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• The majority of the stars lies is in the mass 
range 0.07M☉ < M < 60 to100 M☉

• Evolution processes among the most complex 
phenomena known in nature (disruption, 
supernova events etc.)

• End-products: Withe Dwarfs, Neutron Stars, 
Black Holes

Astrophysical objects
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N. Straumann, General Relativity, Springer (2004)
Padmanabhan,Theoretical astrophysics Vol.2, CUP

Outer crust:
lattice of ionized nuclei,
+ degenerate relativistic e- gas

Inner crust:
n rich nuclei in β-equilibrium,
+ degenerate relativistic e- gas
+ degenerate n gas (superfluid)

Outer core:
n (superfluid)
+ p,  e-, μ-

+ p (superconducting)

Inner core:
π - condensate
+ quarks

Neutron Stars
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Relativity & QM
It is evident that a description of these objects requires the 
employment of both Quantum Mechanics and 
Relativity.

For instance, the quantum statistic of identical particles, namely the 
Fermi-Dirac distribution (Dirac, 1926), was applied for the first time 
just to the description of an astrophysical body, the White Dwarf 
Sirius B (Fowler, 1926).

This model was non-relativistic as noticed by Chandrasekhar who, 
trough relativistic kinematic corrections, provided a better 
description leading to the discovery of a limiting mass (1934).

.... Eddington... Landau... etc.
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In GR the spacetime in presence of a gravitational field is described 
by the pair (M, g) where M is a four-dimensional manifold and g a 
Lorentzian metric.

The matter content is described by a suitable stress-energy tensor T, 
e.g. a perfect fluid:

The interplay between gravity and matter is ruled by the Einstein field 
equations:

General Relativity

1.1. LE EQUAZIONI DI EINSTEIN 3

1. T = 0 (in coordinate Γγ
µν = Γγ

νµ)

2. ∇g = 0 (in coordinate gµν;σ = 0)

Una connessione definita in questo modo preserva il prodotto scalare definito
dalla metrica g.

I coefficienti di una connessione definita in questo modo sono i ben no-
ti simboli di Christoffel e sono espressi in funzione del tensore metrico dalla
relazione

Γµ
ρσ =

1
2
gµν

(
∂gνρ

∂xσ
+

∂gνσ

∂xρ
− ∂gρσ

∂xυ

)
. (1.7)

Il tensore di Riemann della connessione definita dalla metrica gode di pro-
prietà di simmetria che non sono valide per una connessione generica e che quin-
di si aggiungono a quelle precedentemente viste: Rρσµυ = −Rσρυµ, Rρσµυ =
Rµυρσ. Quest’ultima implica la simmetria del tensore di Ricci. Si chiama
scalare di curvatura la funzione ottenuta dalla traccia del tensore di Ricci:
R ≡ Rµ

µ = gµνRµν . Infine definiamo il tensore di Einstein:

Gµν ≡ Rµν −
1
2
gµνR. (1.8)

Dalle relazioni ottenute per il tensore di Riemann e per le sue contrazioni si
perviene in fine alla relazione Rµ

ν;µ − 1
2R;µ = 0.

Quindi il modello matematico che descrive lo spaziotempo è una coppia
(M, g) dove M è una varietà differenziale e gµν una metrica Lorentziana su M
con segnatura −2. Questa assunzione condiziona i possibili tipi di spazio-tempo
ma non ne fissa uno in particolare; infatti si assume che la geometria non sia
unica ma vari dinamicamente al variare della distribuzione di materia. In altri
termini ciò significa che la materia modifica la geometria e, come vedremo tra
breve, questo meccanismo si descrive attraverso le equazioni di Einstein.

