Natural principal connections on the principal gauge prolongation of a principal bundle

Josef Janyška, Jan Vondra

Geometry, Integrability and Quantization, Varna, Bulgaria

June 5-10, 2009

Contents

Let Γ be a principal connection on a principal bundle $\pi : P \to M$ and let Λ be a linear connection on M. We describe all possible natural prolongations of Γ , with respect to Λ , to principal connections on the principal gauge prolongation W^rP of P. For r = 1, 2 we give the full classification, for $r \ge 3$ we give a base of natural operators which generates all possible natural connections on W^rP .

- Gauge-natural bundles and natural operators
- Principal connections on principal bundles and their gauge prolongations
- Is Flow prolongation of principal connections
- Exponential reduction
- **5** Classification of natural principal connections on $W^r P$

伺 ト イ ヨ ト イ ヨ ト

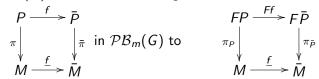
1. Gauge natural-bundles and natural operators

The theory of gauge-natural bundles started in 1981 by the paper by D. Eck as a generalization of natural bundles by A. Nijenhuis (1972) and it is a geometrical background of physical gauge-invariant field theories (see, for instance Fatibene and Francaviglia).

- D. J. Eck: *Gauge-natural bundles and generalized gauge theories*, Mem. Amer. Math. Soc. **33** No. 247 (1981).
- P. W. Michor: *Gauge theory for fiber bundles*, Napoli, Bibliopolis 1988.
- I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry, Springer–Verlag 1993.
- L. Fatibene, M. Francaviglia: *Natural and Gauge Natural Formalism for Classical Field Theories*, Kluwer Academic Publishers, Dordrecht/Boston/London 2003.

Eck, 1981: A **gauge-natural bundle functor** (g.-n.b.f.) over *m*-dimensional manifolds is a covariant functor

 $F: \mathcal{PB}_m(G) \to \mathcal{FM}$ transforming



in the category \mathcal{FM} . Moreover, we have the **locality** condition and the **regularity** condition which allows to transform right *G*-invariant vector fileds Ξ on *P* into v.f. $F(\Xi)$ on *FP* over the same v.f. on *M*.

A gauge-natural bundle (g.-n.b.) is a fibered manifold $\pi_P : FP \to M$.

1. Gauge natural-bundles and natural operators

In the theory of gauge-natural bundles the key role is played by the g.-n.b.f. W^r , which transforms a principal bundle (p.b.) $P = (P, M, \pi; G)$ into the p.b. $W^r P = P^r M \times_M J^r P \equiv$ $\equiv (W^r P, M, p; W_m^r G)$, where $P^r M$ is the *r*-th order **frame bundle** and $W_m^r G$ is the semidirect product $W_m^r G = G_m^r \rtimes T_m^r G$, and each $(\varphi, \underline{\varphi}) \in \operatorname{Mor}(\mathcal{PB}_m(G))$ into $W^r \varphi = (P^r \underline{\varphi}, J^r \varphi)$. The p.b. $W^r P$ is called the **principal r-th order gauge prolongation** of P. Let us note that $W^r P = \{j_{(0,e)}^r \varphi | \varphi : \mathbb{R}^m \times G \to P \in \operatorname{Mor}(\mathcal{PB}_m(G))\}$.

Theorem: (Eck, 1981) Any g.-n.b.f. is of the form

$$FP = [W^r P, S_0], \quad Ff = [W^r f, id].$$

r is the **order** of g.-n.b.f. *F* and S_0 is the **standard fibre** of *F*.

Example: The **adjoint bundle** $Ad(P) \rightarrow M$ is the vector g.-n.b. of order 0 with the standard fibre g. If $VM \rightarrow M$ is a tensor bundle then the tensor product $Ad(P) \otimes_M VM$ is the vector g.-n.b. of order (1,0).

1. Gauge natural-bundles and natural operators

Let F be a g.-n.b.f., $(\varphi : P \to \overline{P}) \in Mor(\mathcal{PB}_m(G))$ over $\underline{\varphi} : M \to \overline{M}$. Let $\sigma \in C^{\infty}(FP)$, then $\varphi^* \sigma \in C^{\infty}(F\overline{P})$ given by $\overline{\varphi^*} \sigma = F \varphi \circ \sigma \circ \underline{\varphi}^{-1}$.

