Schur-Weyl Duality and Natural Differential Operators

Petko Nikolov (Sofia Univ)
Gergana Rousseva (BAS)
Lora Nikolova (BAS)

Varna, Bulgaria, June 2009

Schur-Weyl duality - a connection between representations of the symmetric group S_{n} (the group of permutaitons of n elements) and representations of the linear group $G L(d)=\operatorname{Aut} L, \operatorname{dim} L=d$

Natural differential operators: $R(g)$ - the Riemann tensor, $W(g)$ - the Weyl conformal tensor, $\mathcal{N}(J)$ - the Nijenhuis tensor, $d(\omega)$ - the external differential, etc.

In the symbols of these operators, there are algebraic structures coming from the Schur-Weyl description of $G L(d)$

Basic example: $R(g)$
M - manifold, $T(M), T^{*}(M)$ - tangent and cotangent bundles
$g \in C^{\infty}\left(S^{2}\left(T^{*}(M)\right)\right)$ - metric with (some) fixed signature
$\phi \in \operatorname{Diff}(M)$ - diffeomorphism
$\phi: g \mapsto \phi^{*}(g)_{\mu \nu}(x)=\frac{\partial \phi^{\alpha}}{\partial x^{\mu}} \frac{\partial \phi^{\beta}}{\partial x^{\nu}} g_{\alpha \beta}(\phi(x))$
$g_{1} \sim g_{2} \Longleftrightarrow \exists \phi: \phi^{*}\left(g_{1}\right)=g_{2}$

If g_{2} is flat, $R\left(g_{1}\right) \neq 0$ is an obstruction for the equivalence $g_{1} \sim g_{2}$

Obstruction for local equvalence

Let $x_{0} \in M$ be a given point, $\left(x^{\mu}\right)$ coordinates centered at x_{0}, The group $\operatorname{Diff}_{x_{0}}(M)$ of all diffeos ϕ of M such that $\phi\left(x_{0}\right)=x_{0}$ plays a crucial role in the study of the local equivalence of metrics at x_{0}.
$\operatorname{Diff}_{x_{0}}(M)$ has a natural action on the $j_{x_{0}}^{k}(g)$:

$$
j_{x_{0}}^{k}(g) \mapsto j_{x_{0}}^{k}\left(\phi^{*}(g)\right):=j^{k}(\phi)\left(j_{x_{0}}^{k}(g)\right) .
$$

If there exists $\phi \in \operatorname{Diff}_{x_{0}}(M)$ such that $\phi^{*}\left(g_{1}\right)=g_{2}$, then

$$
j^{k}(\phi)\left(j_{x_{0}}^{k}\left(g_{1}\right)\right)=j_{x_{0}}^{k}\left(g_{2}\right),
$$

i.e., $j_{x_{0}}^{k}\left(g_{1}\right)$ and $j_{x_{0}}^{k}\left(g_{2}\right)$ lie in the same orbit of $\operatorname{Diff}_{x_{0}}(M)$. If $j_{x_{0}}^{k}\left(g_{1}\right)$ and $j_{x_{0}}^{k}\left(g_{2}\right)$ belong to different orbits, then they are not equivalent in a neigborhood of x_{0}.

Therefore, we study the space of orbits of $\operatorname{Diff}_{x_{0}}(M)$ on the space of k-th jets of metrics and look for the canonical projection.

We start with $k=0,1,2, \ldots$ and look for the lowest k for which there is more than one orbit of $\operatorname{Diff}_{x_{0}}(M)$.
We work in the centered coordinates: $x^{\mu}\left(x_{0}\right)=0$, and use the notation $j_{0}^{k}(g):=j_{x_{0}}^{k}(g)$.

Case $k=0: \quad j_{0}^{0}(g)_{\mu \nu}=g_{\mu \nu}(0)=: \tilde{g}_{\mu \nu}$,

$$
\left.\tilde{g} \mapsto D(\phi)\right|_{x_{0}} \tilde{\eta} D(\phi)_{x_{0}}^{T}
$$

All metrics of the same signature in a vector space are equivalent, so there is no obstruction at this level.

