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1. Gauge natural-bundles and natural operators

The theory of gauge-natural bundles started in 1981 by the paper
by D. Eck as a generalization of natural bundles by A. Nijenhuis
(1972) and it is a geometrical background of physical
gauge-invariant field theories (see, for instance Fatibene and
Francaviglia).

D. J. Eck: Gauge-natural bundles and generalized gauge
theories, Mem. Amer. Math. Soc. 33 No. 247 (1981).

P. W. Michor: Gauge theory for fiber bundles, Napoli,
Bibliopolis 1988.

I. Kolá̌r, P. W. Michor, J. Slovák: Natural Operations in
Differential Geometry, Springer–Verlag 1993.

L. Fatibene, M. Francaviglia: Natural and Gauge Natural
Formalism for Classical Field Theories, Kluwer Academic
Publishers, Dordrecht/Boston/London 2003.
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1. Gauge natural-bundles and natural operators

Eck, 1981: A gauge-natural bundle functor (g.-n.b.f.) over
m-dimensional manifolds is a covariant functor
F : PBm(G )→ FM transforming

P

π

��

f // P̄

π̄
��

M
f // M̄

in PBm(G ) to

FP

πP

��

Ff // F P̄

πP̄

��
M

f // M̄
in the category FM. Moreover, we have the locality condition
and the regularity condition which allows to transform right
G -invariant vector fileds Ξ on P into v.f. F (Ξ) on FP over the
same v.f. on M. ♣

A gauge-natural bundle (g.-n.b.) is a fibered manifold
πP : FP → M.
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1. Gauge natural-bundles and natural operators

In the theory of gauge-natural bundles the key role is played by the
g.-n.b.f. W r , which transforms a principal bundle (p.b.)
P = (P,M, π; G ) into the p.b. W r P = P r M ×M J r P ≡
≡ (W r P,M, p; W r

mG ), where P r M is the r -th order frame bundle
and W r

mG is the semidirect product W r
mG = G r

m o T r
mG , and each

(ϕ,ϕ) ∈ Mor(PBm(G )) into W rϕ = (P rϕ, J rϕ). The p.b. W r P
is called the principal r-th order gauge prolongation of P. Let
us note that W r P = {j r(0,e)ϕ|ϕ : Rm × G → P ∈ Mor(PBm(G ))} .

Theorem: (Eck, 1981) Any g.-n.b.f. is of the form

FP = [W r P,S0] , Ff = [W r f , id] .

r is the order of g.-n.b.f. F and S0 is the standard fibre of F . ♣
Example: The adjoint bundle Ad(P)→ M is the vector g.-n.b.
of order 0 with the standard fibre g. If VM → M is a tensor bundle
then the tensor product Ad(P)⊗M VM is the vector g.-n.b. of
order (1, 0). ♣
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1. Gauge natural-bundles and natural operators

Let F be a g.-n.b.f., (ϕ : P → P̄) ∈ Mor(PBm(G )) over
ϕ : M → M̄. Let σ ∈ C∞(FP), then ϕ∗σ ∈ C∞(F P̄) given by
ϕ∗σ = Fϕ ◦ σ ◦ ϕ−1.

Eck, 1981: A natural differential operator (n.d.o.) D from a
g.-n.b.f. F1 to a g.-n.b.f. F2 is a family of differential operators

{D(P) : C∞(F1P)→ C∞(F2P)}P∈Ob(PBm(G))

such that
i) (naturality) D(P̄)(ϕ∗σ) = ϕ∗D(P)(σ) for every section
σ ∈ C∞(F1P) and every ϕ : P → P̄ in Mor(PBm(G )),
ii) (locality) Dπ−1(U)(σ|U) = (DPσ)|U for every section
σ ∈ C∞(F1P) and every open submanifold U ⊂ M,
iii) (regularity) every smoothly parameterized family of sections of
F1P is transformed into a smoothly parametrized family of sections
of F2P. ♣
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1. Gauge natural-bundles and natural operators

