On generalized Fourier transform for Kaup-Kuperschmidt type equations

Tihomir VALCHEV

Institute for Nuclear Research
and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia, Bulgaria

1. Introduction

- Kaup-Kuperschmidt equation

$$
\partial_{t} f=\partial_{x^{5}}^{5} f+10 f \partial_{x^{3}}^{3} f+25 \partial_{x} f \partial_{x^{2}}^{2} f+20 f^{2} \partial_{x} f
$$

where $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$.

- Lax representation

$$
\begin{aligned}
L & =\mathrm{i} \partial_{x}+q(x, t)-\lambda J \\
M & =\mathrm{i} \partial_{t}+\sum_{k=0}^{5} V_{k}(x, t) \lambda^{k}
\end{aligned}
$$

where

$$
q=\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -u
\end{array}\right), \quad J=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

u and f are interrelated by a Muira transformation as follows

$$
f=-\mathrm{i} \partial_{x} u+\frac{1}{2} u^{2}
$$

The Lax pair is associated with the algebra $\mathfrak{s l}(3, \mathbb{C})$ with additional symmetries (reductions) imposed \Rightarrow Caudrey-Beals-Coifman system.

Purpose of the talk: to demostrate how the generalized Fourier interpretation of the inverse scattering method for equations of the Kaup-Kuperschidt type can be achieved.

2. Some facts from the theory of solitons

- NEE and Lax pairs

$$
\mathrm{NEE} \quad \Leftrightarrow \quad[L(\lambda), M(\lambda)]=0
$$

where

$$
\begin{array}{rl}
L(\lambda) & =\mathrm{i} \partial_{x}+U(x, t, \lambda), \\
M(\lambda) & =\mathrm{i} \partial_{t}+V(x, t, \lambda)=q(x, t)-\lambda J \\
M & V(x, t, \lambda)=\sum_{k=0}^{N} V_{k}(x, t) \lambda^{k}
\end{array}
$$

All quantities $q(x, t)$ and $V_{k}(x, t)$ belong to a simple Lie algebra \mathfrak{g} while $J \in \mathfrak{h}$ is real. We shall require that the potential q fulfills the condition

$$
\lim _{x \rightarrow \pm \infty}|x|^{l} q(x, t)=0, \quad l \in \mathbb{Z}^{+}
$$

- Direct scattering problem
- Auxiliary spectral problem (generalized Zakharov-Shabat system)

$$
L \psi=\left(\mathrm{i} \partial_{x}+q(x, t)-\lambda J\right) \psi(x, t, \lambda)=0
$$

Then fundamental solutions ψ take values in G corr. to \mathfrak{g}.

- Continuous spectrum of $L: \mathbb{R} \subset \mathbb{C}$.
- Jost solutions

$$
\lim _{x \rightarrow \pm \infty} \psi_{ \pm}(x, \lambda) \mathrm{e}^{\mathrm{i} \lambda J x}=\mathbb{1}
$$

- Scattering matrix (data)

$$
T(t, \lambda)=\hat{\psi}_{+}(x, t, \lambda) \psi_{-}(x, t, \lambda), \quad \lambda \in \mathbb{R}
$$

- Dispersion law \Rightarrow evolution of scattering data

$$
\mathrm{i} \partial_{t} T+[f(\lambda), T]=0, \quad f(\lambda)=\lim _{x \rightarrow \pm \infty} V(x, t, \lambda)
$$

- Fundamental analytic solutions

$$
\chi^{ \pm}(x, \lambda)=\psi_{-}(x, \lambda) S^{ \pm}(\lambda)=\psi_{+}(x, \lambda) T^{\mp}(\lambda) D^{ \pm}
$$

where $S^{ \pm}(\lambda), T^{ \pm}(\lambda)$ and $D^{ \pm}(\lambda)$ are factors in the Gauss decomposition of $T(\lambda)$

$$
T(\lambda)=\left\{\begin{array}{l}
T^{-}(\lambda) D^{+}(\lambda) \hat{S}^{+}(\lambda) \\
T^{+}(\lambda) D^{-}(\lambda) \hat{S}^{-}(\lambda)
\end{array}\right.
$$

