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Schur-Weyl duality – a connection between representations of the sym-

metric group Sn (the group of permutaitons of n elements) and repre-

sentations of the linear group GL(d) = AutL, dimL = d

Natural differential operators: R(g) – the Riemann tensor, W (g) – the

Weyl conformal tensor, N (J) – the Nijenhuis tensor, d(ω) – the external

differential, etc.

In the symbols of these operators, there are algebraic structures coming

from the Schur-Weyl description of GL(d)

Basic example: R(g)
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M – manifold, T (M), T ∗(M) – tangent and cotangent bundles

g ∈ C∞(S2(T ∗(M))) – metric with (some) fixed signature

φ ∈ Diff (M) – diffeomorphism

φ : g 7→ φ∗(g)µν(x) =
∂φα

∂xµ

∂φβ

∂xν
gαβ(φ(x))

g1 ∼ g2 ⇐⇒ ∃φ : φ∗(g1) = g2

If g2 is flat, R(g1) 6= 0 is an obstruction for the equivalence g1 ∼ g2
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Obstruction for local equvalence

Let x0 ∈ M be a given point, (xµ) coordinates centered at x0, The group

Diffx0(M) of all diffeos φ of M such that φ(x0) = x0 plays a crucial role

in the study of the local equivalence of metrics at x0.

Diffx0(M) has a natural action on the jk
x0

(g):

jk
x0

(g) 7→ jk
x0

(φ∗(g)) := jk(φ)(jk
x0

(g)) .

If there exists φ ∈ Diffx0(M) such that φ∗(g1) = g2, then

jk(φ)(jk
x0

(g1)) = jk
x0

(g2) ,

i.e., jk
x0

(g1) and jk
x0

(g2) lie in the same orbit of Diffx0(M). If jk
x0

(g1)

and jk
x0

(g2) belong to different orbits, then they are not equivalent in a

neigborhood of x0.

Therefore, we study the space of orbits of Diffx0(M) on the space of

k-th jets of metrics and look for the canonical projection.
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We start with k = 0,1,2, . . . and look for the lowest k for which there is

more than one orbit of Diffx0(M).

We work in the centered coordinates: xµ(x0) = 0, and use the notation

jk
0(g) := jk

x0
(g).

Case k = 0: j00(g)µν = gµν(0) =: g̃µν,

g̃ 7→ D(φ)|x0 η̃ D(φ)T
x0

.

All metrics of the same signature in a vector space are equivalent, so

there is no obstruction at this level.
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Case k = 1: Fix g̃µν, consider metrics with 1-jets starting with g̃µν:

j0(g)µν = g̃µν + g̃µν,α xα .

Without loss of generality,

j10(φ)ρ(x) = xρ +
1

2
B

ρ
αβ xα xβ ,

B
ρ
αβ symmetric in α and β. With this choice,

g̃µν 7→ g̃µν

g̃µν,α 7→ g̃µν,α + Bµ,να + Bν,µα ,

where Bµ,να := g̃µρ B
ρ
να.

In a coordinate-free picture, we have a map

F : L⊗ S2(L) 7→ S2(L)⊗ L : F(B)µν,α = Bµ,να + Bν,µα .

This action is

S2(L)⊗ L 3 g̃µν,α 7→ g̃µν,α + F(B)µν,α , B ∈ L⊗ S2(L) .
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F : L⊗ S2(L) 7→ S2(L)⊗ L : F(Bµ,να) = Bµ,να + Bν,µα

S2(L)⊗ L 3 g̃ 7→ g̃ + F(B) , B ∈ L⊗ S2(L)

F is surjective, so
(
S2(L)⊗ L

)
/F(L) = {0}, hence at level k = 1 there

is no obstruction. Therefore, there exist normal coordinates (“Riemann

coordinates”) in which the derivatives of the metric tensor vanish at x0:

