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Fluid lipid Fluid lipid bilayerbilayer membranesmembranes

• In aqueous solution, amphiphilic molecules (e.g., phospholipids) 
may form bilayers, the hydrophilic heads of these molecules being 
located in both outer sides of the bilayer, which are in contact with 
the liquid, while their hydrophobic tails remain at the interior.

• A bilayer may form a closed membrane - vesicle. Vesicles constitute 
a well-defined and sufficiently simple model system for studying basic 
physical properties of the more complex cell biomembranes.
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Membrane ShapesMembrane Shapes

• The equilibrium shapes of a fluid lipid vesicle are determined by 
the extremals of the curvature (shape) energy (Helfrich, 1973):

under the constraints of fixed enclosed volume and membrane area.
• Using Lagrangian multipliers, this yields the functional
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– bending and Gaussian rigidities of the membrane
– tensile stress (chemical potential) of the membrane
– spontaneous curvature of the bilayer
– pressure difference

– mean and Gaussian curvatures of the middle surface S
– area and volume elements
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Membrane Shape EquationMembrane Shape Equation

• The corresponding Euler-Lagrange equation (Ou-Yang and Helfrich
Phys. Rev. A 39 1989)

is often referred to as the membrane shape equation. Here ∆ is the 
Laplace-Beltrami operator on the surface S. 

• The membrane shape equation describes the equilibrium shapes of
lipid vesicles in terms of the mean H and Gaussian K curvatures of 
the membrane middle surface S and the physical parameters:
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– bending rigidity of the membrane
– tensile stress (chemical potential) of the membrane
– spontaneous curvature of the bilayer
– pressure difference between the outer and inner media
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Analytic solutions of the membrane shape equationAnalytic solutions of the membrane shape equation

For more than three decades, the study of the equilibrium shapes of 
the vesicles has attracted much attention nevertheless only a few 
analytic solutions to the MS equation have been reported. These are the 
solutions determining:

• spheres and circular cylinders (Ou-Yang & Helfrich Phys. Rev. A 39 1989)

• Clifford torus and toroidal shapes (Ou-Yang Phys. Rev. A 41 1990, Phys. 
Rev. E 47 1993, Hu & Ou-Yang Phys. Rev. E 47 1993)
• several types of configurations with constant squared mean curvature 
density and Willmore surfaces (Konopelchenko Phys. Lett. B 414 1997, 
Vassilev & Mladenov GIQ 5 2004)
• circular biconcave discoids (Naito et al. Phys. Rev. E: 48 1993, 54 1996)
• cylindrical surfaces (Vassilev & Djondjorov & Mladenov J. Phys A.: Math. 
Theoret. 41 2008)
• Delaunay surfaces, nodoidlike and unduloidlike shapes (Naito et al. 
Phys. Rev. Lett. 74 1995, Mladenov Eur. Phys. J. B 29 2002, Mladenov et al. AIP 
CP1076 2008)



Axially symmetric equilibrium shapes of fluid membranesAxially symmetric equilibrium shapes of fluid membranes

For an axisymmetric fluid membrane the MS equation takes the form
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in terms of the slope angle φ regarded as a function of the distance x of a point 
on the profile curve of the surface from the axsis of symmetry z. Then

z (x) =

Z
tan' (x) dx



A class of exact solutions of the A class of exact solutions of the axisymmetricaxisymmetric MS equationMS equation

Naito, Okuda and Ou-Yang (Phys. Rev. Lett. 74 1995) have found
that the axisymmetric MS equation with nonzero pressure and sponta-
neous curvature, i.e., P 6= 0 and c0 6= 0, has the following class of exact
solutions
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the pressure P and the tensile stress ¸ being given as follows
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Our aim is to ¯nd an explicit parametrization of the pro¯le curves of
the corresponding axisymmetric surfaces by representing the integral in
the r.h.s. of expression z (x) =

R
tan' (x) dx in terms of elliptic integrals

and functions.



For the considered class of solutions we have
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which can be rewritten in the form
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Evidently, at least two of the forgoing roots have to be real, otherwise
z (x) can not be a real-valued function. For that reason, it turned out
that either " < ¡1=2 or " > 1=2. In what follows, the second case will be
considered.



For " > 1=2 we have
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The integral in the r.h.s. of the expression for z (x) turned out to be
quite complicated and that is why we decided to introduce a new variable
t such that
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