New results on the geometry of translation surfaces

Marian Ioan MUNTEANU

Al.I.Cuza University of Iasi, Romania
webpage: http://www.math.uaic.ro/~munteanu

$X I^{\text {th }}$ International Conference GEOMETRY, INTEGRABILITY and QUANTIZATION
Varna : June 5-10, 2009

Outline

(1) Translation surfaces in \mathbb{E}^{3}
(2) On the geometry of the second fundamental form of translation surfaces in \mathbb{E}^{3}

- $\left\{K_{I I}, H\right\}$ - Generalized Weingarten translation surfaces
- II-minimality
(3) Translation surfaces in the hyperbolic space \mathbb{H}^{3}
(4) Translation surfaces in the Heisenberg group Nil_{3}
(5) Translation surfaces in \mathbb{S}^{3}

6 Final remarks

Darboux surfaces

Cartesian parametrization:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A(v)\left(\begin{array}{l}
f(u) \\
g(u) \\
h(u)
\end{array}\right)+\left(\begin{array}{l}
a(v) \\
b(v) \\
c(v)
\end{array}\right)
$$

where $A(v) \in O(n)$

Darboux surfaces

Cartesian parametrization:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A(v)\left(\begin{array}{l}
f(u) \\
g(u) \\
h(u)
\end{array}\right)+\left(\begin{array}{l}
a(v) \\
b(v) \\
c(v)
\end{array}\right)
$$

where $A(v) \in O(n)$
A Darboux surface represents a union of "EQUAL" curves (i.e. the image of one curve ${ }^{1}$, obtained by isometries of the space.

Darboux surfaces

(1) $A=I_{3}$: translation surfaces

Darboux surfaces

(1) $A=I_{3}$: translation surfaces
(2) $A=$ matrix of rotation (axe and angle are fixed), $a=b=c=0$: rotation surfaces

Darboux surfaces

(1) $A=I_{3}$: translation surfaces
(2) $A=$ matrix of rotation (axe and angle are fixed), $a=b=c=0$: rotation surfaces
(3) $A=$ matrix of rotation (axe \bar{n} and angle are fixed), $(a, b, c)=v \bar{n}$: helicoidal surfaces

Darboux surfaces

(1) $A=I_{3}$: translation surfaces
(2) A = matrix of rotation (axe and angle are fixed), $a=b=c=0$: rotation surfaces
(3) $A=$ matrix of rotation (axe \bar{n} and angle are fixed), $(a, b, c)=v \bar{n}$: helicoidal surfaces

If the generatrix is

- a straight line : ruled surfaces
- a circle: circled surfaces including e.g. tubes

Tubes

$$
r(s, t)=\gamma(t)+\cos s N(t)+\sin s B(t)
$$

Figure: tube

Tubes

$$
r(s, t)=\gamma(t)+\cos s N(t)+\sin s B(t)
$$

Figure: tube

$$
r(s, t)=\gamma(t)+\boldsymbol{A}(t) \mathbb{S}^{1}
$$

Translation surfaces

Translation surface = "sum" of two curves

Figure: translation surface

Translation surfaces

If the two curves are situated in orthogonal planes

$$
(x, y, z) \longmapsto(x, y, f(x)+g(y))
$$

Examples:

© planes

Translation surfaces

If the two curves are situated in orthogonal planes

$$
(x, y, z) \longmapsto(x, y, f(x)+g(y))
$$

Examples:

© planes
(2) cylinders

Translation surfaces

If the two curves are situated in orthogonal planes

$$
(x, y, z) \longmapsto(x, y, f(x)+g(y))
$$

Examples:

© planes
(2) cylinders
(0) hyperbolic and elliptic paraboloids

Translation surfaces

If the two curves are situated in orthogonal planes

$$
(x, y, z) \longmapsto(x, y, f(x)+g(y))
$$

Examples:
© planes
(2) cylinders
(3) hyperbolic and elliptic paraboloids
((he egg box surface

Translation surfaces

If the two curves are situated in orthogonal planes

$$
(x, y, z) \longmapsto(x, y, f(x)+g(y))
$$

Examples:
(1) planes
(2) cylinders
(3) hyperbolic and elliptic paraboloids
(3) the egg box surface
(0) Scherk surface

Egg box surfaces

$$
\left(x, y, a\left(\sin \frac{x}{b}+\sin \frac{y}{b}\right)\right)
$$

Figure: egg box surface
On the geometry of translation surfaces

Scherk surfaces

$$
\left(x, y, a \log \frac{\cos \frac{x}{a}}{\cos \frac{y}{a}}\right)
$$

Figure: Scherk surface

Scherk surface - art

... much more beautiful

Figure: Scherk surface

Second fundamental form

ON THE GEOMETRY OF THE SECOND FUNDAMENTAL FORM OF TRANSLATION SURFACES IN \mathbb{E}^{3} joint work with A. I. Nistor: arXiv:0812.3166v1 [math.DG]

M surface in \mathbb{E}^{3}
$I=$ the first fundamental form - intrinsic object
$I I=$ the second fundamental form - extrinsic tool to characterize the twist of M in the ambient