I possibili campi fisici presente sulla varietà M , come ad esempio i fluidi
relativistici, il campo elettromagnetico, il campo dei neutrini etc., descrivono il
contenuto di materia dello spazio-tempo. Le equazioni che governano i campi
materia devono rispettare i principi di causalità locale e di conservazione locale
dell’energia e dell’impulso. Ciò si formalizza matematicamente dicendo che i
campi materia sono descritti da un tensore simmetrico Tαβ , chiamato tensore
energia-impulso, che dipende dai campi, dalle loro derivate covarianti, dalla
metrica, e che deve rispettare le seguenti proprietà:

1. Tαβ si annulla se e solo se i campi materia sono nulli,

2. Tαβ soddisfa la relazione ∇αTαβ = 0.

Le equazioni di campo che forniscono il legame tra i campi materia e il campo
gravitazionale, rappresentato dalla metrica gµν , sono equazioni tensoriali e coin-
volgono la materia solo attraverso il suo tensore energia-impulso. Le equazioni
di Einstein sono le seguenti:

Rµν −
1
2
gµνR =

8πG

c4
Tµν (1.9)

Tµν = pgµν + (ρ + p)uµuν
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Vacuum solutions
Schwarzschild: spherically symmetric static asymptotically flat 
spacetime

Kerr: axisymmetric stationary asymptotically flat spacetime

with

where M and J are the Komar mass and angular momentum 
respectively.
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General relativistic stellar 
structure equations

3 Junction conditions and equation of motion
of the phase boundary

In this section the junction conditions for the considered neutron star are
found and the physical parameters that determine the existence of stable
equilibrium configurations are found. We will set

! = 1, c = 1,

while keeping explicitly the Newton constant.
In the present case, one would like to describe a star in which the inner

core underwent a gapped phase transition and therefore conformal boundary
degrees of freedom localized at the separation between the two phases (pre-
dicted by QFT [15] [16]) have also to be included. We will therefore assume
that there are two phases, each in mechanical equilibrium, namely the inte-
rior region which represents the exotic (superfluid, superconducting quantum
Hall) phase and the exterior region which is the normal phase. Each phase
is approximated by a perfect fluid in a static configuration. The two regions
are characterised by very different equations of state.

We shall see that, even assuming static equilibrium (without any compres-
sion or decompression of the core), the conformally invariant matter living
on the phase boundary may not be consistent with a static junction. In
this case, since we assume that the conformal invariance is a defining char-
acteristic of the phase transition, there must be some tendency of the phase
boundary to move. Such a change in the position of the phase boundary is
not by collapse of matter but by a kind of “creeping” phase transition, where
one phase tends to swallow the other.

The metric describing a spherically symmetric neutron star can be parametrized
as follows

ds2 = − exp(2ν)dt2 + exp(2λ)dr2 + r2dΩ2 , (1)

ν = ν(r), λ = λ(r)

where dΩ2 is the line element of a unit sphere3. The functions ν and λ are
determined by the Einstein equations. If the source is a perfect fluid one gets

3The description of a rotating neutron star is much more difficult. However, at least
for slowly rotating neutron stars, one can argue that the analytic results derived here in
the spherically symmetric case do not change qualitatively as long as the ”rotation” can
be dealt as a perturbation [10] [26].

5

The metric describing non-rotating, static, spherically symmetric 
(compact) stars can be described by a metric of the form:

the matter content being described as a perfect fluid parametrized by the 
stress-energy tensor:

Tµν = diag(ρ, p, p, p)
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TOV equations

Tolmann-Oppenheimer-Volkoff 
equation of hydrostatic equilibrium

e−2λ = 1− 2GM(r)
r

M(r) = 4π

∫ r

0
ρ(r′)r′2dr′

dp

dr
= −G(ρ + p)(M(r) + 4πr3p)

r2(1− 2GM(r)/r)

Einsten equations + energy conservation imply:
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Remarks
• To construct a model of star an equation of state P=P(ρ) is required 

• We are provided with bounds from GR

• Example - The simplest model: Incompressible Perfect Fluid 
Schwarzschild Solution (Bondi limit - R>9m/4)

• First model of neutron star (Oppenheimer-Volkoff, 1939): ideal 
mixure of nuclear particles
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Remarks

• The strong and weak energy conditions should be obeyed, i.e. the 
density ρ is always positive and the density is always greater than 
the pressure P (i.e. ρ ≥ 0; ρ ≥ p)

• P and ρ are monotonically decreasing as we move out from the 
center

• The interior should be matched smoothly to the exterior

• The generalization to the (slowly or fast) rotating case is quite 
complicate, it is usually approached via numerical techniques
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Inside vs outside
We are left with the problem of joining the interior solutions and the 
exterior solutions discussed above. This problem can also be stated as 
follows.