If a n.d.o. D : F1P → F2P is of order k (for any P ∈ ObPBm(G ))
then we have the one-to-one correspondence with a natural
transformation D : JkF1 → F2 . We have

Theorem: (Eck, 1981) Let F1 and F2 be g.-n.b.f. of order ≤ r .
Then we have a one-to-one correspondence between n.d.o. of
order k from F1 to F2 and W r+k

m G -equivariant mappings from
(JkF1)0 to (F2)0. ♣
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2. Principal connections on principal bundles

We consider a principal bundle P = (P,M, π; G ) with a structure
group G . We denote by (xλ, za) fibered coordinates on P,
λ = 1, . . . , dim M, a = 1, . . . , dim G .
A principal connection on P is defined as a lifting linear mapping
Γ: TM → TP/G . In coordinates

Γ = dλ ⊗
(
∂λ + Γa

λ(x)b̃a

)
,

where Γa
λ(x) are functions on M and (b̃a) is the base of vertical

right invariant vector fields on P which are induced by the base
(ba) of g.
If we identify Γ with the functions Γa

λ(x), then Γ can be considered
as a section of the bundle QP → M of principal connections on P.
Moreover, QP is a 1-order G -gauge-natural affine bundle
associated with the vector bundle Ad(P)⊗ T ∗M → M.
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2. Principal connections on principal bundles

We denote by R[Γ] the curvature tensor field of Γ considered as
the 1st order natural operator R[Γ] : J1QP → Ad(P)⊗

∧2 T ∗M .
Now, let Λ be a linear connection on M. Then we can define the
covariant derivative of the curvature tensor R[Γ] of Γ with
respect to the pair (Λ, Γ), as a natural operator

∇R[Γ] : QP1M ×M J2QP → Ad(P)⊗
2∧

T ∗M ⊗ T ∗M .

Then, by iteration, we can define the r -th order covariant
derivative and obtain the natural operator

∇r R[Γ] : J r−1QP1M ×M J r+1QP → Ad(P)⊗
2∧

T ∗M ⊗⊗r T ∗M .
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2. Principal connections on principal bundles

Let Γr be a principal connection on W r P given in coordinates by

Γr = dλ ⊗
(
∂λ +

r∑
i=1

Λνµ1...µiλ
(x) b̃µ1...µi

ν +
r∑

j=0

Γa
κ1...κjλ(x) b̃

κ1...κj
a

)
.

We have the projections

πr
r−1 : QW r P → QW r−1P , p1 : QW r P → QP r M ,

so any principal connection Γr on W r P projects on a principal
connection Λr on P r M and on a principal connection Γr−1 on
W r−1P.
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2. Principal connections on principal bundles

Theorem: Let Γr and Γ̄r be two principal connections on W r P
such that they are over the same principal connections Λr on P r M
and Γr−1 on W r−1P, then the difference Γr − Γ̄r is identified with
a section

Ψr = Γr − Γ̄r : M → Ad(P)⊗ S r T ∗M ⊗ T ∗M . ♣

This Theorem is a consequence of

Lemma: The intersection of kernels of the projections
πr

r−1 : wr
mg→ wr−1

m g and p1 : wr
mg→ gr

m is g⊗ S rRm with the
action of the group G 1

m × G given as the tensor product of the
adjoint action of G on g and the tensor action of G 1

m on S rRm. ♣
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3. Flow prolongation of principal connections

Let ξ be a vector field on M, Γ be a principal connection on P and
Λ be a principal connection on P1M such that the horizontal lift
hΛ(ξ) = P1(ξ). Let hΓ(ξ) denote the horizontal lift of ξ with
respect to Γ. Let us denote by Flt(hΓ(ξ)) the flow of hΓ(ξ). Then
the expression

W r (Flt(hΓ(ξ))) = (P r (Flt(ξ)), J r (Flt(hΓ(ξ))) = Flt(hW
r Γ(ξ))

gives a principal connection W r Γ on W r P which depends on Γ in
order r and on Λ in order (r − 1). So W r Γ is a natural operator