Second fundamental form

ON THE GEOMETRY OF THE SECOND FUNDAMENTAL FORM OF TRANSLATION SURFACES IN \mathbb{E}^{3} joint work with A. I. Nistor: arXiv:0812.3166v1 [math.DG]

M surface in \mathbb{E}^{3}
$I=$ the first fundamental form - intrinsic object
$I I=$ the second fundamental form - extrinsic tool to characterize the twist of M in the ambient

I/ is a metric if and only if it is non-degenerate curvature properties associated to II:
S. Verpoort, The Geometry of the Second Fundamental Form:

Curvature Properties and Variational Aspects, PhD. Thesis, Katholieke Universiteit Leuven, Belgium, 2008

Second fundamental form

Lemma (Dillen, Sodsiri - 2005)
The second fundamental form II of M is non-degenerate if and only if M is non-developable.

Second fundamental form

Lemma (Dillen, Sodsiri - 2005)
The second fundamental form II of M is non-degenerate if and only if M is non-developable.
second Gaussian curvature $K_{\| /} \Longrightarrow I I$-flat second mean curvature $H_{| |} \Longrightarrow I I$-minimal

Second fundamental form

Lemma (Dillen, Sodsiri - 2005)

The second fundamental form II of M is non-degenerate if and only if M is non-developable.
second Gaussian curvature $K_{/ I} \Longrightarrow I I$-flat second mean curvature $H_{I I} \Longrightarrow I I$-minimal

Remark (Verpoort - 2008)

Critical points of the area functional of the second fundamental form are those surfaces for which the mean curvature of the second fundamental form $H_{/ /}$vanishes.

Old

results

- Koutroufiotis - 1974: a closed ovaloid with $K_{/ I}=c K, c \in \mathbb{R}$ or if $K_{/ I}=\sqrt{K}$ is a sphere

Old

results

- Koutroufiotis - 1974: a closed ovaloid with $K_{/ I}=c K, c \in \mathbb{R}$ or if $K_{/ I}=\sqrt{K}$ is a sphere
- Koufogiorgos \& Hasanis - 1977: the sphere is the only closed ovaloid satisfying $K_{/ /}=H$

Old

results

- Koutroufiotis - 1974: a closed ovaloid with $K_{/ /}=c K, c \in \mathbb{R}$ or if $K_{l /}=\sqrt{K}$ is a sphere
- Koufogiorgos \& Hasanis - 1977: the sphere is the only closed ovaloid satisfying $K_{/ I}=H$
- Baikoussis \& Koufogiorgos - 1997: helicoidal surfaces with $K_{/ /}=H \stackrel{\text { (locally) }}{\Leftrightarrow}$ constant ratio of the principal curvatures

Old

results

- Koutroufiotis - 1974: a closed ovaloid with $K_{/ I}=c K, c \in \mathbb{R}$ or if $K_{/ I}=\sqrt{K}$ is a sphere
- Koufogiorgos \& Hasanis - 1977: the sphere is the only closed ovaloid satisfying $K_{/ I}=H$
- Baikoussis \& Koufogiorgos - 1997: helicoidal surfaces with $K_{/ I}=H \stackrel{\text { (locally) }}{\Leftrightarrow}$ constant ratio of the principal curvatures
- Blair \& Koufogiorgos - 1992: minimal surfaces have vanishing second Gaussian curvature but not conversely

Old and recent results

- Koutroufiotis - 1974: a closed ovaloid with $K_{/ I}=c K, c \in \mathbb{R}$ or if $K_{/ I}=\sqrt{K}$ is a sphere
- Koufogiorgos \& Hasanis - 1977: the sphere is the only closed ovaloid satisfying $K_{/ I}=H$
- Baikoussis \& Koufogiorgos - 1997: helicoidal surfaces with $K_{/ I}=H \stackrel{\text { (locally) }}{\Leftrightarrow}$ constant ratio of the principal curvatures
- Blair \& Koufogiorgos - 1992: minimal surfaces have vanishing second Gaussian curvature but not conversely

Kim \& Yoon - 2004, Sodsiri - 2005, Yoon - 2006 extends the study for 3-dimensional Lorentz-Minkowski spaces and for different relations between $H, K, H_{/ I}$ and $K_{\text {II }}$

II-flat translation surfaces in \mathbb{E}_{1}^{3}

Theorem (Goemans, Van de Woestyne - 2007)

If a translation surface in \mathbb{E}_{1}^{3} parametrized by $\bar{x}(s, t)=(s, t, f(s)+g(t))$ has $K_{/ I}=0$, then

$$
f(s)=\int F^{-1}(s+d) d s \text { and } g(t)=\int G^{-1}(t+m) d t
$$

with F and G real functions determined by

$$
F(x)=\int \frac{x^{2}}{a x^{4}+b x^{2}+c} d x \text { and } G(x)=\int \frac{x^{2}}{-a x^{4}+(2 a+b) x^{2}-a-b-c} d x,
$$

and a, b, c, d şi m real numbers.