A hypersurface Σ (either spacelike or timelike) divides a spacetime in 
two regions:

In each region we have a different coordinate systems and a metrics. 

What conditions must be imposed in order for the two regions to be 
joined smothly on the hypersurface and for the resulting metric to be 
a solution of Einstein field equations?

M+, M!.
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Junction Conditions

• continuity if the first 
fundamental form

• continuity if the second 
fundamental form

W. Israel, Nuovo Cimento 44, 1 (1966). 
W. Israel, Phys. Rev. D 2, 641 (1970).

Let us introduce the notation to indicate the jump discontinuity in the 
value of a quantity X as calculated by the two metrics and evaluated 
at the surface:

Then, in order to match two spacetimes the Dormois-Israel matching 
conditions must be fulfilled:

[X] = X+|Σ −X−|Σ

Sab = − ε
8π ([Kab]− [K]hab)

[hab] = 0

Sab being the stress-energy three tensor of the hypersurface.
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Some examples
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Example I
Spherical dust distribution collapse

(Oppenheimer-Snyder,1939)

A simplified model of collapse to a black hole. The star is modeled as a 
spherical ball of pressureless matter with uniform density. The metric inside 
the dust is FRW while the metric outside the matter distribution is 
Schwarzschild.

The hypersurface is parametrized by t=T(τ), r=R(τ)
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Example II
Slowly rotating thin shell

Consider slowly rotation sphericaly shaped sphere. Assume exterior metric 
to be the slow rotation limit of Kerr solution while the metric inside the 
shell to be Minkowski. Perform the junction on a hypersurface of fixed 
radius R.

The discontinuity in the second fundamental form can be interpreted as the 
stress-energy due to a perfect fluid:
The density and pressure are found to be:

in the milit R>>2M one gets:
ω ~ 3a/(2R²)                       p ~ M²/(16πR³ )                    σ ~ M/ (4 π R²)
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Recent advances

martedì 9 giugno 2009



Conformal degrees of freedom
F. Canfora,  A. Giacomini, S. Willison, arxiv: gr-qc/0710.3193v2

An inner core undergoing a phase transition characterized by conformal 
degrees of freedom on the phase boundary (e.g. quantum Hall effect, 
superconductivity, superfluidity), is considered.

By solving the ID junction conditions for the conformal matter on a 
spherical hypersurface, one can determine a range for the parameters in 
which a stable equilibrium configuration for the phase boundary is found 
(e.g. a physically reasonable model for a neutron star). 
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What about rotation?
The problem of finding possible Kerr sources is that, in order to obtain a 
physically sensible mass distribution, many restrictions must be imposed. 

The metric must be joined smoothly to the Kerr one on a reasonable 
surface for a rotating body and the hydrostatics pressure 
must be zero on such a surface.

The energy conditions must hold. 

The star must be a non-radiating source and in the static limit a 
reasonable Schwarzschild interior metric must be obtained.
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This metric can be written in the terms of null tetrad vectors as:

with

Interior Kerr solutions
S. P. Drake and R. Turolla, Class. Quantum Grav. 14, 1883 (1997)
S. P. Drake and Szekeres, Gen. Rel. Grav. 32, 445 (2000) 
S.Viaggiu, arxiv.org:gr-qc/0603036

A possible approach to obtain interior solutions of the Kerr metric is to 
apply the Newman-Janis Algorithm* to a static physically reasonable 
seed Space-Time (going to SAS metrics from SSS ones).