Hence we have (Riemman-Hilbert problem)

$$
\begin{gathered}
\chi^{+}(x, \lambda)=\chi^{-}(x, \lambda) G(\lambda), \quad \lambda \in \mathbb{R}, \\
G(\lambda)=\left\{\begin{array}{c}
\hat{S}^{-}(\lambda) S^{+}(\lambda), \\
\hat{D}^{-}(\lambda) \hat{T}^{+}(\lambda) T^{-}(\lambda) D(\lambda) .
\end{array}\right.
\end{gathered}
$$

- Algebraic reductions

Let G_{R} be a discrete group acting on the set fundamental solutions $\{\psi(x, \lambda)\}$ as follows

$$
\mathcal{K}\left[\psi\left(x, \kappa^{-1}(\lambda)\right)\right]=\tilde{\psi}(x, \lambda) .
$$

The requirement of G_{R}-invariance of the lin. problem yields to certain symmetry conditions on U (and therefore on V).

Example 1 Coxeter type reduction for $\mathfrak{s l}(r+1, \mathbb{C})$
Impose the \mathbb{Z}_{r+1} reduction condition

$$
C\left[\psi\left(x, \kappa^{-1}(\lambda)\right)\right] C^{-1}=\tilde{\psi}(x, \lambda)
$$

where

$$
\kappa: \lambda \rightarrow \omega \lambda, \quad \omega=\mathrm{e}^{\frac{2 i \pi}{r+1}}, \quad C=\operatorname{diag}\left(1, \omega^{r}, \omega^{r-1} \ldots, \omega\right) .
$$

Thus the symmetry conditions for U and V read

$$
\begin{array}{ll}
C U\left(x, \omega^{-1} \lambda\right) C^{-1}=U(x, \lambda) & \Rightarrow \quad C q(x) C^{-1}=q(x), \quad C J C^{-1}=\omega J \\
C V\left(x, \omega^{-1} \lambda\right) C^{-1}=V(x, \lambda) & \Rightarrow \quad C V_{k}(x) C^{-1}=\omega^{k} V_{k}(x)
\end{array}
$$

Consequently $q(x)$ and J have the form

$$
q=\sum_{k=1}^{r} q_{k} H_{k}, \quad J=\sum_{\alpha \in \mathcal{A}} E_{\alpha}
$$

3. NEE of the Kaup-Kuperschmidt type

- Lax operators

$$
\begin{aligned}
L(\lambda) & =\mathrm{i} \partial_{x}+q(x, t)-\lambda J, \\
M(\lambda) & =\mathrm{i} \partial_{t}+\sum_{k=0}^{N} V_{k}(x, t) \lambda^{k}, \quad N \neq 3 l, \quad l \in \mathbb{Z}^{+}
\end{aligned}
$$

where q, J and V_{k} belong to $\mathfrak{s l}(3, \mathbb{C})$. Impose the additional \mathbb{Z}_{3} Coxeter type reduction conditions

$$
\begin{aligned}
& C q C^{-1}=q, \quad C J C^{-1}=\omega J, \\
& C V_{k} C^{-1}=\omega^{k} V_{k}, \quad \omega=\mathrm{e}^{\frac{2 \mathrm{i} \pi}{3}}, \quad C=\operatorname{diag}\left(1, \omega^{2}, \omega\right) .
\end{aligned}
$$

Due to technical convenience we shall work in the following gauge

$$
J=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \mapsto J=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

$$
q=\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -u
\end{array}\right) \mapsto q=\left(\begin{array}{ccc}
0 & c u & c^{*} u \\
c^{*} u & 0 & c u \\
c u & c^{*} u & 0
\end{array}\right), \quad c=\frac{\omega-1}{3} .
$$

Therefore Coxeter's automorphism acts in $\mathfrak{s l}(3)$ by inner automorphism with the following matrix

$$
C=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

- Grading of the algebra $\mathfrak{s l}(3, \mathbb{C})$

Since Coxeter's automorphism has a finite order $h=3$ it determines a grading in $\mathfrak{s l}(3, \mathbb{C})$ as follows

$$
\mathfrak{s l l}(3, \mathbb{C})=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}, \quad \mathfrak{g}^{k}=\left\{X \in \mathfrak{s l}(3) ; C X C^{-1}=\omega^{k} X\right\} .
$$

Obviously, the following equalities hold

$$
q \in \mathfrak{g}^{0}, \quad J \in \mathfrak{g}^{1}, \quad V_{k} \in \mathfrak{g}^{k(\bmod (3))}
$$