W r Γ: J r−1QP1M ×M J r QP → QW r P

called the flow prolongation of Γ with respect to Λ and we will
denote it by W r Γ(Λ, Γ).
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3. Flow prolongation of principal connections

Remark: Let us remark that the flow prolongation W r Γ(Λ, Γ)
projects on the natural principal connection on P r M which
depends on Λ only. We denote it by P r Λ(Λ) and we call it the
flow prolongation of Λ to P r M. ♣

In the second order we have the coefficients of W2Γ(Λ, Γ)

Λνµ1µ2λ =
1

2
(∂µ1Λνµ2λ + ∂µ2Λνµ1λ + Λνµ1αΛαµ2λ + Λνµ2αΛαµ1λ) , (1)

Γa
µλ = ∂µΓa

λ + Γa
% Λ%µλ , (2)

Γa
µ1µ2λ = ∂µ1µ2Γa

λ + ∂µ1Γa
% Λ%µ2λ + ∂µ2Γa

% Λ%µ1λ+ (3)

+
1

2
Γa
% (∂µ1Λ%µ2λ + ∂µ2Λ%µ1λ + Λ%µ1σΛσµ2λ + Λ%µ2σΛσµ1λ) .
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4. Exponential reduction

In what follows we will need the gauge version exponential
reduction given by

I. Kolá̌r: On the gauge version of exponential map, preprint
2009.

Consider a torsion free principal connection Λ on P1M and a
principal connection Γ on P. Then we have a local map

expΛ,Γ
(u,p) : Rm × G → P

u ∈ P1
x M, p ∈ Px . This map is (G 1

m × G )-invariant and it is the
inverse of the (Λ, Γ) adapted trivialization P → Rm × G by

M. Doupovec, W. M. Mikulski: Reduction theorems for
principal and classical connections, to appear in Acta
Mathematica Sinica.
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4. Exponential reduction

The rule
Er (Λ, Γ)(u, p) = j r+1

(0,e) expΛ,Γ
(u,p) ∈W r+1P

defines the exponential reduction

Er (Λ, Γ): P1M ×M P →W r+1P

corresponding to the canonical injection

i = (i r+1
m × j r+1

m ) : G 1
m × G →W r+1

m G ,

where the injection j r+1
m : G → T r+1

m G is given by g 7→ j r+1
0 ĝ and

ĝ is the constant mapping on g ∈ G . Moreover, this reduction
corresponds to a (torsion free) natural principal connection
Er (Λ, Γ) on W r P called the exponential prolongation of (Λ, Γ).
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4. Exponential reduction

With respect to the above exponential reduction we have the
W r

mG -natural isomorphism

ΦΛ,Γ : ⊕r
i=1 (TM ⊗ S iT ∗M)⊕⊕r

j=0(Ad(P)⊗ S jT ∗M)→ Ad(W r P) .

Remark: The exponential prolongation is defined for torsion-free
connections Λ, but a non-symmetric connection Λ can be
decomposed in a unique way as the sum of the classical symmetric
connection Λ̃ (obtained by symmetrization of Λ) and the torsion
tensor T of Λ, i.e. Λ = Λ̃ + T . Then Er (Λ̃, Γ) is a principal
connection on W r P naturally given by the pair (Λ, Γ). ♣
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5. Classification of natural principal connections on W rP

Main theorem: Let Γ be a principal connection on P and Λ be a
classical connection on M. Then any natural principal connection
Γr on W r P given by Λ and Γ is of the form

Γr =W r Γ + Σr =

=W r Γ + (Φ
eΛ,Γ ⊗ idT∗M)(Φ1, . . . ,Φr ,Ψ0, . . . ,Ψr ) ,

where Φk : M → TM ⊗ SkT ∗M ⊗ T ∗M, k = 1, . . . , r , and
Ψl : M → Ad(P)⊗ S lT ∗M ⊗ T ∗M, l = 0, 1, . . . , r , are natural
tensor fields given by the pair (Λ, Γ). ♣