1 NJA Algorithm and the Choice of Coordinates

The starting point of the NJA algorithm is the static spherically symmetrical
seed metric . In spheroidal coordinates t, r, θ,φ the seed metric is

ds2 = e2µ(r)dr2 + r2(dθ2 + sin2θdφ2) − e2ν(r)dt2. (1)

This metric can be expressed in terms of a null tetrad lα, nα,mα,mα. To
make it short (for more details see [7, 11]), the NJA method consists in
taking a complex transformation of the metric (1), once an appropriate
coordinate system has been choosen. If Eddington-Finkelstein coordinates
are used with dt = du − eµ−νdr, these transformations become

u′ = u − ıa cos θ , r′ = r + ıa cos θ , θ′ = θ , φ′ = φ. (2)

In this way, the initial null tetrad relative to (1) acquires complex com-
ponents dependent on the constant a (rotational parameter). In [11] the
authors have been able to cast the metric in a simple form, with only a
component gtφ out of diagonal, compatible with the Kerr metric written
in Boyer-Lindquist (BL) coordinates [15]. Finally, in BL coordinates, the
metric (1) becomes, after the application of the NJA,

gtt = −e2ν(r,θ) , grr =
Σ

Σe−2µ(r,θ) + a2sin2θ
, gθθ = Σ ,

gφφ = sin2θ[Σ + a2sin2θeν(r,θ)(2eµ(r,θ) − eν(r,θ))] ,

gtφ = aeν(r,θ)sin2θ(eµ(r,θ) − eν(r,θ)),

(3)

where Σ = r2 + a2cos2θ and ν, µ now depend on r, θ. Setting

e2µ = e−2ν =
r2 + a2cos2θ

r2 − 2rm + a2cos2θ
, (4)

we obtain the Kerr solution. This can be obtained, in Cartesian coordinates
(t, x, y, z), in the Kerr-Shild form:

ds2 = dx2 + dy2 + dz2 − dt2

+
2m

r4 + a2z2

[

r(xdx + ydy) + a(xdy − ydx)

r2 + a2
+

z

r
dz + dt

]2

, (5)

where the variable r is defined as:

x2 + y2

r2 + a2
+

z2

r2
= 1. (6)

3

ds2 = e2φ(r)du2 + 2eλ(r)+φ(r)dudr − r2(dθ2 + sin2 θdΦ2). (2)

Written in contravariant form this is

gµν =









0 e−λ(r)−φ(r) 0 0
e−λ(r)−φ(r) −e−2λ(r) 0 0

0 0 −1/r2 0
0 0 0 −1/(r2 sin2 θ)









. (3)

This is done so that the above metric may be written in the terms of its null tetrad vectors,

gµν = lµnν + lνnµ − mµm̄ν − mνm̄µ, (4)

where

lµ = δµ
1 (5)

nµ = −
1

2
e−2λ(r)δµ

1 + e−λ(r)−φ(r)δµ
0 (6)

mµ =
1√
2r̄

(

δµ
2 +

i

sin θ
δµ
3

)

. (7)

The bar indicates a complex conjugate. This complex null tetrad system forms the starting point for the “derivation”
of Kerr-Newman space-times. As has been already stated this procedure is known to be a valid method for KS
geometries but its extension into non KS type metrics is still to be thoroughly examined. To be consistent exactly
the same transformations as those originally performed by Newman and Janis are made. That is coordinates are
advanced by the following complex increments:

u → u′ = u − ia cos θ, r → r′ = r + ia cos θ, θ → θ′, Φ → Φ′. (8)

By keeping r′ and u′ real (that is considering the transformations as a complex rotation of the θ, Φ planes) one obtains
the following tetrad.

lµ = δµ
1 (9)

nµ = −
1

2
e−2λ(r,θ)δµ

1 + e−λ(r,θ)−φ(r,θ)δµ
0 (10)

mµ =
1√

2(r + ia cos θ)

(

ia sin θ(δµ
0 − δµ

1 ) + δµ
2 +

i

sin θ
δµ
3

)

(11)

All primes are now dropped for convenience of notation but one must recall that the new functions eλ(r,θ) and eφ(r,θ)

are not the same as the old ones. In fact, the new functions depend on both r and θ whereas the old ones had only
an r dependence.