- Spectral properties and direct scattering problem for \mathbb{Z}_{3}-reduced operator L
- Continuous spectrum of L : consists of 6 rays $l_{a}(a=1, \ldots, 6)$ determined by

$$
\operatorname{Im} \lambda \alpha(J)=0
$$

- Each ray l_{a} is connected with a $\mathfrak{s l}(2)$ subalgebra: $\left\{E_{\alpha}, E_{-\alpha}, H_{\alpha}\right\}$
- The λ-plane is split into 6 sectors Ω_{a} and with each sector can be introduced different ordering of roots

$$
\Delta_{a}^{ \pm}=\left\{\alpha \in \Delta ; \operatorname{Im}(\lambda \alpha(J)) \gtrless 0, \quad \forall \lambda \in \Omega_{a}\right\}
$$

- Fundamental analytic solutions

$$
\begin{aligned}
& \chi^{a}(x, \lambda)=\chi^{a-1}(x, \lambda) G^{a}(\lambda), \quad \lambda \in l_{a} \\
& G^{a}(\lambda)=\left\{\begin{array}{c}
\hat{S}_{a}^{-}(\lambda) S_{a}^{+}(\lambda) \\
\hat{D}_{a}^{-}(\lambda) \hat{T}_{a}^{+}(\lambda) T_{a}^{-}(\lambda) D_{a}^{+}(\lambda)
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{array}{ll}
S_{a}^{ \pm}(\lambda)=\exp \left(\sum_{\beta \in \Delta_{a}^{+}} s_{a, \beta}^{ \pm} E_{ \pm \beta}\right), & D_{a}^{+}=\exp \left(\sum_{j=1}^{r} d_{a, j}^{+} H_{j}\right) \\
T_{a}^{ \pm}(\lambda)=\exp \left(\sum_{\beta \in \Delta_{a}^{+}} t_{a, \beta}^{ \pm} E_{ \pm \beta}\right), & D_{a}^{-}=\exp \left(\sum_{j=1}^{r} d_{a, j}^{-} w_{0}\left(H_{j}\right)\right) .
\end{array}
$$

$0-11$

4. Generalized Fourier transform for
 Kaup-Kuperschmidt type equations

- Squared solutions

$$
\chi^{a}(x, \lambda) \rightarrow\left\{\begin{array}{l}
e_{\alpha}^{(a)}(x, \lambda)=\pi\left[\chi^{a}(x, \lambda) E_{\alpha}\left(\chi^{a}(x, \lambda)\right)^{-1}\right] \\
h_{j}^{(a)}(x, \lambda)=\pi\left[\chi^{a}(x, \lambda) H_{j}\left(\chi^{a}(x, \lambda)\right)^{-1}\right]
\end{array}\right.
$$

where $\pi: \mathfrak{s l}(3) \rightarrow \mathfrak{s l}(3) / \operatorname{ker}$ ad ${ }_{J}$.

- Recursion operator

Introduce the quantities

$$
\mathscr{E}_{\alpha}^{(a)}=\chi^{a} E_{\alpha} \hat{\chi^{a}}=e_{\alpha}^{(a)}+d_{\alpha}^{(a)}, \quad \mathscr{H}_{j}^{(a)}=\chi^{a} H_{j} \hat{\chi^{a}}=h_{j}^{(a)}+f_{j}^{(a)} .
$$

to satisfy

$$
\begin{array}{r}
\mathrm{i} \partial_{x} \mathscr{E}_{\alpha}^{(a)}+\left[q-\lambda J, \mathscr{E}_{\alpha}^{(a)}\right]=0 \\
\mathrm{i} \partial_{x} \mathscr{H}_{j}^{(a)}+\left[q-\lambda J, \mathscr{H}_{j}^{(a)}\right]=0 .
\end{array}
$$

After splitting the diagonal and off-diagonal part of above equations we get

$$
\begin{aligned}
i \partial_{x} e_{\alpha}+\pi\left[q, e_{\alpha}\right]+\pi\left[q, d_{\alpha}\right] & =\lambda \pi\left[J, e_{\alpha}\right] \\
i \partial_{x} d_{\alpha}+(\mathbb{1}-\pi)\left[q, e_{\alpha}\right] & =0 .
\end{aligned}
$$

