Schur-Weyl Duality

and Natural Differential Operators

Petko Nikolov (Sofia Univ) Gergana Rousseva (BAS) Lora Nikolova (BAS)

Varna, Bulgaria, June 2009

Schur-Weyl duality – a connection between representations of the symmetric group S_n (the group of permutaitons of n elements) and representations of the linear group $GL(d) = \operatorname{Aut} L$, dim L = d

Natural differential operators: R(g) – the Riemann tensor, W(g) – the Weyl conformal tensor, $\mathcal{N}(J)$ – the Nijenhuis tensor, $d(\omega)$ – the external differential, etc.

In the symbols of these operators, there are algebraic structures coming from the Schur-Weyl description of GL(d)

Basic example: R(g)

M - manifold, T(M), $T^*(M)$ - tangent and cotangent bundles

 $g \in C^{\infty}(S^2(T^*(M)))$ – metric with (some) fixed signature

 $\phi \in \text{Diff}(M) - \text{diffeomorphism}$

$$\phi: g \mapsto \phi^*(g)_{\mu\nu}(x) = \frac{\partial \phi^{\alpha}}{\partial x^{\mu}} \frac{\partial \phi^{\beta}}{\partial x^{\nu}} g_{\alpha\beta}(\phi(x))$$

 $g_1 \sim g_2 \quad \iff \quad \exists \phi : \phi^*(g_1) = g_2$

If g_2 is flat, $R(g_1) \neq 0$ is an obstruction for the equivalence $g_1 \sim g_2$

Obstruction for local equvalence

Let $x_0 \in M$ be a given point, (x^{μ}) coordinates centered at x_0 , The group $\text{Diff}_{x_0}(M)$ of all diffeos ϕ of M such that $\phi(x_0) = x_0$ plays a crucial role in the study of the local equivalence of metrics at x_0 .

 $\operatorname{Diff}_{x_0}(M)$ has a natural action on the $j_{x_0}^k(g)$:

$$j_{x_0}^k(g) \mapsto j_{x_0}^k(\phi^*(g)) := j^k(\phi)(j_{x_0}^k(g))$$
.

If there exists $\phi \in \text{Diff}_{x_0}(M)$ such that $\phi^*(g_1) = g_2$, then

$$j^k(\phi)(j^k_{x_0}(g_1)) = j^k_{x_0}(g_2)$$
,

i.e., $j_{x_0}^k(g_1)$ and $j_{x_0}^k(g_2)$ lie in the same orbit of $\text{Diff}_{x_0}(M)$. If $j_{x_0}^k(g_1)$ and $j_{x_0}^k(g_2)$ belong to different orbits, then they are not equivalent in a neigborhood of x_0 .

Therefore, we study the space of orbits of $\text{Diff}_{x_0}(M)$ on the space of k-th jets of metrics and look for the canonical projection.

We start with k = 0, 1, 2, ... and look for the lowest k for which there is more than one orbit of $\text{Diff}_{x_0}(M)$.

We work in the centered coordinates: $x^{\mu}(x_0) = 0$, and use the notation $j_0^k(g) := j_{x_0}^k(g)$.

Case
$$k = 0$$
: $j_0^0(g)_{\mu\nu} = g_{\mu\nu}(0) =: \tilde{g}_{\mu\nu},$
 $\tilde{g} \mapsto D(\phi)|_{x_0} \tilde{\eta} D(\phi)_{x_0}^T.$

All metrics of the same signature in a vector space are equivalent, so there is no obstruction at this level.

Case k = 1: Fix $\tilde{g}_{\mu\nu}$, consider metrics with 1-jets starting with $\tilde{g}_{\mu\nu}$:

$$j_0(g)_{\mu\nu} = \tilde{g}_{\mu\nu} + \tilde{g}_{\mu\nu,\alpha} x^{\alpha} .$$

Without loss of generality,

$$j_0^1(\phi)^{\rho}(x) = x^{\rho} + \frac{1}{2} B^{\rho}_{\alpha\beta} x^{\alpha} x^{\beta} ,$$

 $B^{\rho}_{\alpha\beta}$ symmetric in α and β . With this choice,

$$\begin{split} \tilde{g}_{\mu\nu} & \mapsto & \tilde{g}_{\mu\nu} \\ \tilde{g}_{\mu\nu,\alpha} & \mapsto & \tilde{g}_{\mu\nu,\alpha} + B_{\mu,\nu\alpha} + B_{\nu,\mu\alpha} \ , \end{split}$$
where $B_{\mu,\nu\alpha} := \tilde{g}_{\mu\rho} B^{\rho}_{\nu\alpha}$.

