Biharmonic submanifolds of \mathbb{S}^4

Cezar Oniciuc (joint work with Adina Balmuş)

"Al.I. Cuza" University of Iaşi, Romania

June 2009

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

Biharmonic submanifolds of S4

Harmonic and biharmonic maps

Let $\varphi : (M,g) \rightarrow (N,h)$ be a smooth map.

Energy functional

$$E(\boldsymbol{\varphi}) = E_1(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |d\boldsymbol{\varphi}|^2 v_g$$

Euler-Lagrange equation

$$\tau(\varphi) = \tau_1(\varphi) = \operatorname{trace}_g \nabla d\varphi$$

$$= 0$$

Critical points of *E*: harmonic maps

< 🗇 🕨 < 🖃 >

Harmonic and biharmonic maps

Let $\varphi : (M,g) \rightarrow (N,h)$ be a smooth map.

Energy functional

$$E(\boldsymbol{\varphi}) = E_1(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |d\boldsymbol{\varphi}|^2 v_g$$

Euler-Lagrange equation

$$\tau(\varphi) = \tau_1(\varphi) = \operatorname{trace}_g \nabla d\varphi$$
$$= 0$$

Bienergy functional

$$E_2(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\varphi})|^2 v_g$$

Euler-Lagrange equation

$$\begin{aligned} (\varphi) &= -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_{g} R^{N}(d\varphi, \tau(\varphi)) d\varphi \\ &= 0 \end{aligned}$$

Critical points of *E*: harmonic maps

Critical points of *E*₂: biharmonic maps

 τ_2

The biharmonic equation

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g R^N(d\varphi, \tau(\varphi)) d\varphi = 0$$

The biharmonic equation

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g R^N(d\varphi, \tau(\varphi)) d\varphi = 0$$

The biharmonic equation

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g R^N(d\varphi, \tau(\varphi)) d\varphi = 0$$

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g R^N(d\varphi, \tau(\varphi)) d\varphi = 0$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper biharmonic;
- the biharmonic submanifolds *M* of a given space *N* are the submanifolds such that the inclusion map *i* : *M* → *N* is biharmonic. (the inclusion map *i* : *M* → *N* is harmonic if and only if *M* is minimal)

Biharmonic submanifolds in the Euclidean space

$$R^N = 0 \Rightarrow au_2(arphi) = -\Delta^{arphi} au(arphi)$$

Definition (Chen)

A submanifold $i: M \to \mathbb{R}^n$ is biharmonic if it has harmonic mean curvature vector field, i.e.

$$\Delta^i H = 0 \Leftrightarrow \Delta^i \tau(i) = 0.$$

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds biharmonicity is equivalent to minimality:

- submanifolds of $\mathbb{E}^{3}(c)$, $c \leq 0$ (Chen/Caddeo Montaldo O.)
- curves of $\mathbb{E}^{n}(c), c \leq 0$ (Dimitric/Caddeo Montaldo O.)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces of \mathbb{R}^n with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of Eⁿ(c), c ≤ 0 with dimension m ≠ 4 (Dimitric/Caddeo - Montaldo - O.)
- hypersurfaces of \mathbb{R}^4 (Hasanis Vlachos)
- spherical submanifolds of \mathbb{R}^n (Chen)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds biharmonicity is equivalent to minimality:

- submanifolds of $\mathbb{E}^{3}(c)$, $c \leq 0$ (Chen/Caddeo Montaldo O.)
- curves of $\mathbb{E}^{n}(c), c \leq 0$ (Dimitric/Caddeo Montaldo O.)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces of \mathbb{R}^n with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $\mathbb{E}^n(c), c \leq 0$ with dimension $m \neq 4$ (Dimitric/Caddeo Montaldo O.)
- hypersurfaces of \mathbb{R}^4 (Hasanis Vlachos)
- spherical submanifolds of \mathbb{R}^n (Chen)

It is still open the following

Generalized Chen's Conjecture

Biharmonic submanifolds of $\mathbb{E}^{n}(c)$, n > 3, $c \leq 0$, are minimal.