Case $k=1: \quad$ Fix $\tilde{g}_{\mu \nu}$, consider metrics with 1 -jets starting with $\tilde{g}_{\mu \nu}$:

$$
j_{0}(g)_{\mu \nu}=\tilde{g}_{\mu \nu}+\tilde{g}_{\mu \nu, \alpha} x^{\alpha}
$$

Without loss of generality,

$$
j_{0}^{1}(\phi)^{\rho}(x)=x^{\rho}+\frac{1}{2} B_{\alpha \beta}^{\rho} x^{\alpha} x^{\beta}
$$

$B_{\alpha \beta}^{\rho}$ symmetric in α and β. With this choice,

$$
\begin{aligned}
\tilde{g}_{\mu \nu} & \mapsto \tilde{g}_{\mu \nu} \\
\tilde{g}_{\mu \nu, \alpha} & \mapsto \tilde{g}_{\mu \nu, \alpha}+B_{\mu, \nu \alpha}+B_{\nu, \mu \alpha},
\end{aligned}
$$

where $B_{\mu, \nu \alpha}:=\tilde{g}_{\mu \rho} B_{\nu \alpha}^{\rho}$.

In a coordinate-free picture, we have a map

$$
\mathcal{F}: L \otimes S^{2}(L) \mapsto S^{2}(L) \otimes L: \mathcal{F}(B)_{\mu \nu, \alpha}=B_{\mu, \nu \alpha}+B_{\nu, \mu \alpha}
$$

This action is

$$
S^{2}(L) \otimes L \ni \tilde{g}_{\mu \nu, \alpha} \mapsto \tilde{g}_{\mu \nu, \alpha}+\mathcal{F}(B)_{\mu \nu, \alpha}, \quad B \in L \otimes S^{2}(L)
$$

$$
\begin{gathered}
\mathcal{F}: L \otimes S^{2}(L) \mapsto S^{2}(L) \otimes L: \mathcal{F}\left(B_{\mu, \nu \alpha}\right)=B_{\mu, \nu \alpha}+B_{\nu, \mu \alpha} \\
S^{2}(L) \otimes L \ni \tilde{g} \mapsto \tilde{g}+\mathcal{F}(B), \quad B \in L \otimes S^{2}(L)
\end{gathered}
$$

\mathcal{F} is surjective, so $\left(S^{2}(L) \otimes L\right) / \mathcal{F}(L)=\{0\}$, hence at level $k=1$ there is no obstruction. Therefore, there exist normal coordinates ("Riemann coordinates") in which the derivatives of the metric tensor vanish at x_{0} :

$$
\left.\frac{\partial g_{\mu \nu}}{\partial x^{\rho}}\right|_{x_{0}}=0
$$

Case $k=2$: Fix the 1 -jet $j_{0}^{1}(g)_{\mu \nu}=\tilde{g}_{\mu \nu}+0$, i.e., we work in Riemann normal coordinates at x_{0}, where $\left.\frac{\partial g_{\mu \nu}}{\partial x^{\rho}}\right|_{x_{0}}=0$, and consider the jets $j_{0}^{2}(g)$ over this 1-jet:

$$
j_{0}^{2}(g)_{\mu \nu}=\tilde{g}_{\mu \nu}+\frac{1}{2} \tilde{g}_{\mu \nu, \alpha \beta} x^{\alpha} x^{\beta}
$$

where $\tilde{g}_{\mu \nu, \alpha \beta}:=\left.\frac{\partial^{2} g_{\mu \nu}}{\partial x^{\alpha} \partial x^{\beta}}\right|_{x_{0}}$. Without loss of generality,

$$
j^{2}(\phi)^{\rho}(x)=x^{\rho}+0+\frac{1}{3!} B_{\alpha \beta \gamma}^{\rho} x^{\alpha} x^{\beta} x^{\gamma}
$$

and the action is

$$
\begin{aligned}
\tilde{g}_{\mu \nu} & \mapsto \tilde{g}_{\mu \nu} \\
0 & \mapsto 0 \\
\tilde{g}_{\mu \nu, \alpha \beta} & \mapsto \tilde{g}_{\mu \nu, \alpha \beta}+B_{\mu, \nu \alpha \beta}+B_{\nu, \mu \alpha \beta},
\end{aligned}
$$

where $B_{\mu, \nu \alpha \beta}:=\tilde{g}_{\mu \rho} B_{\nu \alpha \beta}^{\rho}$.

In a coordinate-free picture, we have a map

$$
\mathcal{F}: L \otimes S^{3}(L) \mapsto S^{2}(L) \otimes S^{2}(L): \mathcal{F}(B)_{\mu \nu, \alpha \beta}=B_{\mu, \nu \alpha \beta}+B_{\nu, \mu \alpha \beta}
$$

This action is

$$
S^{2}(L) \otimes S^{2}(L) \ni \tilde{g}_{\mu \nu, \alpha \beta} \mapsto \tilde{g}_{\mu \nu, \alpha \beta}+\mathcal{F}(B)_{\mu \nu, \alpha \beta}, \quad B \in L \otimes S^{3}(L)
$$