Due to the existence of grading in $\mathfrak{s l}(3)$ the squared solutions have the representation

$$
e_{\alpha}=e_{\alpha, 0}+e_{\alpha, 1}+e_{\alpha, 2}, \quad d_{\alpha}=\mathbf{d}_{\alpha}^{1} J+\mathbf{d}_{\alpha}^{2} J^{2}
$$

Substituting it into the above equations one gets

$$
\begin{aligned}
& \mathrm{i} \partial_{x} \mathbf{d}_{\alpha}^{\sigma}+\frac{1}{3} \operatorname{tr}\left(\left[q, e_{\alpha, \sigma}\right] J^{3-\sigma}\right)=0, \quad \sigma=1,2 \\
\Rightarrow & \mathbf{d}_{\alpha}^{\sigma}=\frac{\mathrm{i}}{3} \int_{ \pm \infty}^{x} \mathrm{~d} y \operatorname{tr}\left(\left[q, e_{\alpha}\right] J^{3-\sigma}\right) .
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& \mathrm{i} \partial_{x} e_{\alpha, 0}+\pi\left[q, e_{\alpha, 0}\right]=\lambda \pi\left[J, e_{\alpha, 2}\right] \\
& \mathrm{i} \partial_{x} e_{\alpha, \sigma}+\frac{\mathrm{i}}{3} \pi\left[q, J^{\sigma}\right] \int_{ \pm \infty}^{x} \mathrm{~d} y \operatorname{tr}\left(\left[q, e_{\alpha, \sigma}\right] J^{3-\sigma}\right)+\pi\left[q, e_{\alpha, \sigma}\right]=\lambda \pi\left[J, e_{\alpha, \sigma-1}\right]
\end{aligned}
$$

As a result one obtains

$$
\Lambda_{0} e_{\alpha, 0}=\lambda e_{\alpha, 2}, \quad \Lambda_{\sigma} e_{\alpha, \sigma}=\lambda e_{\alpha, \sigma-1}
$$

where

$$
\begin{aligned}
& \Lambda_{0}=\operatorname{ad}_{J}^{-1}\left(\mathrm{i} \partial_{x}+\pi[q, .]\right) \\
& \Lambda_{\sigma}=\operatorname{ad}_{J}^{-1}\left\{\mathrm{i} \partial_{x}+\frac{\mathrm{i}}{3} \pi\left(\left[q, J^{\sigma}\right]\right) \int_{ \pm \infty}^{x} \mathrm{~d} y \operatorname{tr}\left([q, .] J^{3-\sigma}\right)+\pi[q, .]\right\}
\end{aligned}
$$

Therefore

$$
\Lambda e_{\alpha}=\lambda^{3} e_{\alpha}, \quad \Lambda=\Lambda_{1} \Lambda_{2} \Lambda_{0}
$$

- Expansion over the squared solutions and Fourier transform

Theorem 1 The "squared" solutions fulfill the following completeness relations

$$
\begin{aligned}
\delta(x-y) \Pi & =\frac{1}{2 \pi} \sum_{a=1}^{6}(-1)^{a+1} \int_{l_{a}} \mathrm{~d} \lambda\left[e_{\beta_{a}}^{(a)}(x, \lambda) \otimes e_{-\beta_{a}}^{(a)}(y, \lambda)\right. \\
& \left.-e_{-\beta_{a}}^{(a-1)}(x, \lambda) \otimes e_{\beta_{a}}^{(a-1)}(y, \lambda)\right]-\mathrm{i} \sum_{a=1}^{6} \sum_{n_{a}} \operatorname{Res}_{\lambda=\lambda_{n_{a}}}^{\operatorname{Res}^{2}} G^{(a)}(x, y, \lambda) .
\end{aligned}
$$

where

$$
\Pi=\sum_{\alpha \in \Delta^{+}} \frac{E_{\alpha} \otimes E_{-\alpha}-E_{-\alpha} \otimes E_{\alpha}}{\alpha(J)}, \quad G_{\beta_{a}}^{(a)}(x, y, \lambda)=e_{\beta_{a}}^{(a)}(x, \lambda) \otimes e_{-\beta_{a}}^{(a)}(y, \lambda)
$$