Hence Γr ≈ (Φ1, . . . ,Φr ,Ψ0, . . . ,Ψr ) and Λr ≈ (Φ1, . . . ,Φr ) .
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5. Classification of natural principal connections on W rP

To classify natural tensor fields we can use the higher order
Utiyama’s reduction method by

J. Janyška: Higher order Utiyama invariant interaction, Rep.
Math. Phys. 59 (2007) 63–81.

and we get
Theorem: 1. Any natural tensor field Φk(Λ, Γ) has the maximal
order (k − 1) and is of the form

Φk(jk−1Λ, jk−1Γ) = Φ̄k(c , ∇̃(k−2)R[Λ̃], ∇̃(k−2)R[Γ], ∇̃(k−1)T ) ,

where ∇̃(k−2)R[Γ] are covariant derivatives of the curvature tensor
of Γ with respect to the pair (Λ̃, Γ) and c = (ca

bd) are the structure
constants of G . Φ̄k is a zero order operator.
2. Any natural tensor field Ψl : M → Ad(P)⊗ S lT ∗M ⊗ T ∗M has
the maximal order l and is of the form

Ψl(j lΛ, j lΓ) = Ψ̄l(c , ∇̃(l−1)R[Λ̃], ∇̃(l−1)R[K ], ∇̃lT ) ,

where Ψ̄l is a zero order operator. ♣
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5. Classification of natural principal connections on W rP

Lemma:
1 All natural tensor fields Φ1(Λ, Γ) form a 3-parameter family

Φ1(Λ) = a1 T + a2 idTM ⊗T̂ + a3 T̂ ⊗ idTM , ai ∈ R ,

where T̂ denote the contraction.
2 All natural tensor fields Φ2(Λ, Γ) form a 17-parameter family

constructed by tensorial operations from c , R[Λ̃], R[Γ], T and
∇̃T . ♣

Collorary:
1 All natural principal connections Λ1(Λ, Γ) on P1M form a

3-parameter family Λ1(Λ, Γ) = Λ + Φ1(Λ).
2 All natural principal connections Λ2(Λ, Γ) on P2M form a

20-parameter family. ♣

Collorary: All natural connections on P2M given by symmetric
connection Λ on M and by a principal connection Γ on P form a
5-parameter family. ♣
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5. Classification of natural principal connections on W rP

Remark: Let A ∈ g be an Ad-invariant element, i.e. Adg (A) = A
for all g ∈ G . Then A determines the invariant section
Ã : M → Ad(P) which is an ”absolute” natural tensor field
(independent of Λ and Γ). Then Ã⊗ ω, where ω is a natural
(0, r)-tensor field on M given by Λ and Γ, is a natural tensor field
M → Ad(P)⊗⊗r T ∗M. ♣

Remark: Let ϕ : g→ g be an Ad-invariant linear map, i.e.
ϕ(Adg (X )) = Adg (ϕ(X )) for all g ∈ G and X ∈ g. Then ϕ
determines the invariant homomorphism ϕ̃ : Ad(P)→ Ad(P)
which is ”absolute” natural, i.e. independent of Λ and Γ. Then the
section ϕ̃⊗ id⊗2T∗M ◦R[Γ] : M → Ad(P)⊗

∧2 T ∗M is a natural
tensor field given by Γ. In KMS this operator is called modified
curvature operator. ♣
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5. Classification of natural principal connections on W rP

Lemma:

1 All natural tensor fields Ψ0 : M → Ad(P)⊗ T ∗M are of the
form Ã⊗ T̂ , where A ∈ g is an Ad-invariant element.

2 All natural tensor fields Ψ1 : M → Ad(P)⊗ T ∗M ⊗ T ∗M are
of the form

Ψ1 = ϕ̃⊗ id⊗2T∗M ◦R[Γ] +
8∑

i=1

B̃i ⊗ ωi ,

where ϕ : g→ g is an Ad-invariant linear mapping, Bi ∈ g are
Ad-invariant elements and ωi are natural (0, 2)-tensor fields
given by Λ.

