Secondary Calculus dictates the procedure to get the equation for the extrema of \mathcal{P} : just apply the differential $d_{1, \text { rel }}^{0, n}$ to $[\omega]$, much as we apply the standard differential d to a function f on a smooth manifold M to get the equation for the extrema of f.
This way we discovered the
(left-hand side of the) relative (or "graded") Euler-Lagrange equations associated with \mathcal{P} :

$$
\begin{equation*}
d_{1, \mathrm{rel}}^{0, n}([\omega]) \in E_{1}^{1, n}(B, \partial B) \tag{7}
\end{equation*}
$$

Good news: if we "look inside" $d_{1, \text { rel }}^{0, n}([\omega])$, we can see both the (standard) Euler-Lagrange equations, and the (generalized) transversality conditions.

Finally, Secondary Calculus assures us that the relative (or "graded")
Euler-Lagrange equation

$$
\begin{equation*}
d_{1, \text { rel }}^{0, n}[[\omega])=0 \tag{8}
\end{equation*}
$$

is satisfied by the extrema of \mathcal{P}.
In general, $E_{1}^{1, n}(B, \partial B)$ is not even a module, so $d_{1, \text { rel }}^{0, n}([\omega])$ cannot be interpreted as a differential operator.

Finally, Secondary Calculus assures us that the relative (or "graded")
Euler-Lagrange equation

$$
\begin{equation*}
d_{1, \text { rel }}^{0, n}([\omega])=0 \tag{8}
\end{equation*}
$$

is satisfied by the extrema of \mathcal{P}.
But, how can we call (8) an "equation"?
In general, $E_{1}^{1, n}(B, \partial B)$ is not even a module, so $d_{1 . \text { rel }}^{0, n}([\omega])$ cannot be
interpreted as a differential operator.

Finally, Secondary Calculus assures us that the relative (or "graded") Euler-Lagrange equation

$$
\begin{equation*}
d_{1, \text { rel }}^{0, n}[[\omega])=0 \tag{8}
\end{equation*}
$$

is satisfied by the extrema of \mathcal{P}.
But, how can we call (8) an "equation"? In general, $E_{1}^{1, n}(B, \partial B)$ is not even a module, so $d_{1, \text { rel }}^{0, n}([\omega])$ cannot be interpreted as a differential operator.

The one-line Theorem for ∂B

We must now investigate the structure of ∂B, which is revealed by the following

```
Structure Theorem (G.M.)
\pi
special \infty-dimensional bundle over \partialM, called the normal jets bundle.
As a consequence, the diffiety }\partialB\mathrm{ fulfills the one-line Theorem (A.M
Vinogradov).
```


The one-line Theorem for ∂B

We must now investigate the structure of ∂B, which is revealed by the following

Structure Theorem (G.M.)

$\pi^{-1}(\partial B)$ is isomorphic to the infinite jet space $J^{\infty}(\xi)$, where ξ is a special ∞-dimensional bundle over ∂M, called the normal jets bundle.

As a consequence, the diffiety ∂B fulfills the one-line Theorem (A.M Vinogradov)

The one-line Theorem for ∂B

We must now investigate the structure of ∂B, which is revealed by the following

Structure Theorem (G.M.)

$\pi^{-1}(\partial B)$ is isomorphic to the infinite jet space $J^{\infty}(\xi)$, where ξ is a special ∞-dimensional bundle over ∂M, called the normal jets bundle.

As a consequence, the diffiety ∂B fulfills the one-line Theorem (A.M. Vinogradov).

The one-line Theorem for ∂B

We must now investigate the structure of ∂B, which is revealed by the following

Structure Theorem (G.M.)

$\pi^{-1}(\partial B)$ is isomorphic to the infinite jet space $J^{\infty}(\xi)$, where ξ is a special ∞-dimensional bundle over ∂M, called the normal jets bundle.

As a consequence, the diffiety ∂B fulfills the one-line Theorem (A.M. Vinogradov).

Now, if we just rewrite the long exact sequence

in a more choreographic way...

...first the relative E_{1} term...

The one-line Theorem for the relative \mathcal{C}-spectral sequence

...then the main E_{1} term...

The one-line Theorem for the relative \mathcal{C}-spectral sequence

...and finally the E_{1} term of ∂B,

we get a better comprehension of this short exact sequence of E_{1} terms.

The one-line Theorem for the relative \mathcal{C}-spectral sequence

Indeed, thanks to the Structure Theorem...

