Biharmonic submanifolds of \mathbb{S}^{4}

Cezar Oniciuc
(joint work with Adina Balmuş)
"Al.I. Cuza" University of Iaşi, Romania
June 2009

Harmonic and biharmonic maps

$$
\text { Let } \varphi:(M, g) \rightarrow(N, h) \text { be a smooth map. }
$$

Energy functional
$E(\varphi)=E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}$
Euler-Lagrange equation

$$
\begin{aligned}
\tau(\varphi)=\tau_{1}(\varphi) & =\operatorname{trace}_{g} \nabla d \varphi \\
& =0
\end{aligned}
$$

Critical points of E : harmonic maps

Harmonic and biharmonic maps

$$
\text { Let } \varphi:(M, g) \rightarrow(N, h) \text { be a smooth map. }
$$

Energy functional
$E(\varphi)=E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}$
Euler-Lagrange equation

$$
\begin{aligned}
\tau(\varphi)=\tau_{1}(\varphi) & =\operatorname{trace}_{g} \nabla d \varphi \\
& =0
\end{aligned}
$$

Bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g}
$$

Euler-Lagrange equation

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi
$$

$$
=0
$$

Critical points of E : harmonic maps

The biharmonic equation

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

The biharmonic equation

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

The biharmonic equation

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

The biharmonic equation

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper biharmonic;
- the biharmonic submanifolds M of a given space N are the submanifolds such that the inclusion map $i: M \rightarrow N$ is biharmonic. (the inclusion map $i: M \rightarrow N$ is harmonic if and only if M is minimal)

Biharmonic submanifolds in the Euclidean space

$$
R^{N}=0 \Rightarrow \tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)
$$

Definition (Chen)

A submanifold $i: M \rightarrow \mathbb{R}^{n}$ is biharmonic if it has harmonic mean curvature vector field, i.e.

$$
\Delta^{i} H=0 \Leftrightarrow \Delta^{i} \tau(i)=0 .
$$

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds biharmonicity is equivalent to minimality:

- submanifolds of $\mathbb{E}^{3}(c), c \leq 0$ (Chen/Caddeo - Montaldo - O.)
- curves of $\mathbb{E}^{n}(c), c \leq 0$ (Dimitric/Caddeo - Montaldo - O.)
- submanifolds of finite type in \mathbb{R}^{n} (Dimitric)
- hypersurfaces of \mathbb{R}^{n} with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $\mathbb{E}^{n}(c), c \leq 0$ with dimension $m \neq 4$ (Dimitric/Caddeo - Montaldo - O.)
- hypersurfaces of \mathbb{R}^{4} (Hasanis - Vlachos)
- spherical submanifolds of \mathbb{R}^{n} (Chen)

Non existence of proper biharmonic submanifolds

For any of the following classes of submanifolds biharmonicity is equivalent to minimality:

- submanifolds of $\mathbb{E}^{3}(c), c \leq 0$ (Chen/Caddeo - Montaldo - O.)
- curves of $\mathbb{E}^{n}(c), c \leq 0$ (Dimitric/Caddeo - Montaldo - O.)
- submanifolds of finite type in \mathbb{R}^{n} (Dimitric)
- hypersurfaces of \mathbb{R}^{n} with at most two principal curvatures (Dimitric)
- pseudo-umbilical submanifolds of $\mathbb{E}^{n}(c), c \leq 0$ with dimension $m \neq 4$ (Dimitric/Caddeo - Montaldo - O.)
- hypersurfaces of \mathbb{R}^{4} (Hasanis - Vlachos)
- spherical submanifolds of \mathbb{R}^{n} (Chen)

It is still open the following

Generalized Chen's Conjecture

Biharmonic submanifolds of $\mathbb{E}^{n}(c), n>3, c \leq 0$, are minimal.

Biharmonic curves in spheres

Biharmonic curves of \mathbb{S}^{2} (Caddeo - Montaldo - Piu, 2001)
An arc length parameterized curve $\gamma: I \rightarrow \mathbb{S}^{2}$ is proper biharmonic if and only if it is the circle of radius $\frac{1}{\sqrt{2}}$.

Biharmonic curves in spheres

Biharmonic curves of \mathbb{S}^{2} (Caddeo - Montaldo - Piu, 2001)
An arc length parameterized curve $\gamma: I \rightarrow \mathbb{S}^{2}$ is proper biharmonic if and only if it is the circle of radius $\frac{1}{\sqrt{2}}$.