Hence any function X can be expanded over the "squared" solutions, namely

$$
X(x)=\frac{1}{2 \pi} \sum_{a=1}^{6}(-1)^{a+1} \int_{l_{a}} \mathrm{~d} \lambda\left(X_{\beta_{a}}(\lambda) e_{-\beta_{a}}^{(a)}(x, \lambda)-X_{-\beta_{a}}(\lambda) e_{\beta_{a}}^{(a-1)}(x, \lambda)\right)
$$

$$
-\mathrm{i} \sum_{a=1}^{6} \sum_{n_{a}} X_{n_{a}}
$$

the components of X are given by the expressions

$$
\begin{aligned}
& X_{\beta_{a}}(\lambda)=\int_{-\infty}^{\infty} \mathrm{d} y\left\langle\operatorname{ad}_{J} e_{\beta_{a}}^{(a)}(y, \lambda), X(y)\right\rangle \\
& X_{-\beta_{a}}(\lambda)=\int_{-\infty}^{\infty} \mathrm{d} y\left\langle\operatorname{ad}_{J} e_{-\beta_{a}}^{(a-1)}(y, \lambda), X(y)\right\rangle \\
& X_{n_{a}}=\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} y \operatorname{tr}_{1}\left(\operatorname{ad}_{J} \otimes \mathbb{1} \operatorname{Res}_{\lambda=\lambda_{n_{a}}} G^{(a)}(x, y, \lambda) X \otimes \mathbb{1}\right) .
\end{aligned}
$$

In the case under consideration $(\mathfrak{g}=\mathfrak{s l}(3))$ simple poles of the resolvent are possible. Then the residues of $G^{(a)}(x, y, \lambda)$ are

$$
\underset{\lambda=\lambda_{n_{a}}}{\operatorname{Res}} G^{(a)}(x, y, \lambda)=\dot{e}_{\beta_{a}}^{(a)}\left(x, \lambda_{n_{a}}\right) \otimes e_{-\beta_{a}}^{(a)}\left(y, \lambda_{n_{a}}\right)+e_{\beta_{a}}^{(a)}\left(x, \lambda_{n_{a}}\right) \otimes \dot{e}_{-\beta_{a}}^{(a)}\left(y, \lambda_{n_{a}}\right) .
$$

where
$e_{\alpha}^{(a)}\left(x, \lambda_{a}\right)=\lim _{\lambda \rightarrow \lambda_{a}}\left(\lambda-\lambda_{a}\right) e_{\alpha}^{(a)}(x, \lambda), \quad \dot{e}_{\alpha}^{(a)}\left(x, \lambda_{a}\right)=\lim _{\lambda \rightarrow \lambda_{a}} \partial_{\lambda}\left(\lambda-\lambda_{a}\right) e_{\alpha}^{(a)}(x, \lambda)$.

Then the potential q admits the following expansion

$$
\begin{array}{r}
q(x)=\frac{\mathrm{i}}{2 \pi} \sum_{a=1}^{6}(-1)^{(a+1)} \beta_{a}(J) \int_{l_{a}} \mathrm{~d} \lambda\left(s_{a, \beta_{a}}^{+} e_{\beta_{a}}^{(a)}(x, \lambda)+s_{a,-\beta_{a}}^{-} e_{-\beta_{a}}^{(a-1)}(x, \lambda)\right) \\
-\mathrm{i} \sum_{a=1}^{6} \sum_{\alpha \in \Delta_{a}^{+}}\left(\dot{q}_{\alpha}^{(a)}\left(\lambda_{a}\right) e_{\alpha}^{(a)}\left(x, \lambda_{a}\right)+q_{\alpha}^{(a)}\left(\lambda_{a}\right) \dot{e}_{\alpha}^{(a)}\left(x, \lambda_{a}\right)\right),
\end{array}
$$

where

$$
\begin{aligned}
& q_{\alpha}^{(a)}\left(\lambda_{a}\right)=\int_{-\infty}^{\infty} \mathrm{d} y\left\langle\operatorname{ad}_{J} q(y), e_{-\alpha}^{(a)}\left(y, \lambda_{a}\right)\right\rangle, \\
& \dot{q}_{\alpha}^{(a)}\left(\lambda_{a}\right)=\int_{-\infty}^{\infty} \mathrm{d} y\left\langle\operatorname{ad}_{J} q(y), \dot{e}_{-\alpha}^{(a)}\left(y, \lambda_{a}\right)\right\rangle .
\end{aligned}
$$