< ロ > < 同 > < 回 > < 回 >

Biharmonic curves of \mathbb{S}^2 (Caddeo - Montaldo - Piu, 2001)

An arc length parameterized curve $\gamma: I \to \mathbb{S}^2$ is proper biharmonic if and only if it is the circle of radius $\frac{1}{\sqrt{2}}$.

Biharmonic curves of \mathbb{S}^2 (Caddeo - Montaldo - Piu, 2001)

An arc length parameterized curve $\gamma: I \to \mathbb{S}^2$ is proper biharmonic if and only if it is the circle of radius $\frac{1}{\sqrt{2}}$.

Biharmonic curves of \mathbb{S}^3 (Caddeo - Montaldo - O., 2001)

An arc length parameterized curve $\gamma: I \to \mathbb{S}^3$ is proper biharmonic if and only if it is either the circle of radius $\frac{1}{\sqrt{2}}$, or a geodesic of the minimal Clifford torus $\mathbb{S}^1(\frac{1}{\sqrt{2}}) \times \mathbb{S}^1(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^3$ with slope different from ± 1 .

A (10) A (10)

Biharmonic curves in spheres

Biharmonic curves of \mathbb{S}^n , $(n \ge 3)$ (Fetcu - O., 2009)

An arc length parameterized curve $\gamma: I \to \mathbb{S}^n$ is proper biharmonic if and only if it is either the circle

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos(\sqrt{2}s)e_1 + \frac{1}{\sqrt{2}}\sin(\sqrt{2}s)e_2 + \frac{1}{\sqrt{2}}e_3,$$

or a helix

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos(As)e_1 + \frac{1}{\sqrt{2}}\sin(As)e_2 + \frac{1}{\sqrt{2}}\cos(Bs)e_3 + \frac{1}{\sqrt{2}}\sin(Bs)e_4,$$

where $A = \sqrt{1 + k_1}$, $B = \sqrt{1 - k_1}$, $k_1 \in (0, 1)$, and $\{e_i\}$ are constant unit vectors orthogonal to each other.

< A > < A > >

Biharmonic curves in spheres

Biharmonic curves of \mathbb{S}^n , $(n \ge 3)$ (Fetcu - O., 2009)

An arc length parameterized curve $\gamma: I \to \mathbb{S}^n$ is proper biharmonic if and only if it is either the circle

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos(\sqrt{2}s)e_1 + \frac{1}{\sqrt{2}}\sin(\sqrt{2}s)e_2 + \frac{1}{\sqrt{2}}e_3,$$

or a helix

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos(As)e_1 + \frac{1}{\sqrt{2}}\sin(As)e_2 + \frac{1}{\sqrt{2}}\cos(Bs)e_3 + \frac{1}{\sqrt{2}}\sin(Bs)e_4,$$

where $A = \sqrt{1 + k_1}$, $B = \sqrt{1 - k_1}$, $k_1 \in (0, 1)$, and $\{e_i\}$ are constant unit vectors orthogonal to each other.

Biharmonic curves of S⁴

Up to a totally geodesic embedding, the proper biharmonic curves of \mathbb{S}^4 are those of $\mathbb{S}^3.$

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

The biharmonic equation for submanifolds in spheres

Let $i: M^m \to \mathbb{S}^n$ be a submanifold. Then

$$\tau(i) = mH, \qquad \tau_2(i) = -m\Delta^i H + m^2 H,$$

thus *i* is biharmonic iff $\Delta^{i}H = mH$.

The biharmonic equation for submanifolds in spheres

Let $i: M^m \to \mathbb{S}^n$ be a submanifold. Then

$$\tau(i) = mH, \qquad \tau_2(i) = -m\Delta^i H + m^2 H,$$

thus *i* is biharmonic iff $\Delta^{i}H = mH$.