The map $\mathcal{F}: L \otimes S^{3}(L) \mapsto S^{2}(L) \otimes S^{2}(L)$ is not surjective: $f o r \operatorname{dim}(L)=4$,

$$
\operatorname{dim}\left(L \otimes S^{3}(L)\right)=80, \quad \operatorname{dim}\left(S^{2}(L) \otimes S^{2}(L)\right)=100
$$

and we must find the natural projection

$$
\sqcap: S^{2}(L) \otimes S^{2}(L) \rightarrow\left(S^{2}(L) \otimes S^{2}(L)\right) / \mathcal{F}\left(L \otimes S^{3}(L)\right)
$$

We will use the Schur-Weyl duality. Let S_{n} be the symmetric group, $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k}\right),|\boldsymbol{\lambda}|=\lambda_{1}+\cdots+\lambda_{k}=n$ be a partition of n. Graphically, this is a Young diagram. Each Young diagram is associated with an irreducible representation of S_{n}, denoted by $V(\boldsymbol{\lambda})$ ("Specht module"); $\operatorname{dim} V(\boldsymbol{\lambda})=: \mathcal{N}(\boldsymbol{\lambda})$.

Let L be a linear space of dimension d. In $L^{\otimes n}$, there is a natural representation of $G L(d)$, which is generally reducible. A standard tableau on the diagram $\boldsymbol{\lambda}$ (with $|\boldsymbol{\lambda}|=n$) is the numbering of the boxes in the diagram with the entries from 1 to n, each ocurring once, and increasing across each row and each column.

With each standard tableau $T(\boldsymbol{\lambda})$ is associated a Young projection operator $P(\boldsymbol{\lambda}): L^{\otimes n} \rightarrow L^{\otimes n}$. The image $P(\boldsymbol{\lambda})\left(L^{\otimes n}\right)=: L(\boldsymbol{\lambda})$ is an invariant subspace of $G L(d)$ and realizes an irreducible representation of $G L(d)$.

The representation of $G L(d)$ in $L^{\otimes n}$ is a direct sum of irreducible representations $V(\boldsymbol{\lambda})$ with multiplicities $\mathcal{N}(\boldsymbol{\lambda})$:

$$
L^{\otimes n}=\bigoplus_{|\boldsymbol{\lambda}|=n} \mathcal{N}(\boldsymbol{\lambda}) V(\boldsymbol{\lambda})
$$

In the case $n=2$, this is simply

$$
L \otimes L=L_{(2)} \oplus L_{(1,1)}=S^{2}(L) \oplus \wedge^{2}(L)
$$

In the case $n=4, d=4$,

$$
\begin{gathered}
L^{\otimes 4}=L_{(4)} \oplus 3 L_{(3,1)} \oplus 2 L_{(2,2)} \oplus 3 L_{(2,1,1)} \oplus L_{(1,1,1,1)} \\
256=35+3(45)+2(20)+3(15)+1
\end{gathered}
$$

The tensor product of two irreps is a direct sum:

$$
L_{(\boldsymbol{\lambda})} \otimes L_{(\boldsymbol{\mu})}=\bigoplus_{|\boldsymbol{\sigma}|=|\boldsymbol{\lambda}|+|\boldsymbol{\mu}|} \mathcal{C}_{\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\sigma}} L_{(\boldsymbol{\sigma})}
$$

where $\mathcal{C}_{\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\sigma}}$ are the so-called Littlewood-Richardson numbers. In our case,

$$
\begin{aligned}
& L \otimes S^{3}(L)=L_{(1)} \otimes L_{(3)}=L_{(4)} \oplus L_{(3,1)} \\
& S^{2}(L) \otimes S^{2}(L)=L_{(2)} \otimes L_{(2)}=L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)},
\end{aligned}
$$

so in these notations the $\operatorname{map} \mathcal{F}: L \otimes S^{3}(L) \mapsto S^{2}(L) \otimes S^{2}(L)$ becomes

$$
\mathcal{F}: L_{(4)} \oplus L_{(3,1)} \rightarrow L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)}
$$

The map \mathcal{F} is a splitting operator, therefore its kernel and image are invariant. In our case, $\operatorname{ker} \mathcal{F}=\{0\}$, and the image of \mathcal{F} must be

$$
L_{(4)} \oplus L_{(3,1)} \subset L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)}
$$

Therefore, the Young projector

$$
P_{(2,2)}: L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)} \rightarrow L_{(2,2)}
$$

is the canonical projection we needed. Therefore, the projector $P_{(2,2)}$ for the Young tableau

$$
\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}
$$

is the symbol of the Riemann tensor $R(g)$ considered as a differential operator.