II-flat PT surfaces in \mathbb{E}^{3}

polynomial translation surfaces (in short, PT surfaces) : translation surfaces for which f and g are polynomials

Theorem (M., Nistor - 2009)

There are no II-flat polynomial translation surfaces in \mathbb{E}^{3}. Proof.

$$
K_{l l}=\frac{1}{\left(|e g|-f^{2}\right)^{2}}\left(\left|\begin{array}{lcc}
-\frac{1}{2} e_{v v}+f_{u v}-\frac{1}{2} g_{u u} & \frac{1}{2} e_{u} & f_{u}-\frac{1}{2} e_{v} \\
f_{v}-\frac{1}{2} g_{u} & e & f \\
\frac{1}{2} g_{v} & f & g
\end{array}\right|-\left|\begin{array}{lcc}
0 & \frac{1}{2} e_{v} & \frac{1}{2} g_{u} \\
\frac{1}{2} e_{v} & e & f \\
\frac{1}{2} g_{u} & f & g
\end{array}\right|\right)
$$

II-flat PT surfaces in \mathbb{E}^{3}

(cont.)

$$
K_{\text {/I }}=\frac{n u m}{4 \alpha^{\prime} \beta^{\prime} \Delta^{3 / 2}}
$$

where

$$
\begin{gathered}
\text { num }=-2 \alpha(u)^{2} \alpha^{\prime}(u)^{2} \beta^{\prime}(v)-2 \alpha^{\prime}(u) \beta(v)^{2} \beta^{\prime}(v)^{2}+ \\
2 \alpha(u)^{2} \alpha^{\prime}(u) \beta^{\prime}(v)^{2}+2 \alpha^{\prime}(u)^{2} \beta(v)^{2} \beta^{\prime}(v)+ \\
2 \alpha^{\prime}(u) \beta^{\prime}(v)^{2}+2 \alpha^{\prime}(u)^{2} \beta^{\prime}(v)+ \\
\alpha^{\prime}(u) \beta(v) \beta^{\prime \prime}(v)+\alpha(u) \alpha^{\prime \prime}(u) \beta^{\prime}(v)+ \\
\alpha(u)^{2} \alpha^{\prime}(u) \beta(v) \beta^{\prime \prime}(v)+\alpha(u) \alpha^{\prime \prime}(u) \beta(v)^{2} \beta^{\prime}(v)+ \\
\alpha^{\prime}(u) \beta(v)^{3} \beta^{\prime \prime}(v)+\alpha(u)^{3} \alpha^{\prime \prime}(u) \beta^{\prime}(v) .
\end{gathered}
$$

II-flat translation surfaces

example given by Blair \& Koufogiorgos - 1992 : II-flat non-minimal translation surfaces, involving power functions, i.e.

$$
\alpha=a u^{p} \text { and } \beta=b v^{q} \text { with } a, b \in \mathbb{R}, a, b \neq 0 \text { and } p, q \in \mathbb{Q} .
$$

Proposition (M., Nistor - 2009)
The only II-flat translation surfaces with f and g power functions can be parametrized by

$$
r(u, v)=\left(u, v, c\left(u^{\frac{4}{3}}-v^{\frac{4}{3}}\right)\right), c \in \mathbb{R}^{*} .
$$

$K_{/ I}=H$

$\{A, B\}$ - generalized Weingarten surfaces : Dillen, Sodsiri - 2005

$K_{\| /}=H$

$\{A, B\}$ - generalized Weingarten surfaces : Dillen, Sodsiri - 2005

Theorem (M., Nistor - 2009)

The only translation surfaces with non-degenerate second fundamental form having the property $K_{/ /}=H$ are given, up to a rigid motion of \mathbb{R}^{3}, by

$$
r(u, v)=\left(u, v, \frac{2}{c} \log \left|\frac{\cos \frac{c u}{2}}{\cos \frac{c v}{2}}\right|\right), c \in \mathbb{R}^{*} .
$$

More, we notice the parametrization of a Scherk type surface, so we have

$$
K_{I I}=H=0 .
$$

$K_{l /}=\lambda H, \lambda \neq 1,2$

Theorem (M., Nistor - 2009)

The only $\left\{K_{/ I}, H\right\}$-generalized Weingarten translation surfaces with non-degenerate second fundamental form satisfying $K_{/ I}=\lambda H$ with $\lambda \in \mathbb{R} \backslash\{1,2\}$, are given, up to a rigid motion of \mathbb{R}^{3}, by the parametrization

$$
r(u, v)=\left(u, v, \frac{1}{p} \log \left|\frac{\cos (p v+r)}{\cos (p u+q)}\right|\right), \text { where } p \neq 0 \text { and } r, q \in \mathbb{R}
$$

which represents a Scherk type surface. Moreover $K_{I I}=H=0$.