The one-line Theorem for the relative \mathcal{C}-spectral sequence

...the one-line Theorem holds for ∂B.

It is well-known that the one-line Theorem holds for B.

The one-line Theorem for the relative \mathcal{C}-spectral sequence

Where in B we have n independent variables...

The one-line Theorem for the relative \mathcal{C}-spectral sequence

...while in ∂B they are just $n-1$.

However, taking into account the degrees of the maps into play, we see that also the relative spectral sequence is forced to-be one-line!

The short exact sequence of E_{1} terms

In other words, we have found the

short exact sequence of E_{1} terms

$$
\begin{equation*}
0 \longrightarrow \hat{\varkappa}(\partial B) \xrightarrow{\partial} E_{1}^{1, n}(B, \partial B) \xrightarrow{H(i)} \widehat{\varkappa} \longrightarrow 0 \tag{9}
\end{equation*}
$$

By using the so-called Green \mathcal{C}-formula, a technical aspect of the cohomological theory underlying the Secondary Calculus, it is easy to prove that the above sequence, in fact, splits.
Such a splitting is crucial for obtaining the vision of $d_{1, \text { rel }}^{0, n}([\omega])$ we were looking for.

The short exact sequence of E_{1} terms

In other words, we have found the

short exact sequence of E_{1} terms

$$
\begin{equation*}
0 \longrightarrow \hat{\varkappa}(\partial B) \xrightarrow{\partial} E_{1}^{1, n}(B, \partial B) \xrightarrow{H(i)} \widehat{\varkappa} \longrightarrow 0 \tag{9}
\end{equation*}
$$

By using the so-called Green \mathcal{C}-formula, a technical aspect of the cohomological theory underlying the Secondary Calculus, it is easy to prove that the above sequence, in fact, splits. Such a splitting is crucial for obtaining the vision of $d_{1, \text { rel }}^{0, n}([\omega])$ we were looking for.

Now we know that the graded Euler-Lagrange equations $d_{1, \text { rel }}^{0, n}([\omega])$ look

The second component is the (left-hand side of the) well-known Euler-Lagrange equations associated to ω.

Now we know that the graded Euler-Lagrange equations $d_{1, \text { rel }}^{0, n}([\omega])$ look like an element

$$
\left(\ell_{\omega}^{\prime}, \ell_{\omega}^{*}(1)\right)
$$

of the graded object $\widehat{\varkappa}(\partial B) \oplus \widehat{\varkappa}$.
The second component is the (left-hand side of the) well-known Euler-Lagrange equations associated to ω.

Now we know that the graded Euler-Lagrange equations $d_{1, \text { rel }}^{0, n}([\omega])$ look like an element

$$
\left(\ell_{\omega}^{\prime}, \ell_{\omega}^{*}(1)\right)
$$

of the graded object $\hat{\varkappa}(\partial B) \oplus \hat{\varkappa}$.
The second component is the (left-hand side of the) well-known Euler-Lagrange equations associated to ω.

The first component of $d_{1, \text { rel }}^{0, n}([\omega])$ is a new object, which we baptized "the (left-hand side of the) transversality conditions" associated with \mathcal{P},

The first component of $d_{1, \text { rel }}^{0, n}([\omega])$ is a new object, which we baptized "the (left-hand side of the) transversality conditions" associated with \mathcal{P}, to be consistent with the already established terminology.

Thanks to the Structure Theorem, ℓ_{ω}^{\prime} is an element of a vector bundle over ∂M. As such, it will admit a coordinate expression, which we show below, though quite complicated:

[^2]
The transversality conditions in coordinates

Thanks to the Structure Theorem, ℓ_{ω}^{\prime} is an element of a vector bundle over ∂M. As such, it will admit a coordinate expression, which we show below, though quite complicated:

$$
\sum_{j=1}^{m} \sum_{k=0}^{\infty} \sum_{\tau \in \mathbb{N}_{0}^{n-1}} \sum_{l=k}^{\infty} N(\tau, l, i) D_{\tau}\left(\left.\left(D_{n}^{I-k}\left(\frac{\partial f}{\partial u_{\tau+(I+1) 1_{n}}^{j}}\right)\right)\right|_{\partial B}\right) D_{\emptyset}^{(k, j)}
$$

where m is the dimension of π.
equation for ∂M. The D 's are (compositions of) the total derivatives.