(i) A submanifold $i: M^m \to \mathbb{S}^n$ is biharmonic if and only if

$$\begin{cases} \Delta^{\perp} H + \operatorname{trace} B(\cdot, A_H \cdot) - mH = 0, \\ 4 \operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} H}(\cdot) + m \operatorname{grad}(|H|^2) = 0. \end{cases}$$

The biharmonic equation for submanifolds in spheres

Let $i: M^m \to \mathbb{S}^n$ be a submanifold. Then

$$au(i) = mH, \qquad au_2(i) = -m\Delta^i H + m^2 H,$$

thus *i* is biharmonic iff $\Delta^{i}H = mH$.

(i) A submanifold $i: M^m \to \mathbb{S}^n$ is biharmonic if and only if

$$\begin{cases} \Delta^{\perp} H + \operatorname{trace} B(\cdot, A_H \cdot) - mH = 0, \\ 4 \operatorname{trace} A_{\nabla^{\perp}_{(\cdot)} H}(\cdot) + m \operatorname{grad}(|H|^2) = 0. \end{cases}$$

(ii) If *M* is a hypersurface of \mathbb{S}^{m+1} , then *M* is biharmonic if and only if

$$\Delta^{\perp} H - (m - |A|^2)H = 0,$$

$$2A(\operatorname{grad}(|H|)) + m|H|\operatorname{grad}(|H|) = 0.$$

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

The composition property

$$\mathbb{S}^{n-1}(a) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = \frac{1}{\sqrt{2}}$$

The composition property

The composition property

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

The composition property

The composition property

Properties

- *M* has parallel mean curvature vector field, and |H| = 1.
- *M* is pseudo-umbilical in \mathbb{S}^n , i.e. $A_H = |H|^2 \operatorname{Id}$.

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$
$$\mathbb{S}^{n_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{n_2}(\frac{1}{\sqrt{2}})$$
$$\downarrow^i \quad \text{biharmonic}$$

 \mathbb{S}^n

 $n_1 + n_2 = n - 1$

A .

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$
$$M_1^{m_1} \times M_2^{m_2} \xrightarrow{\text{minimal}} \mathbb{S}^{n_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{n_2}(\frac{1}{\sqrt{2}})$$
$$\downarrow^i \quad \text{biharmonic}$$
$$\mathbb{S}^n$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

A .

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

The product composition property

$$\mathbb{S}^{n_1}(a) \times \mathbb{S}^{n_2}(b) \xrightarrow{\text{biharmonic}} \mathbb{S}^n \quad \iff \quad a = b = \frac{1}{\sqrt{2}} \quad \text{and} \quad n_1 \neq n_2$$
$$n_1 + n_2 = n - 1, \ a^2 + b^2 = 1$$

 $n_1 + n_2 = n - 1, m_1 \neq m_2$

Properties

• $M_1 \times M_2$ has parallel mean curvature vector field, and $|H| \in (0,1)$.

• $M_1 \times M_2$ is not pseudo-umbilical in \mathbb{S}^n .

C. Oniciuc ("Al.I. Cuza" Univ. Iaşi)

Biharmonic submanifolds of S4

The type of biharmonic submanifolds in spheres

Definition

A compact submanifold M of \mathbb{S}^n is called of ℓ - type if the spectral decomposition of $\phi : M \to \mathbb{R}^{n+1}$ has exactly ℓ - terms, except for its center of mass, i.e. $\phi = \phi_0 + \sum_{i=1}^{\ell} \phi_i$, $\Delta \phi_i = \lambda_{t_j} \phi_j$.

The type of biharmonic submanifolds in spheres

Definition

A compact submanifold M of \mathbb{S}^n is called of ℓ - type if the spectral decomposition of $\phi : M \to \mathbb{R}^{n+1}$ has exactly ℓ - terms, except for its

center of mass, i.e.
$$\phi = \phi_0 + \sum_{j=1}^{\circ} \phi_j, \qquad \Delta \phi_j = \lambda_{t_j} \phi_j.$$

Theorem (Balmuş-Montaldo-O., 2007)

Let M^m be a compact constant mean curvature, $|H|^2 = k$, submanifold in \mathbb{S}^n . Then M is proper biharmonic if and only if either

(i) $|H|^2 = 1$ and *M* is a 1- type submanifold with eigenvalue $\lambda = 2m$,

or

(ii)
$$|H|^2 = k \in (0,1)$$
 and *M* is a 2- type submanifold with the eigenvalues $\lambda_{1,2} = m(1 \pm \sqrt{k})$.