$K_{/ I}=2 \mathrm{H}$

Theorem (M., Nistor - 2009)

The only translation surfaces with non-degenerate second fundamental form having the property $K_{I I}=2 H$ are given, up to a rigid motion of \mathbb{R}^{3}, by the following parametrizations
i) Case 1 .

$$
\begin{aligned}
& r(u, v)=\left(u, v,-\frac{\nu}{2} \log \left(\sinh (p u)^{\frac{1}{p^{2}}} \cos (q v)^{\frac{1}{q^{2}}}\right)\right) \\
& r(u, v)=\left(u, v,-\frac{\nu}{2} \log \left(\cosh (p u)^{\frac{1}{p^{2}}} \cos (q v)^{\frac{1}{q^{2}}}\right)\right)
\end{aligned}
$$

Case 2.

$$
r(u, v)=\left(u, v, \frac{\nu}{2} \log \frac{\cos (p u)^{\frac{1}{p^{2}}}}{\cos (q v)^{\frac{1}{q^{2}}}}\right)
$$

$K_{I I}=2 H$

i) Case 3.

$$
\begin{array}{ll}
r(u, v)=\left(u, v,-\frac{\nu}{2} \log \frac{\sinh (p u)^{\frac{1}{p^{2}}}}{\sinh (q v)^{\frac{1}{q^{2}}}}\right) & r(u, v)=\left(u, v,-\frac{\nu}{2} \log \frac{\cosh (p u)^{\frac{1}{p^{2}}}}{\cosh (q v)^{\frac{1}{q^{2}}}}\right) \\
r(u, v)=\left(u, v,-\frac{\nu}{2} \log \frac{\cosh (p u)^{\frac{1}{p^{2}}}}{\sinh (q v)^{\frac{1}{q^{2}}}}\right) & r(u, v)=\left(u, v,-\frac{\nu}{2} \log \frac{\sinh (p u)^{\frac{1}{p^{2}}}}{\cosh (q v)^{\frac{1}{q^{2}}}}\right) .
\end{array}
$$

ii)

$$
r(u, v)=\left(u, v, a\left(u-u_{0}\right)^{2}-a\left(v-v_{0}\right)^{2}\right), a, u_{0}, v_{0} \in \mathbb{R}
$$

hyperbolic paraboloid.
iii) combinations of the previous functions in (i) and a second order polynomial (as in (ii), for a certain a)

Figures

Figures

$$
r(u, v)=\left(u, v, \log \frac{\cosh u}{\cosh v}\right)
$$

$$
r(u, v)=\left(u, v, \log \frac{\sinh u}{\cosh v}\right)
$$

II-minimal surfaces

Haesen, Verpoort, Verstraelen - 2008

$$
H_{\| /}=-H-\frac{1}{4} \Delta^{\prime \prime} \log (K)
$$

where $\Delta^{\prime \prime}$ is the Laplacian for functions computed with respect to the second fundamental form as metric. $H_{/ /}$can be equivalently expressed as

$$
H_{\| l}=-H-\frac{1}{2 \sqrt{\operatorname{det} I I}} \sum_{i, j} \frac{\partial}{\partial u^{i}}\left(\sqrt{\operatorname{det} I I} h^{i j} \frac{\partial}{\partial u^{j}}(\log \sqrt{K})\right) .
$$

II-minimal translation surfaces

$(u, v) \mapsto(u, v, f(u)+g(v)) ; \alpha=f^{\prime}, \beta=g^{\prime}$
$H_{l \mid}=0$ is equivalent to

$$
\frac{\left(1+\alpha^{2}\right) \beta^{\prime}+\left(1+\beta^{2}\right) \alpha^{\prime}-4}{\left(1+\alpha^{2}+\beta^{2}\right)^{2}}+\frac{\alpha^{\prime \prime \prime} \alpha^{\prime}-2 \alpha^{\prime \prime 2}}{2 \alpha^{\prime 4}}+\frac{\beta^{\prime \prime \prime} \beta^{\prime}-2 \beta^{\prime \prime 2}}{2 \beta^{\prime 4}}=0
$$

I/-minimal translation surfaces

$(u, v) \mapsto(u, v, f(u)+g(v)) ; \alpha=f^{\prime}, \beta=g^{\prime}$
$H_{\mid l}=0$ is equivalent to

$$
\frac{\left(1+\alpha^{2}\right) \beta^{\prime}+\left(1+\beta^{2}\right) \alpha^{\prime}-4}{\left(1+\alpha^{2}+\beta^{2}\right)^{2}}+\frac{\alpha^{\prime \prime \prime} \alpha^{\prime}-2 \alpha^{\prime \prime 2}}{2 \alpha^{\prime 4}}+\frac{\beta^{\prime \prime \prime} \beta^{\prime}-2 \beta^{\prime \prime 2}}{2 \beta^{\prime 4}}=0
$$

After STRAIGHTFORWARD COMPUTATIONS it follows $\alpha^{\prime}=0, \beta^{\prime}=0$ which cannot occur since I/ is no longer invertible

II-minimal translation surfaces

$(u, v) \mapsto(u, v, f(u)+g(v)) ; \alpha=f^{\prime}, \beta=g^{\prime}$
$H_{l \mid}=0$ is equivalent to

$$
\frac{\left(1+\alpha^{2}\right) \beta^{\prime}+\left(1+\beta^{2}\right) \alpha^{\prime}-4}{\left(1+\alpha^{2}+\beta^{2}\right)^{2}}+\frac{\alpha^{\prime \prime \prime} \alpha^{\prime}-2 \alpha^{\prime \prime 2}}{2 \alpha^{\prime 4}}+\frac{\beta^{\prime \prime \prime} \beta^{\prime}-2 \beta^{\prime \prime 2}}{2 \beta^{\prime 4}}=0
$$

After STRAIGHTFORWARD COMPUTATIONS it follows $\alpha^{\prime}=0, \beta^{\prime}=0$ which cannot occur since I/ is no longer invertible

Theorem (M., Nistor - 2009)

There are NO II-minimal translation surfaces in Euclidean 3 -space.