∂gµν

∂xρ

∣∣∣∣
x0

= 0 .
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Case k = 2: Fix the 1-jet j10(g)µν = g̃µν +0, i.e., we work in Riemann

normal coordinates at x0, where
∂gµν

∂xρ

∣∣∣∣
x0

= 0, and consider the jets j20(g)

over this 1-jet:

j20(g)µν = g̃µν +
1

2
g̃µν,αβ xα xβ ,

where g̃µν,αβ :=
∂2gµν

∂xα ∂xβ

∣∣∣∣
x0

. Without loss of generality,

j2(φ)ρ(x) = xρ + 0 +
1

3!
B

ρ
αβγ xα xβ xγ ,

and the action is

g̃µν 7→ g̃µν

0 7→ 0

g̃µν,αβ 7→ g̃µν,αβ + Bµ,ναβ + Bν,µαβ ,

where Bµ,ναβ := g̃µρ B
ρ
ναβ.
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In a coordinate-free picture, we have a map

F : L⊗ S3(L) 7→ S2(L)⊗ S2(L) : F(B)µν,αβ = Bµ,ναβ + Bν,µαβ .

This action is

S2(L)⊗ S2(L) 3 g̃µν,αβ 7→ g̃µν,αβ + F(B)µν,αβ , B ∈ L⊗ S3(L) .

The map F : L⊗S3(L) 7→ S2(L)⊗S2(L) is not surjective: for dim(L) = 4,

dim
(
L⊗ S3(L)

)
= 80 , dim

(
S2(L)⊗ S2(L)

)
= 100 ,

and we must find the natural projection

Π : S2(L)⊗ S2(L) →
(
S2(L)⊗ S2(L)

)
/F

(
L⊗ S3(L)

)
.

We will use the Schur-Weyl duality. Let Sn be the symmetric group,

λ = (λ1, . . . , λk), |λ| = λ1 + · · ·+λk = n be a partition of n. Graphically,

this is a Young diagram. Each Young diagram is associated with an

irreducible representation of Sn, denoted by V (λ) (“Specht module”);

dimV (λ) =: N (λ).
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Let L be a linear space of dimension d. In L⊗n, there is a natural

representation of GL(d), which is generally reducible. A standard tableau

on the diagram λ (with |λ| = n) is the numbering of the boxes in the

diagram with the entries from 1 to n, each ocurring once, and increasing

across each row and each column.

With each standard tableau T (λ) is associated a Young projection op-

erator P (λ) : L⊗n → L⊗n. The image P (λ)(L⊗n) =: L(λ) is an invariant

subspace of GL(d) and realizes an irreducible representation of GL(d).

The representation of GL(d) in L⊗n is a direct sum of irreducible repre-

sentations V (λ) with multiplicities N (λ):

L⊗n =
⊕
|λ|=n

N (λ)V (λ) .

In the case n = 2, this is simply

L⊗ L = L(2) ⊕ L(1,1) = S2(L)⊕ Λ2(L) .
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In the case n = 4, d = 4,

L⊗4 = L(4) ⊕ 3L(3,1) ⊕ 2L(2,2) ⊕ 3L(2,1,1) ⊕ L(1,1,1,1) ,

256 = 35 + 3(45) + 2(20) + 3(15) + 1 .

The tensor product of two irreps is a direct sum:

L(λ) ⊗ L(µ) =
⊕

|σ|=|λ|+|µ|
Cλ,µ,σ L(σ) ,

where Cλ,µ,σ are the so-called Littlewood-Richardson numbers.

In our case,

L⊗ S3(L) = L(1) ⊗ L(3) = L(4) ⊕ L(3,1)

S2(L)⊗ S2(L) = L(2) ⊗ L(2) = L(4) ⊕ L(3,1) ⊕ L(2,2) ,

so in these notations the map F : L⊗ S3(L) 7→ S2(L)⊗ S2(L) becomes

F : L(4) ⊕ L(3,1) → L(4) ⊕ L(3,1) ⊕ L(2,2) .
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The map F is a splitting operator, therefore its kernel and image are

invariant. In our case, kerF = {0}, and the image of F must be

L(4) ⊕ L(3,1) ⊂ L(4) ⊕ L(3,1) ⊕ L(2,2) .

Therefore, the Young projector

P(2,2) : L(4) ⊕ L(3,1) ⊕ L(2,2) → L(2,2)

is the canonical projection we needed. Therefore, the projector P(2,2)

for the Young tableau

1 3
2 4

is the symbol of the Riemann tensor R(g) considered as a differential

operator.
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