The metric formed from the above null vectors using (4) is,

gµν =









− a2 sin2 θ
Σ e−λ(r,θ)−φ(r,θ) + a2 sin2 θ

Σ 0 − a
Σ

. −e−2λ(r,θ) − a2 sin2 θ
Σ 0 a

Σ
. . − 1

Σ 0
. . . − 1

Σ sin2 θ









(12)

where Σ = r2 + a2 cos2 θ. In the covariant form this is

gµν =









e2φ(r,θ) eλ(r,θ)+φ(r,θ) 0 a sin2 θeφ(r,θ)(eλ(r,θ) − eφ(r,θ))
. 0 0 −aeφ(r,θ)+λ(r,θ) sin2 θ
. . −Σ 0
. . . − sin2 θ(Σ + a2 sin2 θeφ(r,θ)(2eλ(r,θ) − eφ(r,θ)))









(13)

As the metric is symmetric the “.” is used to indicate gµν = gνµ. The form of this metric gives the general result
of the NJA to any SSS seed metric.

The metric given in equation (13), though relatively simple, is still hard to work with. To eradicate this problem
one can make a gauge transformation so that the only off-diagonal component is gΦt. This makes it easier to compare
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3
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NJ-Algorithm

1 NJA Algorithm and the Choice of Coordinates

The starting point of the NJA algorithm is the static spherically symmetrical
seed metric . In spheroidal coordinates t, r, θ,φ the seed metric is

ds2 = e2µ(r)dr2 + r2(dθ2 + sin2θdφ2) − e2ν(r)dt2. (1)

This metric can be expressed in terms of a null tetrad lα, nα,mα,mα. To
make it short (for more details see [7, 11]), the NJA method consists in
taking a complex transformation of the metric (1), once an appropriate
coordinate system has been choosen. If Eddington-Finkelstein coordinates
are used with dt = du − eµ−νdr, these transformations become

u′ = u − ıa cos θ , r′ = r + ıa cos θ , θ′ = θ , φ′ = φ. (2)

In this way, the initial null tetrad relative to (1) acquires complex com-
ponents dependent on the constant a (rotational parameter). In [11] the
authors have been able to cast the metric in a simple form, with only a
component gtφ out of diagonal, compatible with the Kerr metric written
in Boyer-Lindquist (BL) coordinates [15]. Finally, in BL coordinates, the
metric (1) becomes, after the application of the NJA,

gtt = −e2ν(r,θ) , grr =
Σ

Σe−2µ(r,θ) + a2sin2θ
, gθθ = Σ ,

gφφ = sin2θ[Σ + a2sin2θeν(r,θ)(2eµ(r,θ) − eν(r,θ))] ,

gtφ = aeν(r,θ)sin2θ(eµ(r,θ) − eν(r,θ)),

(3)

where Σ = r2 + a2cos2θ and ν, µ now depend on r, θ. Setting

e2µ = e−2ν =
r2 + a2cos2θ

r2 − 2rm + a2cos2θ
, (4)

we obtain the Kerr solution. This can be obtained, in Cartesian coordinates
(t, x, y, z), in the Kerr-Shild form:

ds2 = dx2 + dy2 + dz2 − dt2

+
2m

r4 + a2z2

[

r(xdx + ydy) + a(xdy − ydx)

r2 + a2
+

z

r
dz + dt

]2

, (5)

where the variable r is defined as:

x2 + y2

r2 + a2
+

z2

r2
= 1. (6)

3

ds2 = e2φ(r)du2 + 2eλ(r)+φ(r)dudr − r2(dθ2 + sin2 θdΦ2). (2)