General things

R. López : arXiv:0902.4085v1 [math.DG] \mathbb{H}^{3} hyperbolic space : upper half-space \mathbb{R}_{+}^{3} $d s^{2}=\frac{1}{z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)$

General things

R. López : arXiv:0902.4085v1 [math.DG]
\mathbb{H}^{3} hyperbolic space : upper half-space \mathbb{R}_{+}^{3} $d s^{2}=\frac{1}{z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)$
the absence of an affine structure does not permit to give an intrinsic concept of translation surface as in $\mathbb{E}^{3} \Longrightarrow$ sum of planar curves

General things

R. López : arXiv:0902.4085v1 [math.DG]
\mathbb{H}^{3} hyperbolic space : upper half-space \mathbb{R}_{+}^{3} $d s^{2}=\frac{1}{z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)$
the absence of an affine structure does not permit to give an intrinsic concept of translation surface as in $\mathbb{E}^{3} \Longrightarrow$ sum of planar curves
x, y are interchangeable, but not with z
type 1: $r(x, y)=\{x, y, f(x)+g(y)\}$
type 2: $r(x, z)=\{x, f(x)+g(z), z\}$

General things

R. López : arXiv:0902.4085v1 [math.DG]
\mathbb{H}^{3} hyperbolic space : upper half-space \mathbb{R}_{+}^{3} $d s^{2}=\frac{1}{z^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)$
the absence of an affine structure does not permit to give an intrinsic concept of translation surface as in $\mathbb{E}^{3} \Longrightarrow$ sum of planar curves
x, y are interchangeable, but not with z
type 1: $r(x, y)=\{x, y, f(x)+g(y)\}$
type 2: $r(x, z)=\{x, f(x)+g(z), z\}$
Notice that there are NO isometries of \mathbb{H}^{3} that carry surfaces of type 1 into surfaces of type 2 or vice-versa.

Minimal translation surface

Recall: in $\mathbb{E}^{3} \Longrightarrow$ planes and Scherk surface
Known fact: Examples of minimal surfaces in \mathbb{H}^{3} : totally geodesic planes, minimal graphs (corresponding to Dirichlet problem)

Minimal translation surface

Recall: in $\mathbb{E}^{3} \Longrightarrow$ planes and Scherk surface
Known fact: Examples of minimal surfaces in \mathbb{H}^{3} : totally geodesic planes, minimal graphs (corresponding to Dirichlet problem)

Theorem (López - 2009)

There are NO minimal translation surfaces in \mathbb{H}^{3} of type 1 . The only minimal translation surfaces in \mathbb{H}^{3} of type 2 are totally geodesic planes.

Nil_{3}

Heisenberg group $\mathrm{Nil}_{3} \sim \mathbb{R}^{3}$

$$
\begin{gathered}
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right):=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \\
g=d x^{2}+d y^{2}+\left[d z+\frac{1}{2}(y d x-x d y)\right]^{2}
\end{gathered}
$$

Ni_{3}

Heisenberg group $\mathrm{Nil}_{3} \sim \mathbb{R}^{3}$

$$
\begin{gathered}
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right):=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \\
g=d x^{2}+d y^{2}+\left[d z+\frac{1}{2}(y d x-x d y)\right]^{2}
\end{gathered}
$$

rich properties: homogeneous space, the group of isometries has dimension 4, contact Riemannian structure

Nil_{3}

Heisenberg group $\mathrm{Nil}_{3} \sim \mathbb{R}^{3}$

$$
\begin{gathered}
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right):=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \\
g=d x^{2}+d y^{2}+\left[d z+\frac{1}{2}(y d x-x d y)\right]^{2}
\end{gathered}
$$

rich properties: homogeneous space, the group of isometries has dimension 4, contact Riemannian structure Lie algebra of $/ s o\left(\mathrm{Ni}_{3}\right)$ is generated by Killing v. f.

$$
\begin{array}{lr}
E_{1}=\frac{\partial}{\partial x}+\frac{y}{2} \frac{\partial}{\partial z} & E_{2}=\frac{\partial}{\partial y}-\frac{x}{2} \frac{\partial}{\partial z} \\
E_{3}=\frac{\partial}{\partial z} & E_{4}=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
\end{array}
$$

Nil_{3}

- E_{4} generates the group of rotations around z-axis $\sim S O(2)$
Nil_{3}
- E_{4} generates the group of rotations around z-axis $\sim S O(2)$
- $G_{1}=\{(t, 0,0) \mid t \in \mathbb{R}\}, G_{2}=\{(0, t, 0) \mid t \in \mathbb{R}\}, G_{3}=\{(0,0, t) \mid t \in \mathbb{R}\}$
Nil_{3}
- E_{4} generates the group of rotations around z-axis $\sim S O(2)$
- $G_{1}=\{(t, 0,0) \mid t \in \mathbb{R}\}, G_{2}=\{(0, t, 0) \mid t \in \mathbb{R}\}, G_{3}=\{(0,0, t) \mid t \in \mathbb{R}\}$

Definition (Figueroa, Mercuri, Pedrosa - 1999)

A surface in Nil_{3} is translation invariant if it is invariant under the action of 1-parameter subgroup generated by a Killing vector field of the form $a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}, a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \neq 0$.