The transversality conditions in coordinates

Thanks to the Structure Theorem, ℓ_{ω}^{\prime} is an element of a vector bundle over ∂M. As such, it will admit a coordinate expression, which we show below, though quite complicated:

$$
\sum_{j=1}^{m} \sum_{k=0}^{\infty} \sum_{\tau \in \mathbb{N}_{0}^{-1}} \sum_{l=k}^{\infty} N(\tau, l, i) D_{\tau}\left(\left.\left(D_{n}^{l-k}\left(\frac{\partial f}{\partial u_{\tau(l+1) 1_{n}}^{j}}\right)\right)\right|_{\partial B}\right) D_{\emptyset}^{(k, j)}
$$

where m is the dimension of π.
equation for ∂M. The D^{\prime} s are (compositions of) the total derivatives.

Thanks to the Structure Theorem, ℓ_{ω}^{\prime} is an element of a vector bundle over ∂M. As such, it will admit a coordinate expression, which we show below, though quite complicated:

$$
\sum_{j=1}^{m} \sum_{k=0}^{\infty} \sum_{\tau \in \mathbb{N}_{0}^{n-1}} \sum_{l=k}^{\infty} N(\tau, l, i) D_{\tau}\left(\left.\left(D_{n}^{I-k}\left(\frac{\partial f}{\partial u_{\tau+(I+1) 1_{n}}^{j}}\right)\right)\right|_{\partial B}\right) D_{\emptyset}^{(k, j)}
$$

where m is the dimension of π.
Here $f d x^{1} \wedge \cdots \wedge d x^{n}$ is the local representation of ω, and $x^{n}=0$ is the equation for ∂M. The D^{\prime} 's are (compositions of) the total derivatives.

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{W} is simply $\frac{\partial g}{\partial y^{\prime}}$
so that the transversality conditions (accordingly to our theory) look like:

If we pull-back the last expression on E, we get the following expression:

$$
\begin{equation*}
\left(f-\frac{\partial \bar{f}}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial \bar{f}}{\partial y^{\prime}} y^{\ulcorner }=0 \tag{11}
\end{equation*}
$$

where $\left(x^{\ulcorner }, y^{\Gamma}\right)$ is a tangent to ∂E vector, which is the classical
formulation of the transversality conditions.

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}{ }^{\prime}$
so that the transversality conditions (accordingly to our theory) look like:

where $\left(x^{\Gamma}, y^{\Gamma}\right)$ is a tangent to ∂E vector, which is the classical
formulation of the transversality conditions.

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}$, so that the transversality conditions (accordingly to our theory) look like:

$$
\begin{equation*}
\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}=0 \tag{10}
\end{equation*}
$$

where $\left(x^{\ulcorner }, y^{\ulcorner }\right)$is a tangent to ∂E vector, which is the classical formulation of the transversality conditions.

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}$, so that the transversality conditions (accordingly to our theory) look like:

$$
\begin{equation*}
\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}=0 \tag{10}
\end{equation*}
$$

If we pull-back the last expression on E, we get the following expression:

where $\left(x^{\ulcorner }, y^{\ulcorner }\right)$is a tangent to ∂E vector, which is the classical formulation of the transversality conditions.

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B^{\prime}}$, so that the transversality conditions (accordingly to our theory) look like:

$$
\begin{equation*}
\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}=0 . \tag{10}
\end{equation*}
$$

If we pull-back the last expression on E, we get the following expression:

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{11}
\end{equation*}
$$

where $\left(x^{\ulcorner }, y^{\ulcorner }\right)$is a tangent to ∂E vector, which is the classical formulation of the transversality conditions.

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}$, so that the transversality conditions (accordingly to our theory) look like:

$$
\begin{equation*}
\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}=0 . \tag{10}
\end{equation*}
$$

If we pull-back the last expression on E, we get the following expression:

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{11}
\end{equation*}
$$

where $\left(x^{\ulcorner }, y^{\ulcorner }\right)$is a tangent to ∂E vector,

The rectified problem of Columbus

If the Lagrangian density on E is given by $f d x$, where $f=f\left(x, y, y^{\prime}\right)$, then the corresponding Lagrangian on π will be given by $\omega=g d x$, for some function $g=g\left(x, y, y^{\prime}\right)$.
So we can apply the coordinate formula: it tells that ℓ_{ω}^{\prime} is simply $\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}$, so that the transversality conditions (accordingly to our theory) look like:

$$
\begin{equation*}
\left.\frac{\partial g}{\partial y^{\prime}}\right|_{\partial B}=0 . \tag{10}
\end{equation*}
$$

If we pull-back the last expression on E, we get the following expression:

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{11}
\end{equation*}
$$

where $\left(x^{\ulcorner }, y^{\ulcorner }\right)$is a tangent to ∂E vector, which is the classical formulation of the transversality conditions.