It is derived from the Wronskian relation

$$
\left.\left(\hat{\chi}^{a} J \chi^{a}-J\right)\right|_{-\infty} ^{\infty}=\mathrm{i} \int_{-\infty}^{\infty} \mathrm{d} x \hat{\chi}^{a}[J, q] \chi^{a} .
$$

One can easily check that

$$
\mathrm{i} \int_{-\infty}^{\infty} \mathrm{d} x\left\langle\hat{\chi}^{a}[J, q] \chi^{a}, E_{-\alpha}\right\rangle=-\mathrm{i}\left[\left[q, e_{-\alpha}^{(a)}\right]\right]
$$

where

$$
\llbracket X, Y]] \equiv \int_{-\infty}^{\infty} \mathrm{d} x\langle X,[J, Y]\rangle
$$

is the so-called skew-skalar product.
On the other hand, we have

$$
\left\langle\left.\left(\hat{\chi}^{a} J \chi^{a}-J\right)\right|_{-\infty} ^{\infty}, E_{-\alpha}\right\rangle=-\alpha(J) s_{a, \alpha}^{+} .
$$

By analogy, the variation of q can be expanded in the following manner
$\operatorname{ad}_{J}^{-1} \delta q(x)=\frac{\mathrm{i}}{2 \pi} \sum_{a=1}^{6}(-1)^{a} \int_{l_{a}} \mathrm{~d} \lambda\left(\delta s_{a, \beta_{a}}^{+} e_{\beta_{a}}^{(a)}(x, \lambda)-\delta s_{a,-\beta_{a}}^{-} e_{-\beta_{a}}^{(a-1)}(x, \lambda)\right)$.

The latter is obtained starting from another Wronskian relation

$$
\left.\hat{\chi}^{a} \delta \chi^{a}\right|_{-\infty} ^{\infty}=\mathrm{i} \int_{-\infty}^{\infty} \mathrm{d} x \hat{\chi}^{a} \delta q \chi^{a} .
$$

- Description of NEE of Kaup-Kuperscmidt type via recursion operators
It can be verified that the integrable hierarchy of Kaup-Kuperscmidt equation in terms of Λ operator reads

$$
\begin{aligned}
\operatorname{iad}_{J}^{-1} \partial_{t} q & =\sum_{l=1}^{n} c_{3 l-1} \Lambda^{l-1} \Lambda_{0} \Lambda_{1} \operatorname{ad}_{J}^{-1}\left[q, J^{2}\right]-\sum_{l=1}^{n} c_{3 l-2} \Lambda^{l-1} \Lambda_{0} q, N=3 n-1 \\
\operatorname{iad}_{J}^{-1} \partial_{t} q & =\sum_{l=1}^{n-1} c_{3 l-1} \Lambda^{l-1} \Lambda_{0} \Lambda_{1} \operatorname{ad}_{J}^{-1}\left[q, J^{2}\right]-\sum_{l=1}^{n} c_{3 l-2} \Lambda^{l-1} \Lambda_{0} q, N=3 n-2
\end{aligned}
$$

where

$$
f(\lambda)=\sum_{m=1}^{N} c_{m} \lambda^{m}, \quad c_{3 l}=0, \quad l=0,1,2, \ldots
$$

In particular, for the Kaup-Kuperschmidt equation itself we have $f(\lambda)=\lambda^{5}$ and therefore

$$
\operatorname{iad}_{J}^{-1} \partial_{t} q-\Lambda \Lambda_{0} \Lambda_{1} \operatorname{ad}_{J}^{-1}\left[q, J^{2}\right]=0
$$

After substituting the expansions of q and its variation one obtains

$$
\mathrm{i} \partial_{t} s_{a, \beta_{a}}^{ \pm} \mp \lambda^{5} \beta_{a}\left(J^{2}\right) s_{a, \beta_{a}}^{ \pm}=0 \quad \Rightarrow \quad s_{a, \beta_{a}}^{ \pm}=s_{a, \beta_{a}, 0}^{ \pm} \exp \left(\mp \mathrm{i} \beta_{a}\left(J^{2}\right) \lambda^{5} t\right)
$$