Written in contravariant form this is

gµν =









0 e−λ(r)−φ(r) 0 0
e−λ(r)−φ(r) −e−2λ(r) 0 0

0 0 −1/r2 0
0 0 0 −1/(r2 sin2 θ)









. (3)

This is done so that the above metric may be written in the terms of its null tetrad vectors,

gµν = lµnν + lνnµ − mµm̄ν − mνm̄µ, (4)

where

lµ = δµ
1 (5)

nµ = −
1

2
e−2λ(r)δµ

1 + e−λ(r)−φ(r)δµ
0 (6)

mµ =
1√
2r̄

(

δµ
2 +

i

sin θ
δµ
3

)

. (7)

The bar indicates a complex conjugate. This complex null tetrad system forms the starting point for the “derivation”
of Kerr-Newman space-times. As has been already stated this procedure is known to be a valid method for KS
geometries but its extension into non KS type metrics is still to be thoroughly examined. To be consistent exactly
the same transformations as those originally performed by Newman and Janis are made. That is coordinates are
advanced by the following complex increments:
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By keeping r′ and u′ real (that is considering the transformations as a complex rotation of the θ, Φ planes) one obtains
the following tetrad.
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1 (9)

nµ = −
1

2
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1 + e−λ(r,θ)−φ(r,θ)δµ
0 (10)

mµ =
1√

2(r + ia cos θ)

(

ia sin θ(δµ
0 − δµ

1 ) + δµ
2 +

i

sin θ
δµ
3

)

(11)

All primes are now dropped for convenience of notation but one must recall that the new functions eλ(r,θ) and eφ(r,θ)

are not the same as the old ones. In fact, the new functions depend on both r and θ whereas the old ones had only
an r dependence.

The metric formed from the above null vectors using (4) is,

gµν =









− a2 sin2 θ
Σ e−λ(r,θ)−φ(r,θ) + a2 sin2 θ

Σ 0 − a
Σ

. −e−2λ(r,θ) − a2 sin2 θ
Σ 0 a

Σ
. . − 1

Σ 0
. . . − 1

Σ sin2 θ









(12)

where Σ = r2 + a2 cos2 θ. In the covariant form this is

gµν =









e2φ(r,θ) eλ(r,θ)+φ(r,θ) 0 a sin2 θeφ(r,θ)(eλ(r,θ) − eφ(r,θ))
. 0 0 −aeφ(r,θ)+λ(r,θ) sin2 θ
. . −Σ 0
. . . − sin2 θ(Σ + a2 sin2 θeφ(r,θ)(2eλ(r,θ) − eφ(r,θ)))









(13)

As the metric is symmetric the “.” is used to indicate gµν = gνµ. The form of this metric gives the general result
of the NJA to any SSS seed metric.

The metric given in equation (13), though relatively simple, is still hard to work with. To eradicate this problem
one can make a gauge transformation so that the only off-diagonal component is gΦt. This makes it easier to compare

3

* E. T. Newman and A. Janis, J. Math. Phys. 6, 915 (1965)

Perform the complex transformation:

The new null tetrad vectors basis is:
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The new metric

1 NJA Algorithm and the Choice of Coordinates

The starting point of the NJA algorithm is the static spherically symmetrical
seed metric . In spheroidal coordinates t, r, θ,φ the seed metric is

ds2 = e2µ(r)dr2 + r2(dθ2 + sin2θdφ2) − e2ν(r)dt2. (1)

This metric can be expressed in terms of a null tetrad lα, nα,mα,mα. To
make it short (for more details see [7, 11]), the NJA method consists in
taking a complex transformation of the metric (1), once an appropriate
coordinate system has been choosen. If Eddington-Finkelstein coordinates
are used with dt = du − eµ−νdr, these transformations become

u′ = u − ıa cos θ , r′ = r + ıa cos θ , θ′ = θ , φ′ = φ. (2)