In a coordinate-free picture, we have a map

$$\mathcal{F}: L \otimes S^2(L) \mapsto S^2(L) \otimes L: \mathcal{F}(B)_{\mu\nu,\alpha} = B_{\mu,\nu\alpha} + B_{\nu,\mu\alpha}$$
.

This action is

 $S^2(L)\otimes L
i ilde{g}_{\mu
u,lpha} \mapsto ilde{g}_{\mu
u,lpha} + \mathcal{F}(B)_{\mu
u,lpha} , \quad B\in L\otimes S^2(L) \; .$

$$\mathcal{F}: L \otimes S^{2}(L) \mapsto S^{2}(L) \otimes L : \mathcal{F}(B_{\mu,\nu\alpha}) = B_{\mu,\nu\alpha} + B_{\nu,\mu\alpha}$$
$$S^{2}(L) \otimes L \ni \tilde{g} \mapsto \tilde{g} + \mathcal{F}(B) , \quad B \in L \otimes S^{2}(L)$$

 \mathcal{F} is surjective, so $(S^2(L) \otimes L) / \mathcal{F}(L) = \{0\}$, hence at level k = 1 there is no obstruction. Therefore, there exist normal coordinates ("Riemann coordinates") in which the derivatives of the metric tensor vanish at x_0 :

$$\left. \frac{\partial g_{\mu\nu}}{\partial x^{\rho}} \right|_{x_0} = 0 \; .$$

Case k = 2: Fix the 1-jet $j_0^1(g)_{\mu\nu} = \tilde{g}_{\mu\nu} + 0$, i.e., we work in Riemann normal coordinates at x_0 , where $\frac{\partial g_{\mu\nu}}{\partial x^{\rho}}\Big|_{x_0} = 0$, and consider the jets $j_0^2(g)$ over this 1-jet:

$$j_0^2(g)_{\mu\nu} = \tilde{g}_{\mu\nu} + \frac{1}{2} \tilde{g}_{\mu\nu,\alpha\beta} x^\alpha x^\beta ,$$

where $\tilde{g}_{\mu\nu,\alpha\beta} := \frac{\partial^2 g_{\mu\nu}}{\partial x^{\alpha} \partial x^{\beta}}\Big|_{x_0}$. Without loss of generality,

$$j^{2}(\phi)^{\rho}(x) = x^{\rho} + 0 + \frac{1}{3!} B^{\rho}_{\alpha\beta\gamma} x^{\alpha} x^{\beta} x^{\gamma} ,$$

and the action is

$$\begin{split} \tilde{g}_{\mu\nu} & \mapsto & \tilde{g}_{\mu\nu} \\ 0 & \mapsto & 0 \\ \tilde{g}_{\mu\nu,\alpha\beta} & \mapsto & \tilde{g}_{\mu\nu,\alpha\beta} + B_{\mu,\nu\alpha\beta} + B_{\nu,\mu\alpha\beta} \;, \end{split}$$

where $B_{\mu,\nu\alpha\beta} := \tilde{g}_{\mu\rho} B^{\rho}_{\nu\alpha\beta}$.