Classification results (Balmuş-Montaldo-O., 2009)

For the classification of all the biharmonic submanifolds of \mathbb{S}^n the strategy is:

• for hypersurfaces:

divide the study according to the number \mathbf{k} of distinct principal curvatures (which are functions)

Classification results (Balmuş-Montaldo-O., 2009)

For the classification of all the biharmonic submanifolds of \mathbb{S}^n the strategy is:

• for hypersurfaces:

divide the study according to the number \mathbf{k} of distinct principal curvatures (which are functions)

 for submanifolds of higher codimension: impose geometric conditions on the mean curvature vector field. Denote by **k** be the number of distinct principal curvatures of M^m in \mathbb{S}^{m+1}

Denote by ${\bf k}$ be the number of distinct principal curvatures of M^m in \mathbb{S}^{m+1}

 $\mathbf{k} = 1 \Rightarrow A = \lambda \text{ Id}, \text{ i.e. } M \text{ is an umbilical hypersurface of } \mathbb{S}^{m+1}$

Denote by ${\bf k}$ be the number of distinct principal curvatures of M^m in \mathbb{S}^{m+1}

 $\mathbf{k} = 1 \Rightarrow A = \lambda \text{ Id}, \text{ i.e. } M \text{ is an umbilical hypersurface of } \mathbb{S}^{m+1}$

 M^m is umbilical and proper biharmonic in \mathbb{S}^{m+1}

Denote by ${\bf k}$ be the number of distinct principal curvatures of M^m in \mathbb{S}^{m+1}

 $\mathbf{k} = 1 \Rightarrow A = \lambda \text{ Id}, \text{ i.e. } M \text{ is an umbilical hypersurface of } \mathbb{S}^{m+1}$

 M^m is umbilical and proper biharmonic in \mathbb{S}^{m+1} (1)M is an open part of $\mathbb{S}^m(\frac{1}{\sqrt{2}})$

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k} = 2$

Theorem

A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

Theorem

Let M^m be a proper biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} . Then M is an open part of $\mathbb{S}^m(\frac{1}{\sqrt{2}})$ or of $\mathbb{S}^{m_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_2}(\frac{1}{\sqrt{2}})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

Theorem

Let M^m be a proper biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} . Then M is an open part of $\mathbb{S}^m(\frac{1}{\sqrt{2}})$ or of $\mathbb{S}^{m_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_2}(\frac{1}{\sqrt{2}})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

Biharmonic surfaces of \mathbb{S}^3

A surface M^2 is proper biharmonic in \mathbb{S}^3 if and only if it is an open part of $\mathbb{S}^2(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^3$.

There exist no compact proper biharmonic hypersurfaces in the unit Euclidean sphere of constant mean curvature and with three distinct principal curvatures everywhere.

Theorem

A biharmonic hypersurface in \mathbb{S}^4 has constant mean curvature.

There exist no compact proper biharmonic hypersurfaces in the unit Euclidean sphere of constant mean curvature and with three distinct principal curvatures everywhere.

Theorem

A biharmonic hypersurface in \mathbb{S}^4 has constant mean curvature.

Biharmonic hypersurfaces of S⁴

The only proper biharmonic compact hypersurfaces in \mathbb{S}^4 are the hypersphere $\mathbb{S}^3(\frac{1}{\sqrt{2}})$ and the torus $\mathbb{S}^1(\frac{1}{\sqrt{2}})\times\mathbb{S}^2(\frac{1}{\sqrt{2}})$.

Let M^2 be a pseudo-umbilical surface of \mathbb{S}^4 . Then M is proper biharmonic if and only if it is minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}})$.