Biharmonic curves of \mathbb{S}^{3} (Caddeo - Montaldo - O., 2001)

An arc length parameterized curve $\gamma: I \rightarrow \mathbb{S}^{3}$ is proper biharmonic if and only if it is either the circle of radius $\frac{1}{\sqrt{2}}$, or a geodesic of the minimal Clifford torus $\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$ with slope different from ± 1.

Biharmonic curves in spheres

Biharmonic curves of $\mathbb{S}^{n},(n \geq 3)$ (Fetcu - O., 2009)

An arc length parameterized curve $\gamma: I \rightarrow \mathbb{S}^{n}$ is proper biharmonic if and only if it is either the circle

$$
\gamma(s)=\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) e_{1}+\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) e_{2}+\frac{1}{\sqrt{2}} e_{3},
$$

or a helix

$$
\gamma(s)=\frac{1}{\sqrt{2}} \cos (A s) e_{1}+\frac{1}{\sqrt{2}} \sin (A s) e_{2}+\frac{1}{\sqrt{2}} \cos (B s) e_{3}+\frac{1}{\sqrt{2}} \sin (B s) e_{4},
$$

where $A=\sqrt{1+k_{1}}, B=\sqrt{1-k_{1}}, k_{1} \in(0,1)$, and $\left\{e_{i}\right\}$ are constant unit vectors orthogonal to each other.

Biharmonic curves in spheres

Biharmonic curves of $\mathbb{S}^{n},(n \geq 3)$ (Fetcu - O., 2009)

An arc length parameterized curve $\gamma: I \rightarrow \mathbb{S}^{n}$ is proper biharmonic if and only if it is either the circle

$$
\gamma(s)=\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) e_{1}+\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) e_{2}+\frac{1}{\sqrt{2}} e_{3},
$$

or a helix

$$
\gamma(s)=\frac{1}{\sqrt{2}} \cos (A s) e_{1}+\frac{1}{\sqrt{2}} \sin (A s) e_{2}+\frac{1}{\sqrt{2}} \cos (B s) e_{3}+\frac{1}{\sqrt{2}} \sin (B s) e_{4},
$$

where $A=\sqrt{1+k_{1}}, B=\sqrt{1-k_{1}}, k_{1} \in(0,1)$, and $\left\{e_{i}\right\}$ are constant unit vectors orthogonal to each other.

Biharmonic curves of \mathbb{S}^{4}

Up to a totally geodesic embedding, the proper biharmonic curves of \mathbb{S}^{4} are those of \mathbb{S}^{3}.

The biharmonic equation for submanifolds in spheres

Let $i: M^{m} \rightarrow \mathbb{S}^{n}$ be a submanifold. Then

$$
\tau(i)=m H, \quad \tau_{2}(i)=-m \Delta^{i} H+m^{2} H
$$

thus i is biharmonic iff $\Delta^{i} H=m H$.

The biharmonic equation for submanifolds in spheres

Let $i: M^{m} \rightarrow \mathbb{S}^{n}$ be a submanifold. Then

$$
\tau(i)=m H, \quad \tau_{2}(i)=-m \Delta^{i} H+m^{2} H,
$$

thus i is biharmonic iff $\Delta^{i} H=m H$.
(i) A submanifold $i: M^{m} \rightarrow \mathbb{S}^{n}$ is biharmonic if and only if

$$
\left\{\begin{array}{l}
\Delta^{\perp} H+\operatorname{trace} B\left(\cdot, A_{H} \cdot\right)-m H=0, \\
4 \operatorname{trace} A_{\nabla \cdot \cdot)}(\cdot)+m \operatorname{grad}\left(|H|^{2}\right)=0 .
\end{array}\right.
$$

The biharmonic equation for submanifolds in spheres

Let $i: M^{m} \rightarrow \mathbb{S}^{n}$ be a submanifold. Then

$$
\tau(i)=m H, \quad \tau_{2}(i)=-m \Delta^{i} H+m^{2} H,
$$

thus i is biharmonic iff $\Delta^{i} H=m H$.
(i) A submanifold $i: M^{m} \rightarrow \mathbb{S}^{n}$ is biharmonic if and only if

$$
\left\{\begin{array}{l}
\Delta^{\perp} H+\operatorname{trace} B\left(\cdot, A_{H} \cdot\right)-m H=0, \\
4 \operatorname{trace} A_{\nabla \cdot \cdot)}(\cdot)+m \operatorname{grad}\left(|H|^{2}\right)=0 .
\end{array}\right.
$$