In this way, the initial null tetrad relative to (1) acquires complex com-
ponents dependent on the constant a (rotational parameter). In [11] the
authors have been able to cast the metric in a simple form, with only a
component gtφ out of diagonal, compatible with the Kerr metric written
in Boyer-Lindquist (BL) coordinates [15]. Finally, in BL coordinates, the
metric (1) becomes, after the application of the NJA,

gtt = −e2ν(r,θ) , grr =
Σ

Σe−2µ(r,θ) + a2sin2θ
, gθθ = Σ ,

gφφ = sin2θ[Σ + a2sin2θeν(r,θ)(2eµ(r,θ) − eν(r,θ))] ,

gtφ = aeν(r,θ)sin2θ(eµ(r,θ) − eν(r,θ)),

(3)

where Σ = r2 + a2cos2θ and ν, µ now depend on r, θ. Setting

e2µ = e−2ν =
r2 + a2cos2θ

r2 − 2rm + a2cos2θ
, (4)

we obtain the Kerr solution. This can be obtained, in Cartesian coordinates
(t, x, y, z), in the Kerr-Shild form:

ds2 = dx2 + dy2 + dz2 − dt2

+
2m

r4 + a2z2

[

r(xdx + ydy) + a(xdy − ydx)

r2 + a2
+

z

r
dz + dt

]2

, (5)

where the variable r is defined as:

x2 + y2

r2 + a2
+

z2

r2
= 1. (6)
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3

with

This metric reduces the Kerr (-Neuman) solution for a suitable choice of 
the functions
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Junction hypersurface
The separating surface is both static and axially symmetric with vanishing 
surface stress-energy (no thin shells). 

The hypersurface is left unspecified leading to a complete set of 
boundary conditions for the joining of any two stationary axially 
symmetric metrics generated by the NJA when applied to any SSS seed 
metric.

Then, consider “physically reasonable” source for the interior spacetime 
and simplify the approach restricting to surfaces described by:
∂ R(θ)/∂ θ = 0.

It turns out that R(θ) = R = constant, is a sensible choice of boundary 
surface. The surface defined by this condition is and oblate spheroid.
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Toward new insight
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Toward new insight
Our approach is aimed to generalize the previous 
results toward the discovery of new solutions.

The task is to enrich the models adding more 
physically motivated features:
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Toward new insight

1. Conformal degrees of freedom

2. Dynamical behaviour of junction hyperurfaces

Our approach is aimed to generalize the previous 
results toward the discovery of new solutions.

The task is to enrich the models adding more 
physically motivated features:

martedì 9 giugno 2009



Toward new insight

1. Conformal degrees of freedom

2. Dynamical behaviour of junction hyperurfaces

3. Rotation (exact, approximated...)

Our approach is aimed to generalize the previous 
results toward the discovery of new solutions.

The task is to enrich the models adding more 
physically motivated features:
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Points 1 & 2

• Consider (if possible) oblate spheroid or determine the 
geometry of other suitable hypersurfaces

• Consider the Israel - Darmois matching conditions

• Extend to the case of a dymamical boudary
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Point 3

• If the employment of the external Kerr exact solutions 
will prove to be too restrictive we will consider 
approximated solutions (slowly rotating stars as 
perturbed Schwarzschild)

• We also consider to non stationary rotation (conformal 
Killing vectors, warped geometries, bi-conformal vector 
fields...)
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Conclusions?
At the moment we are considering both to generate new 
solutions and, more in general, to get a better understanding of 
the NJA itself. 

A possibility is to modified the NJA to get wider classes of 
metrics (i.e. containing also the K.-N.-d.S.)
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Open problems

• Rigidity of exact external solutions

• Difficulty with internal solutions (i.e. Geroch conjecture: 
Kerr metric might have no sources other than a black hole)

• Suitable description of matter (via a stress-energy 
tensor) and the joining hypersurfaces

• .....
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Thank you!
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Stars in GR

R.M. Wald, General Relativity, University of Chicago (1984)
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Example III
Dynamics of false-vacuum bubbles

(S. K. Blau, E. I. Guendelman, A. H. Guth, Phys. Rev. D35, 1987)
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