Theorem

Let M^2 be a surface with parallel mean curvature vector field in \mathbb{S}^4 . Then M^2 is proper biharmonic in \mathbb{S}^4 if and only if it is minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}})$.

Let M^2 be a pseudo-umbilical surface of \mathbb{S}^4 . Then M is proper biharmonic if and only if it is minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}})$.

Theorem

Let M^2 be a surface with parallel mean curvature vector field in \mathbb{S}^4 . Then M^2 is proper biharmonic in \mathbb{S}^4 if and only if it is minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}})$.

Remark that the product composition property cannot be applied in this case due to dimension reasons $(m_1 \neq m_2)$.

Remark that the product composition property cannot be applied in this case due to dimension reasons $(m_1 \neq m_2)$.

Theorem (Balmuş – O., 2009)

Let M^2 be a constant mean curvature surface in \mathbb{S}^4 . Then M^2 is proper biharmonic in \mathbb{S}^4 if and only if it is minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}})$.

Sketch of proof

We shall prove that $\nabla^{\perp}H = 0$. Assume that $\nabla^{\perp}H \neq 0$. Consider $\{E_1, E_2\}$ tangent to M, $\{E_3 = \frac{H}{|H|}, E_4\}$ normal to M. Using the connection 1-forms w.r.t. $\{E_1, E_2, E_3, E_4\}$ and the tangent part of the biharmonic equation, we get $A_4 = 0$. Case I. $A_3 = |H| \operatorname{Id} \Rightarrow M$ minimal in $\mathbb{S}^3(\frac{1}{\sqrt{2}}) \Rightarrow \nabla^{\perp}H = 0$ – contradiction. Case II. $A_3 \neq |H| \operatorname{Id} + \operatorname{Gauss} + \operatorname{Codazzi} - \operatorname{contradiction}$.

Conjecture

The only proper biharmonic hypersurfaces in \mathbb{S}^{m+1} are the open parts of hyperspheres $\mathbb{S}^{m}(\frac{1}{\sqrt{2}})$ or of generalized Clifford tori $\mathbb{S}^{m_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_2}(\frac{1}{\sqrt{2}})$, $m_1 + m_2 = m$, $m_1 \neq m_2$.

Conjecture

Any biharmonic submanifold in \mathbb{S}^n has constant mean curvature.

A (10) A (10)

References

- A. Balmuş, C. Oniciuc. Biharmonic surfaces of S⁴. *Kyushu J. Math.*, to appear.
- A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic hypersurfaces in 4-dimensional space forms. *Mathematische Nachtrichten*, to appear.
- A. Balmuş, S. Montaldo, C. Oniciuc. Classification results for biharmonic submanifolds in spheres. *Israel J. Math.* 168 (2008), 201–220.
- R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds of S³. Int. J. Math. 12 (2001), 867–876.
- R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds in spheres. *Israel J. Math.* 130 (2002), 109–123.

R. Caddeo, S. Montaldo, P. Piu. Biharmonic curves on a surface. Rend. Mat. Appl. 21 (2001), 143–157.

C. Oniciuc ("Al.I. Cuza" Univ. Iași)

Biharmonic submanifolds of S4

References

- B-Y. Chen, S. Ishikawa. Biharmonic surfaces in pseudo-Euclidean spaces. *Mem. Fac. Sci. Kyushu Univ. Ser. A* 45 (1991), 323–347.
- I. Dimitric. Submanifolds of E^m with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65.
- J. Eells, L. Lemaire. Selected topics in harmonic maps. *Conf. Board. Math. Sci. 50*, 1983.
- D. Fetcu, C. Oniciuc. Explicit formulas for biharmonic submanifolds in Sasakian space forms. *Pacific. J. Math.* 240 (2009), 85–107.
- G.Y. Jiang. 2-harmonic isometric immersions between Riemannian manifolds. *Chinese Ann. Math. Ser. A* 7 (1986), 130–144.
- S. Montaldo, C. Oniciuc. A short survey on biharmonic maps between Riemannian manifolds. *Rev. Un. Mat. Argentina* 47 (2006), 2, 1–22.