(ii) If M is a hypersurface of \mathbb{S}^{m+1}, then M is biharmonic if and only if

$$
\left\{\begin{array}{l}
\Delta^{\perp} H-\left(m-|A|^{2}\right) H=0 \\
2 A(\operatorname{grad}(|H|))+m|H| \operatorname{grad}(|H|)=0
\end{array}\right.
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - O., 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - O., 2002)

The composition property

$$
\begin{gathered}
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=\frac{1}{\sqrt{2}} \\
\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{2}}\right) \\
\downarrow_{i} \text { biharmonic } \\
\mathbb{S}^{n}
\end{gathered}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - O., 2002)

The composition property

$$
\begin{gathered}
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=\frac{1}{\sqrt{2}} \\
M \xrightarrow{\text { minimal }} \mathbb{S}^{n-1}\left(\frac{1}{\sqrt{2}}\right) \\
\left.\right|_{i} \text { biharmonic } \\
\mathbb{S}^{n}
\end{gathered}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - O., 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=\frac{1}{\sqrt{2}}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n} (Jiang, 1986/ Caddeo - Montaldo - O., 2002)

The composition property

$$
\mathbb{S}^{n-1}(a) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \quad \Longleftrightarrow \quad a=\frac{1}{\sqrt{2}}
$$

Properties

- M has parallel mean curvature vector field, and $|H|=1$.
- M is pseudo-umbilical in \mathbb{S}^{n}, i.e. $A_{H}=|H|^{2}$ Id.

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \quad \text { and } \quad n_{1} \neq n_{2}
$$

$$
n_{1}+n_{2}=n-1, a^{2}+b^{2}=1
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{array}{ll}
\quad \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \text { biharmonic } \\
n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 & \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& \\
& \mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right) \\
& \\
& \downarrow^{i} \text { biharmonic } \\
& \mathbb{S}^{n} \\
n_{1}+n_{2}=n-1
\end{array}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \text { biharmonic } \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \xrightarrow{\text { minimal }} \\
& \mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right) \\
&{ }^{i} \text { biharmonic } \\
& \mathbb{S}^{n} \\
& n_{1}+n_{2}=n-1, m_{1} \neq m_{2}
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \underbrace{\text { minimal }}_{\text {biharmonic }}<\mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}\left(\frac{1}{\sqrt{2}}\right)} \\
& \left.\right|_{i} \text { biharmonic } \\
& n_{1}+n_{2}=n-1, m_{1} \neq m_{2}
\end{aligned}
$$

Main examples of biharmonic submanifolds in \mathbb{S}^{n}

The product composition property

$$
\begin{aligned}
& \quad \mathbb{S}^{n_{1}}(a) \times \mathbb{S}^{n_{2}}(b) \xrightarrow{\text { biharmonic }} \mathbb{S}^{n} \Longleftrightarrow a=b=\frac{1}{\sqrt{2}} \text { and } n_{1} \neq n_{2} \\
& n_{1}+n_{2}=n-1, a^{2}+b^{2}=1 \\
& M_{1}^{m_{1}} \times M_{2}^{m_{2}} \underbrace{\text { minimal }}_{\text {biharmonic }} \underbrace{\mathbb{S}^{n_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{n_{2}}\left(\frac{1}{\sqrt{2}}\right)} \\
& \underbrace{}_{1}+\mathbb{S}^{n}
\end{aligned}
$$

Properties

- $M_{1} \times M_{2}$ has parallel mean curvature vector field, and $|H| \in(0,1)$.
- $M_{1} \times M_{2}$ is not pseudo-umbilical in \mathbb{S}^{n}.

The type of biharmonic submanifolds in spheres

Definition

A compact submanifold M of \mathbb{S}^{n} is called of ℓ-type if the spectral decomposition of $\phi: M \rightarrow \mathbb{R}^{n+1}$ has exactly ℓ - terms, except for its center of mass, i.e. $\quad \phi=\phi_{0}+\sum_{j=1}^{\ell} \phi_{j}, \quad \Delta \phi_{j}=\lambda_{t_{j}} \phi_{j}$.

The type of biharmonic submanifolds in spheres

Definition

A compact submanifold M of \mathbb{S}^{n} is called of ℓ - type if the spectral decomposition of $\phi: M \rightarrow \mathbb{R}^{n+1}$ has exactly ℓ-terms, except for its center of mass, i.e. $\quad \phi=\phi_{0}+\sum_{j=1}^{\ell} \phi_{j}, \quad \Delta \phi_{j}=\lambda_{t_{j}} \phi_{j}$.