In the particular case of Columbus problem, $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$ is the (restriction to E of the) length functional (on \mathbb{R}^{2}), and the last equation tells exactly that the curve u must form a right angle with Γ_{1} and Γ_{2} (TC).
On the other hand, $\ell_{f d x}^{*}(1)=0$ is equivalent to $y^{\prime \prime}=0$ (EL).
So, conditions (TC) and (EL), of such heterogeneous natures (they are
differential equations imposed on sections of bundles over different bases
and with non-isomorphic fibers!), are in fact the two homogeneus
components of the same graded object: $d_{1, \text { rel }}^{0,1}([f d x])$.

In the particular case of Columbus problem, $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$ is the (restriction to E of the) length functional (on \mathbb{R}^{2}), and the last equation tells exactly that the curve u must form a right angle with Γ_{1} and Γ_{2} (TC).
On the other hand, $\ell_{f d x}^{*}(1)=0$ is equivalent to $y^{\prime \prime}=0(\mathrm{EL})$.

In the particular case of Columbus problem, $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$ is the (restriction to E of the) length functional (on \mathbb{R}^{2}), and the last equation tells exactly that the curve u must form a right angle with Γ_{1} and Γ_{2} (TC).
On the other hand, $\ell_{f d x}^{*}(1)=0$ is equivalent to $y^{\prime \prime}=0(\mathrm{EL})$. So, conditions (TC) and (EL), of such heterogeneous natures (they are differential equations imposed on sections of bundles over different bases and with non-isomorphic fibers!),

The rigorous solution of the Columbus problem

In the particular case of Columbus problem, $f=\sqrt{1+\left(y^{\prime}\right)^{2}}$ is the (restriction to E of the) length functional (on \mathbb{R}^{2}), and the last equation tells exactly that the curve u must form a right angle with Γ_{1} and Γ_{2} (TC).
On the other hand, $\ell_{f d x}^{*}(1)=0$ is equivalent to $y^{\prime \prime}=0(\mathrm{EL})$. So, conditions (TC) and (EL), of such heterogeneous natures (they are differential equations imposed on sections of bundles over different bases and with non-isomorphic fibers!), are in fact the two homogeneus components of the same graded object: $d_{1, \text { rel }}^{0,1}([f d x])$.

Concluding remarks

Before this moment, the formula

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{12}
\end{equation*}
$$

which we obtained just by using the coordinates-invariance of a purely cohomological theory, could not be derived without introducing ad-hoc technicalities.
In our case, thanks to the robustness of Secondary Calculus, we have managed to provide a simple description for any problem \mathcal{P} which belongs to much more wide and general class of problems, where we have Lagrangians of any order, and no restrictions on the topology of E.

Concluding remarks

Before this moment, the formula

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{12}
\end{equation*}
$$

which we obtained just by using the coordinates-invariance of a purely cohomological theory, could not be derived without introducing ad-hoc technicalities.
In our case, thanks to the robustness of Secondary Calculus, we have managed to provide a simple description for any problem \mathcal{P} which belongs to much more wide and general class of problems,

Concluding remarks

Before this moment, the formula

$$
\begin{equation*}
\left(f-\frac{\partial f}{\partial y^{\prime}}\right) x^{\ulcorner }+\frac{\partial f}{\partial y^{\prime}} y^{\ulcorner }=0, \tag{12}
\end{equation*}
$$

which we obtained just by using the coordinates-invariance of a purely cohomological theory, could not be derived without introducing ad-hoc technicalities.
In our case, thanks to the robustness of Secondary Calculus, we have managed to provide a simple description for any problem \mathcal{P} which belongs to much more wide and general class of problems, where we have Lagrangians of any order, and no restrictions on the topology of E.

Thanks!

See You at the next Conference.

[^0]: it avoids the classical analitical proofs and provides far-reaching generalizations.

[^1]: We will show, in a natural geometric language, that such conditions in fact arise for a large class \mathcal{P} of variational problems. However, we use the problem of Columbus as a toy model.

[^2]: where m is the dimension of π. Here $f d x^{1} \wedge \cdots \wedge d x^{n}$ is the local representation of ω, and $x^{n}=0$ is the equation for ∂M. The D^{\prime} 's are (compositions of) the total derivatives.