- E_{4} generates the group of rotations around z-axis $\sim S O(2)$
- $G_{1}=\{(t, 0,0) \mid t \in \mathbb{R}\}, G_{2}=\{(0, t, 0) \mid t \in \mathbb{R}\}, G_{3}=\{(0,0, t) \mid t \in \mathbb{R}\}$

Definition (Figueroa, Mercuri, Pedrosa - 1999)

A surface in Nil_{3} is translation invariant if it is invariant under the action of 1-parameter subgroup generated by a Killing vector field of the form $a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}, a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \neq 0$.
Proposition (Figueroa, Mercuri, Pedrosa - 1999)

Let M in Nil_{3} be invariant under the 1-parameter group generated by

$$
a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}, a_{1}^{2}+a_{2}^{2} \neq 0
$$

Then is it equivalent to a surface invariant under G_{1}.

Flat translation invariant surfaces

translation invariant surfaces : restrict to G_{1} and G_{3}

Flat translation invariant surfaces

translation invariant surfaces : restrict to G_{1} and G_{3}

Proposition (Inoguchi - 2005)

Let M be a surface invariant under $G_{3}=\{(0,0, t): t \in \mathbb{R}\}$. Then M is locally expressed as

$$
(0,0, v) \cdot(x(u), y(u), 0) \quad, \quad u \in I, v \in \mathbb{R}
$$

I - open interval, u - arclength parameter

Flat translation invariant surfaces

translation invariant surfaces : restrict to G_{1} and G_{3}

Proposition (Inoguchi - 2005)

Let M be a surface invariant under $G_{3}=\{(0,0, t): t \in \mathbb{R}\}$. Then M is locally expressed as

$$
(0,0, v) \cdot(x(u), y(u), 0) \quad, \quad u \in I, v \in \mathbb{R}
$$

I - open interval, u - arclength parameter Remark 1. $(x, y, 0)$ and ($0,0, v$) commute. Remark 2. M is flat

Flat translation invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surface invariant under $G_{1}=\{(t, 0,0), t \in \mathbb{R}\}$. Then M is flat if and only if il is locally equivalent to the graph of

$$
f(x, y)=\frac{x y}{2}+\frac{1}{2 A}\left[y \sqrt{y^{2}-A^{2}}-A^{2} \log \mid y+\sqrt{y^{2}-A^{2} \mid}\right], \quad A \in \mathbb{R}^{*} .
$$

Proof.

idea: the translation invariant surface $\left(G_{1}\right)$ is locally parametrized as the graph

$$
(x, 0,0) \cdot(0, y, v(y))=\left(x, y, v(y)+\frac{x y}{2}\right) .
$$

compute $K+$ solve ODE

Minimal G_{1} - invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surfaces invariant under $G_{1}=\{(t, 0,0), t \in \mathbb{R}\}$. Then M is minimal if and only if il is locally equivalent to the graph of

$$
f(x, y)=\frac{x y}{2}+a\left[y \sqrt{1+y^{2}}+\log \left(y+\sqrt{1+y^{2}}\right)\right], \quad a \in \mathbb{R}^{*}
$$

Minimal G_{1} - invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surfaces invariant under $G_{1}=\{(t, 0,0), t \in \mathbb{R}\}$. Then M is minimal if and only if il is locally equivalent to the graph of

$$
f(x, y)=\frac{x y}{2}+a\left[y \sqrt{1+y^{2}}+\log \left(y+\sqrt{1+y^{2}}\right)\right], \quad a \in \mathbb{R}^{*} .
$$

Extensions: using translation to the right for curves in the $x z$-plane and $y z$-plane : no flatness results

Minimal G_{1} - invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surfaces invariant under $G_{1}=\{(t, 0,0), t \in \mathbb{R}\}$. Then M is minimal if and only if il is locally equivalent to the graph of

$$
f(x, y)=\frac{x y}{2}+a\left[y \sqrt{1+y^{2}}+\log \left(y+\sqrt{1+y^{2}}\right)\right], \quad a \in \mathbb{R}^{*} .
$$

Extensions: using translation to the right for curves in the $x z$-plane and $y z$-plane : no flatness results Why nothing about G_{4} ?