Theorem (Balmuş-Montaldo-O., 2007)

Let M^{m} be a compact constant mean curvature, $|H|^{2}=k$, submanifold in \mathbb{S}^{n}. Then M is proper biharmonic if and only if either
(i) $|H|^{2}=1$ and M is a 1-type submanifold with eigenvalue $\lambda=2 m$, or
(ii) $|H|^{2}=k \in(0,1)$ and M is a 2-type submanifold with the eigenvalues $\lambda_{1,2}=m(1 \pm \sqrt{k})$.

Classification results (Balmuş-Montaldo-O., 2009)

For the classification of all the biharmonic submanifolds of \mathbb{S}^{n} the strategy is:

- for hypersurfaces:
divide the study according to the number \mathbf{k} of distinct principal curvatures (which are functions)

Classification results (Balmuş-Montaldo-O., 2009)

For the classification of all the biharmonic submanifolds of \mathbb{S}^{n} the strategy is:

- for hypersurfaces:
divide the study according to the number \mathbf{k} of distinct principal curvatures (which are functions)
- for submanifolds of higher codimension: impose geometric conditions on the mean curvature vector field.

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=1$

Denote by \mathbf{k} be the number of distinct principal curvatures of M^{m} in \mathbb{S}^{m+1}

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=1$

Denote by \mathbf{k} be the number of distinct principal curvatures of M^{m} in \mathbb{S}^{m+1}
$\mathbf{k}=1 \Rightarrow A=\lambda$ Id, i.e. M is an umbilical hypersurface of \mathbb{S}^{m+1}

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=1$

Denote by \mathbf{k} be the number of distinct principal curvatures of M^{m} in \mathbb{S}^{m+1}
$\mathbf{k}=1 \Rightarrow A=\lambda$ Id, i.e. M is an umbilical hypersurface of \mathbb{S}^{m+1}
M^{m} is umbilical and proper biharmonic in \mathbb{S}^{m+1}

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=1$

Denote by \mathbf{k} be the number of distinct principal curvatures of M^{m} in \mathbb{S}^{m+1}
$\mathbf{k}=1 \Rightarrow A=\lambda$ Id, i.e. M is an umbilical hypersurface of \mathbb{S}^{m+1}
M^{m} is umbilical and proper biharmonic in \mathbb{S}^{m+1}

$$
M \text { is an open part of } \mathbb{S}^{m}\left(\frac{1}{\sqrt{2}}\right)
$$

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=2$

Theorem
 A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=2$

Theorem

A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

Theorem

Let M^{m} be a proper biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1}. Then M is an open part of $\mathbb{S}^{m}\left(\frac{1}{\sqrt{2}}\right)$ or of $\mathbb{S}^{m_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{m_{2}}\left(\frac{1}{\sqrt{2}}\right), m_{1}+m_{2}=m, m_{1} \neq m_{2}$.

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=2$

Theorem

A biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1} has constant mean curvature.

Theorem

Let M^{m} be a proper biharmonic hypersurface with at most two distinct principal curvatures in \mathbb{S}^{m+1}. Then M is an open part of $\mathbb{S}^{m}\left(\frac{1}{\sqrt{2}}\right)$ or of $\mathbb{S}^{m_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{m_{2}}\left(\frac{1}{\sqrt{2}}\right), m_{1}+m_{2}=m, m_{1} \neq m_{2}$.

Biharmonic surfaces of \mathbb{S}^{3}

A surface M^{2} is proper biharmonic in \mathbb{S}^{3} if and only if it is an open part of $\mathbb{S}^{2}\left(\frac{1}{\sqrt{2}}\right) \subset \mathbb{S}^{3}$.

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=3$

Theorem

There exist no compact proper biharmonic hypersurfaces in the unit Euclidean sphere of constant mean curvature and with three distinct principal curvatures everywhere.

Theorem

A biharmonic hypersurface in \mathbb{S}^{4} has constant mean curvature.

Biharmonic hypersurfaces of \mathbb{S}^{m+1} with $\mathbf{k}=3$

Theorem

There exist no compact proper biharmonic hypersurfaces in the unit Euclidean sphere of constant mean curvature and with three distinct principal curvatures everywhere.

Theorem

A biharmonic hypersurface in \mathbb{S}^{4} has constant mean curvature.