In a coordinate-free picture, we have a map

 $\mathcal{F}:L\otimes S^3(L)\mapsto S^2(L)\otimes S^2(L):\mathcal{F}(B)_{\mu\nu,\alpha\beta}=B_{\mu,\nu\alpha\beta}+B_{\nu,\mu\alpha\beta}\ .$ This action is

 $S^{2}(L) \otimes S^{2}(L) \ni \tilde{g}_{\mu\nu,\alpha\beta} \mapsto \tilde{g}_{\mu\nu,\alpha\beta} + \mathcal{F}(B)_{\mu\nu,\alpha\beta} , \quad B \in L \otimes S^{3}(L) .$ The map $\mathcal{F} : L \otimes S^{3}(L) \mapsto S^{2}(L) \otimes S^{2}(L)$ is not surjective: for dim(L) = 4, dim $(L \otimes S^{3}(L)) = 80$, dim $(S^{2}(L) \otimes S^{2}(L)) = 100$, and we must find the natural projection

$$\Pi: S^{2}(L) \otimes S^{2}(L) \to \left(S^{2}(L) \otimes S^{2}(L)\right) / \mathcal{F}\left(L \otimes S^{3}(L)\right) .$$

We will use the Schur-Weyl duality. Let S_n be the symmetric group, $\lambda = (\lambda_1, \dots, \lambda_k)$, $|\lambda| = \lambda_1 + \dots + \lambda_k = n$ be a partition of n. Graphically, this is a Young diagram. Each Young diagram is associated with an irreducible representation of S_n , denoted by $V(\lambda)$ ("Specht module"); dim $V(\lambda) =: \mathcal{N}(\lambda)$. Let L be a linear space of dimension d. In $L^{\otimes n}$, there is a natural representation of GL(d), which is generally reducible. A standard tableau on the diagram λ (with $|\lambda| = n$) is the numbering of the boxes in the diagram with the entries from 1 to n, each ocurring once, and increasing across each row and each column.

With each standard tableau $T(\lambda)$ is associated a Young projection operator $P(\lambda) : L^{\otimes n} \to L^{\otimes n}$. The image $P(\lambda)(L^{\otimes n}) =: L(\lambda)$ is an invariant subspace of GL(d) and realizes an irreducible representation of GL(d).

The representation of GL(d) in $L^{\otimes n}$ is a direct sum of irreducible representations $V(\lambda)$ with multiplicities $\mathcal{N}(\lambda)$:

$$L^{\otimes n} = \bigoplus_{|\boldsymbol{\lambda}|=n} \mathcal{N}(\boldsymbol{\lambda}) V(\boldsymbol{\lambda}) .$$

In the case n = 2, this is simply

$$L\otimes L=L_{(2)}\oplus L_{(1,1)}=S^2(L)\oplus \Lambda^2(L) \ .$$

In the case n = 4, d = 4,

$$L^{\otimes 4} = L_{(4)} \oplus 3L_{(3,1)} \oplus 2L_{(2,2)} \oplus 3L_{(2,1,1)} \oplus L_{(1,1,1,1)} ,$$

256 = 35 + 3(45) + 2(20) + 3(15) + 1.

The tensor product of two irreps is a direct sum:

$$L_{(\lambda)} \otimes L_{(\mu)} = \bigoplus_{|\sigma|=|\lambda|+|\mu|} \mathcal{C}_{\lambda,\mu,\sigma} L_{(\sigma)} ,$$

where $\mathcal{C}_{\pmb{\lambda},\pmb{\mu},\pmb{\sigma}}$ are the so-called Littlewood-Richardson numbers. In our case,

$$L \otimes S^{3}(L) = L_{(1)} \otimes L_{(3)} = L_{(4)} \oplus L_{(3,1)}$$

$$S^{2}(L) \otimes S^{2}(L) = L_{(2)} \otimes L_{(2)} = L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)} ,$$

so in these notations the map $\mathcal{F}: L \otimes S^3(L) \mapsto S^2(L) \otimes S^2(L)$ becomes

$$\mathcal{F}: L_{(4)} \oplus L_{(3,1)} \to L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)} .$$

The map \mathcal{F} is a splitting operator, therefore its kernel and image are invariant. In our case, ker $\mathcal{F} = \{0\}$, and the image of \mathcal{F} must be

$$L_{(4)} \oplus L_{(3,1)} \subset L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)}$$
.

Therefore, the Young projector

$$P_{(2,2)}: L_{(4)} \oplus L_{(3,1)} \oplus L_{(2,2)} \to L_{(2,2)}$$

is the canonical projection we needed. Therefore, the projector $P_{(2,2)}$ for the Young tableau

is the symbol of the Riemann tensor R(g) considered as a differential operator.