3 All natural tensor fields Ψ2 : M → Ad(P)⊗ S2T ∗M ⊗ T ∗M
are of the maximal order two and depend on Ad-invariant
linear mappings ψi : g→ g, i = 1, 2, 3, and Ad-invariant
elements Ck ∈ g, k = 1, . . . , 28. ♣
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5. Classification of natural principal connections on W rP

Collorary:

1 Natural principal connections Γ0 on P are of zero order and
are of the form

Γ0 = Γ + Ã⊗ T̂ ,

where A ∈ g is an Ad-invariant element.

2 Natural principal connections Γ1 on W 1P form a family of
connections depending on 3 real parameters, an Ad-invariant
linear mapping ϕ : g→ g and 9 Ad-invariant elements
A, Bj ∈ g, j = 1, . . . , 8.

3 Natural principal connections Γ2 on W 2P form a family of
connections depending on 20 real parameters, 4 Ad-invariant
linear mappings ϕ,ψi : g→ g, i = 1, 2, 3, and 37 Ad-invariant
elements A, Bj ,Ck ∈ g, j = 1, . . . , 8, k = 1, . . . , 28. ♣
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5. Classification of natural principal connections on W rP

Let us note that to give the coordinate expression of Γr (Λ, Γ) for
r ≥ 1 is not a trivial problem, because we have not the coordinate

expression of the exponential identification Φ
eΛ,Γ ⊗ idT∗M . But we

can give it in the case of r = 1. If we consider Λ1 and Γ0, then
W1Γ0(Λ1, Γ0) is a principal natural connection on W 1P over Λ1

and Γ0. Then any other natural connection Γ1(Λ, Γ) on W 1P over
Λ1 and Γ0 is of the form

Γ1(Λ, Γ) =W1Γ0(Λ1, Γ0) + Ψ1 .

On the other hand, by Main theorem,

Γ1(Λ, Γ) =W1Γ(Λ, Γ) + (Φ
eΛ,Γ ⊗ idT∗M)(Φ1,Ψ0,Ψ1)

and if we compare these two expressions in coordinates we get

(Φ
eΛ,Γ ⊗ idT∗M)(Φ1,Ψ0,Ψ1) =

(
(Φ1)λµν , (Ψ0)a

λ ,

∂µ(Ψ0)a
λ + (Ψ0)a

ρ Λρµλ + Γa
ρ (Φ1)ρµλ + (Ψ0)a

ρ (Φ1)ρµλ + (Ψ1)a
µλ

)
.
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5. Classification of natural principal connections on W rP :
the case of linear gauge group GL(n)

For the linear gauge group GL(n) we can describe explicitly
Ad-invariant elements in gl(n) and Ad-invariant linear mappings
ϕ : gl(n)→ gl(n).

Lemma: Any Ad-invariant element in gl(n) is of the form

Ai
j = a δij , a ∈ R . ♣

Lemma: Any Ad-invariant linear mapping ϕ : gl(n)→ gl(n) is of
the form

ϕ = a idgl(n) +B tr ,

where a ∈ R, tr is the trace of (n, n) matrices and B ∈ gl(n) is an
Ad-invariant element. ♣
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5. Classification of natural principal connections on W rP :
the case of linear gauge group GL(n)

Let E → M be a vector bundle with n-dimensional fibres and let us
denote by PE → M the frame bundle of E , i.e. PE is the principal
bundle with the structure group GL(n).

Theorem: (Vondra, 2008) 1. All natural operators transforming a
classical connection Λ on M and a principal connection K on PE
into principal connections Γ0(Λ,K ) on PE are of the maximal
order 0 and form a 1-parameter family.
2. All natural operators transforming a classical connection Λ on
M and a principal connection K on PE into principal connections
Γ1(Λ,K ) on W 1PE are of the maximal order 1 and form a
14-parameter family.
3. All natural operators transforming a classical connection Λ on
M and a principal connection K on PE into principal connections
Γ2(Λ,K ) on W 2PE are of the maximal order 2 form a
65-parameter family. ♣

Josef Janyška, Jan Vondra Natural prolongation of principal connections