Biharmonic hypersurfaces of \mathbb{S}^{4}

The only proper biharmonic compact hypersurfaces in \mathbb{S}^{4} are the hypersphere $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$ and the torus $\mathbb{S}^{1}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{2}\left(\frac{1}{\sqrt{2}}\right)$.

Biharmonic surfaces of \mathbb{S}^{4}

Theorem

Let M^{2} be a pseudo-umbilical surface of \mathbb{S}^{4}. Then M is proper biharmonic if and only if it is minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$.

Theorem

Let M^{2} be a surface with parallel mean curvature vector field in \mathbb{S}^{4}. Then M^{2} is proper biharmonic in \mathbb{S}^{4} if and only if it is minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$.

Biharmonic surfaces of \mathbb{S}^{4}

Theorem

Let M^{2} be a pseudo-umbilical surface of \mathbb{S}^{4}. Then M is proper biharmonic if and only if it is minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$.

Theorem

Let M^{2} be a surface with parallel mean curvature vector field in \mathbb{S}^{4}. Then M^{2} is proper biharmonic in \mathbb{S}^{4} if and only if it is minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$.

Biharmonic surfaces of \mathbb{S}^{4}

Remark that the product composition property cannot be applied in this case due to dimension reasons ($m_{1} \neq m_{2}$).

Biharmonic surfaces of \mathbb{S}^{4}

Remark that the product composition property cannot be applied in this case due to dimension reasons ($m_{1} \neq m_{2}$).

Theorem (Balmuş - O., 2009)

Let M^{2} be a constant mean curvature surface in \mathbb{S}^{4}. Then M^{2} is proper biharmonic in \mathbb{S}^{4} if and only if it is minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right)$.

Biharmonic surfaces of \mathbb{S}^{4}

Sketch of proof

We shall prove that $\nabla^{\perp} H=0$.
Assume that $\nabla^{\perp} H \neq 0$.
Consider $\left\{E_{1}, E_{2}\right\}$ tangent to $M,\left\{E_{3}=\frac{H}{|H|}, E_{4}\right\}$ normal to M.
Using the connection 1-forms w.r.t. $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ and the tangent part of the biharmonic equation, we get $A_{4}=0$.
Case I. $A_{3}=|H|$ Id $\Rightarrow M$ minimal in $\mathbb{S}^{3}\left(\frac{1}{\sqrt{2}}\right) \Rightarrow \nabla^{\perp} H=0$ - contradiction.
Case II. $A_{3} \neq|H|$ Id + Gauss + Codazzi - contradiction.

Further studies

Conjecture

The only proper biharmonic hypersurfaces in \mathbb{S}^{m+1} are the open parts of hyperspheres $\mathbb{S}^{m}\left(\frac{1}{\sqrt{2}}\right)$ or of generalized Clifford tori $\mathbb{S}^{m_{1}}\left(\frac{1}{\sqrt{2}}\right) \times \mathbb{S}^{m_{2}}\left(\frac{1}{\sqrt{2}}\right)$, $m_{1}+m_{2}=m, m_{1} \neq m_{2}$.

Conjecture

Any biharmonic submanifold in \mathbb{S}^{n} has constant mean curvature.

References

直 A. Balmuş, C. Oniciuc. Biharmonic surfaces of \mathbb{S}^{4}. Kyushu J. Math., to appear.
A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic hypersurfaces in 4-dimensional space forms. Mathematische Nachtrichten, to appear.
(: Balmuş, S. Montaldo, C. Oniciuc. Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168 (2008), 201-220.
䍰 R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds of \mathbb{S}^{3}. Int. J. Math. 12 (2001), 867-876.
R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.
R. Caddeo, S. Montaldo, P. Piu. Biharmonic curves on a surface. Rend. Mat. Appl. 21 (2001), 143-157.

References

B-Y. Chen, S. Ishikawa. Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 323-347.
固 I. Dimitric. Submanifolds of E^{m} with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65.
(J. Eells, L. Lemaire. Selected topics in harmonic maps. Conf. Board. Math. Sci. 50, 1983.
D. Fetcu, C. Oniciuc. Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific. J. Math. 240 (2009), 85-107.
E G.Y. Jiang. 2-harmonic isometric immersions between Riemannian manifolds. Chinese Ann. Math. Ser. A 7 (1986), 130-144.
S. Montaldo, C. Oniciuc. A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47 (2006), 2, 1-22.