Minimal G_{1} - invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surfaces invariant under $G_{1}=\{(t, 0,0), t \in \mathbb{R}\}$. Then M is minimal if and only if il is locally equivalent to the graph of

$$
f(x, y)=\frac{x y}{2}+a\left[y \sqrt{1+y^{2}}+\log \left(y+\sqrt{1+y^{2}}\right)\right], \quad a \in \mathbb{R}^{*} .
$$

Extensions: using translation to the right for curves in the $x z$-plane and $y z$-plane : no flatness results

Why nothing about G_{4} ?

G_{4} invariant surfaces are nothing but rotational surfaces around z-axis ($G_{4}=S O(2)$)
Classification results: Caddeo, Piu, Ratto - 1996

"Sum" of two curves

work in progress with Rafael López
\mathbb{S}^{3} hypersurface in $\mathbb{R}^{4} \equiv \mathbb{H}$ (noncommutative field of quaternions)
\mathbb{S}^{3} group of unit quaternions
$\alpha(s), \beta(t)$ curves on \mathbb{S}^{3} (parametrized by arclength)

"Sum" of two curves

work in progress with Rafael López
\mathbb{S}^{3} hypersurface in $\mathbb{R}^{4} \equiv \mathbb{H}$ (noncommutative field of quaternions)
\mathbb{S}^{3} group of unit quaternions
$\alpha(s), \beta(t)$ curves on \mathbb{S}^{3} (parametrized by arclength)
translation surface: $r(s, t)=\alpha(s) \cdot \beta(t)$

"Sum" of two curves

work in progress with Rafael López
\mathbb{S}^{3} hypersurface in $\mathbb{R}^{4} \equiv \mathbb{H}$ (noncommutative field of quaternions)
\mathbb{S}^{3} group of unit quaternions
$\alpha(s), \beta(t)$ curves on \mathbb{S}^{3} (parametrized by arclength) translation surface: $r(s, t)=\alpha(s) \cdot \beta(t)$

Example (well known)

$$
r(s, t)=(\cos s \cos t, \sin s \cos t, \cos s \sin t, \sin s \sin t)
$$

- $\alpha=(\cos s, \sin s, 0,0), \beta(t)=(\cos t, 0, \sin t, 0)$: translation surface - minimal and II-minimal

Generalities

From now on FIX $\alpha(\boldsymbol{s})=(\cos s, \sin s, 0,0)$.

Generalities

From now on FIX $\alpha(s)=(\cos s, \sin s, 0,0)$.
$\beta(t) \in \mathbb{S}^{3}: \exists q=q(t) \in \mathbb{S}^{2} \subset \mathfrak{I m} \mathbb{H}$ s.t. $\beta^{\prime}(t)=\beta(t) q(t)$

Generalities

From now on FIX $\alpha(\boldsymbol{s})=(\cos \boldsymbol{s}, \sin s, 0,0)$.
$\beta(t) \in \mathbb{S}^{3}: \exists q=q(t) \in \mathbb{S}^{2} \subset \mathfrak{I m} \mathbb{H}$ s.t. $\beta^{\prime}(t)=\beta(t) q(t)$

$$
\begin{gathered}
g=d s^{2}+2 F d s d t+d t^{2}, \quad F=\langle i r, r q\rangle \\
N=j \zeta r, \zeta \in \mathbb{S}^{1} \subset \mathbb{C} \\
\langle\operatorname{ad}(r)(q), j \zeta\rangle=0
\end{gathered}
$$

Generalities

From now on FIX $\alpha(\boldsymbol{s})=(\cos s, \sin s, 0,0)$.
$\beta(t) \in \mathbb{S}^{3}: \exists q=q(t) \in \mathbb{S}^{2} \subset \Im m \mathbb{H}$ s.t. $\beta^{\prime}(t)=\beta(t) q(t)$

$$
\begin{gathered}
g=d s^{2}+2 F d s d t+d t^{2}, \quad F=\langle i r, r q\rangle \\
N=j \zeta r, \zeta \in \mathbb{S}^{1} \subset \mathbb{C} \\
\langle\operatorname{ad}(r)(q), j \zeta\rangle=0
\end{gathered}
$$

there exists $x \in(0,1)$ depending on s and t such that

$$
\begin{gathered}
N= \pm \frac{1}{\sqrt{1-x^{2}}}(x r+i r q) \\
\operatorname{ad}(r)(q)=x i \pm \sqrt{1-x^{2}} i j \zeta .
\end{gathered}
$$

Generalities

From now on FIX $\alpha(\boldsymbol{s})=(\cos s, \sin s, 0,0)$.
$\beta(t) \in \mathbb{S}^{3}: \exists q=q(t) \in \mathbb{S}^{2} \subset \mathfrak{I m} \mathbb{H}$ s.t. $\beta^{\prime}(t)=\beta(t) q(t)$

$$
\begin{gathered}
g=d s^{2}+2 F d s d t+d t^{2}, \quad F=\langle i r, r q\rangle \\
N=j \zeta r, \zeta \in \mathbb{S}^{1} \subset \mathbb{C} \\
\langle\operatorname{ad}(r)(q), j \zeta\rangle=0
\end{gathered}
$$

there exists $x \in(0,1)$ depending on s and t such that

$$
\begin{gathered}
N= \pm \frac{1}{\sqrt{1-x^{2}}}(x r+i r q) \\
\operatorname{ad}(r)(q)=x i \pm \sqrt{1-x^{2}} i j \zeta .
\end{gathered}
$$

The function x does not depend on $s!$!

First results

Proposition (López, M. - 2009)

The surface S is flat.

First results

Proposition (López, M. - 2009)

The surface S is flat.
Example (the easiest: $q^{\prime}=0$)

```
\beta(t)=(\operatorname{cos}t,\operatorname{sin}t\operatorname{sin}\mp@subsup{0}{0}{},\operatorname{sin}t\operatorname{cos}\mp@subsup{0}{0}{}\operatorname{cos}\mp@subsup{\psi}{0}{},\operatorname{sin}t\operatorname{cos}\mp@subsup{0}{0}{}\operatorname{sin}\mp@subsup{0}{0}{}).
```

Proof.

$$
\begin{gathered}
\frac{\partial}{\partial t} \operatorname{ad}(r)(q)=\operatorname{ad}(r)\left(q^{\prime}\right) \quad \beta^{\prime}(t)=\xi_{0} \beta(t) \\
\xi_{0}=\sin \theta_{0} i+j w_{0}, \quad w_{0} \in \mathbb{C},\left|w_{0}\right|=\cos \theta_{0}, \theta_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
\end{gathered}
$$

First results

Proposition (López, M. - 2009)

The surface S is flat.
Example (the easiest: $q^{\prime}=0$)

```
\beta(t)=(\operatorname{cos}t,\operatorname{sin}t\operatorname{sin}\mp@subsup{0}{0}{},\operatorname{sin}t\operatorname{cos}\mp@subsup{0}{0}{}\operatorname{cos}\mp@subsup{\psi}{0}{},\operatorname{sin}t\operatorname{cos}\mp@subsup{0}{0}{}\operatorname{sin}\mp@subsup{0}{0}{}).
```

Proof.

$$
\begin{gathered}
\frac{\partial}{\partial t} \operatorname{ad}(r)(q)=\operatorname{ad}(r)\left(q^{\prime}\right) \quad \beta^{\prime}(t)=\xi_{0} \beta(t) \\
\xi_{0}=\sin \theta_{0} i+j w_{0}, \quad w_{0} \in \mathbb{C},\left|w_{0}\right|=\cos \theta_{0}, \theta_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
\end{gathered}
$$

Remark. All these surfaces are minimal.

Other results

Recall $N=j \zeta r, \zeta \in \mathbb{S}^{1} \subset \mathbb{C}$

$$
\zeta=\cos \varphi+\sin \varphi i \quad, \quad \varphi=\varphi(s, t)
$$

Weingarten operator : $A=\left(\begin{array}{cc}-\frac{x}{\sqrt{1-x^{2}}} & \frac{1+x \varphi_{t}}{\sqrt{1-x^{2}}} \\ \frac{1}{\sqrt{1-x^{2}}} & -\frac{x+\varphi_{t}}{\sqrt{1-x^{2}}}\end{array}\right)$

Other results

Recall $N=j \zeta r, \zeta \in \mathbb{S}^{1} \subset \mathbb{C}$

$$
\zeta=\cos \varphi+\sin \varphi i \quad, \quad \varphi=\varphi(s, t)
$$

Weingarten operator : $A=\left(\begin{array}{cc}-\frac{x}{\sqrt{1-x^{2}}} & \frac{1+x \varphi_{t}}{\sqrt{1-x^{2}}} \\ \frac{1}{\sqrt{1-x^{2}}} & -\frac{x+\varphi_{t}}{\sqrt{1-x^{2}}}\end{array}\right)$

Proposition (López, M. - 2009)

The surface S cannot be totally geodesic in \mathbb{S}^{3}.

Minimality

Proposition (López, M. - 2009)

The surface S is minimal if and only if $\varphi(s, t)=-2\left(s+\int x(t) d t\right)$. Moreover

$$
\operatorname{ad}(r)(q)=x i-\sqrt{1-x^{2}}\left(-\sin \left(2 \int x(t) d t+2 s\right) j+\cos \left(2 \int x(t) d t+2 s\right) k\right)
$$

where $x=x(t)$ is a smooth function.

Minimality

Proposition (López, M. - 2009)

The surface S is minimal if and only if $\varphi(s, t)=-2\left(s+\int x(t) d t\right)$. Moreover

$$
\operatorname{ad}(r)(q)=x i-\sqrt{1-x^{2}}\left(-\sin \left(2 \int x(t) d t+2 s\right) j+\cos \left(2 \int x(t) d t+2 s\right) k\right)
$$

where $x=x(t)$ is a smooth function.
Difficulties: In order to give an explicit expression for β we have to solve the following QODE

$$
\beta^{\prime}(t)=\mu(t) \beta(t) \quad, \quad \mu(t) \text { is known }
$$

Problem

Find a 3-dimensional space and an embedding such that the following object becomes II-minimal or II-flat

Ceramic joke

Find a 3-dimensional space and an embedding such that the following object becomes II-minimal or II-flat

THANK YOU

FOR

ATTENTION !