Eck, 1981: A **natural differential operator** (n.d.o.) D from a g.-n.b.f. F_1 to a g.-n.b.f. F_2 is a family of differential operators

$${D(P): C^{\infty}(F_1P) \rightarrow C^{\infty}(F_2P)}_{P \in Ob(\mathcal{P}B_m(G))}$$

such that

i) (naturality) $D(\bar{P})(\varphi^*\sigma) = \varphi^*D(P)(\sigma)$ for every section $\sigma \in C^{\infty}(F_1P)$ and every $\varphi : P \to \bar{P}$ in $Mor(\mathcal{P}B_m(G))$, ii) (locality) $D_{\pi^{-1}(U)}(\sigma|U) = (D_P\sigma)|U$ for every section $\sigma \in C^{\infty}(F_1P)$ and every open submanifold $U \subset M$, iii) (regularity) every smoothly parameterized family of sections of F_1P is transformed into a smoothly parametrized family of sections of F_2P . If a n.d.o. $D: F_1P \to F_2P$ is of order k (for any $P \in Ob\mathcal{PB}_m(G)$) then we have the one-to-one correspondence with a **natural transformation** $\mathcal{D}: J^kF_1 \to F_2$. We have

Theorem: (Eck, 1981) Let F_1 and F_2 be g.-n.b.f. of order $\leq r$. Then we have a one-to-one correspondence between n.d.o. of order k from F_1 to F_2 and $W_m^{r+k}G$ -equivariant mappings from $(J^k F_1)_0$ to $(F_2)_0$.

2. Principal connections on principal bundles

We consider a principal bundle $P = (P, M, \pi; G)$ with a structure group *G*. We denote by (x^{λ}, z^{a}) fibered coordinates on *P*, $\lambda = 1, \dots, \dim M, a = 1, \dots, \dim G$. A **principal connection** on *P* is defined as a lifting linear mapping $\Gamma: TM \to TP/G$. In coordinates

$$\Gamma = d^{\lambda} \otimes \left(\partial_{\lambda} + \Gamma^{a}{}_{\lambda}(x)\widetilde{\mathfrak{b}}_{a}\right),$$

where $\Gamma^a{}_\lambda(x)$ are functions on M and $(\hat{\mathfrak{b}}_a)$ is the base of vertical right invariant vector fields on P which are induced by the base (\mathfrak{b}_a) of \mathfrak{g} .

If we identify Γ with the functions $\Gamma^a{}_\lambda(x)$, then Γ can be considered as a section of the bundle $QP \to M$ of principal connections on P. Moreover, QP is a 1-order *G*-gauge-natural affine bundle associated with the vector bundle $Ad(P) \otimes T^*M \to M$.

2. Principal connections on principal bundles

We denote by $R[\Gamma]$ the **curvature tensor field** of Γ considered as the 1st order natural operator $R[\Gamma]: J^1QP \rightarrow \operatorname{Ad}(P) \otimes \bigwedge^2 T^*M$. Now, let Λ be a linear connection on M. Then we can define the **covariant derivative** of the curvature tensor $R[\Gamma]$ of Γ with respect to the pair (Λ, Γ) , as a natural operator

$$\nabla R[\Gamma] \colon QP^1M \times_M J^2QP \to \operatorname{Ad}(P) \otimes \bigwedge^2 T^*M \otimes T^*M.$$

Then, by iteration, we can define the *r*-th order covariant derivative and obtain the natural operator

 $\nabla^{r} R[\Gamma] \colon J^{r-1} Q P^{1} M \times_{M} J^{r+1} Q P \to \operatorname{Ad}(P) \otimes \bigwedge^{2} T^{*} M \otimes \otimes^{r} T^{*} M.$

2. Principal connections on principal bundles

Let Γ_r be a principal connection on $W^r P$ given in coordinates by

$$\Gamma_{r} = d^{\lambda} \otimes \left(\partial_{\lambda} + \sum_{i=1}^{r} \Lambda^{\nu}_{\mu_{1} \dots \mu_{i} \lambda}(x) \, \widetilde{\mathfrak{b}}_{\nu}^{\mu_{1} \dots \mu_{i}} + \sum_{j=0}^{r} \Gamma^{a}_{\kappa_{1} \dots \kappa_{j} \lambda}(x) \, \widetilde{\mathfrak{b}}_{a}^{\kappa_{1} \dots \kappa_{j}} \right).$$

We have the projections

$$\pi_{r-1}^r \colon QW^r P \to QW^{r-1}P, \qquad p_1 \colon QW^r P \to QP^r M,$$

so any principal connection Γ_r on $W^r P$ projects on a principal connection Λ_r on $P^r M$ and on a principal connection Γ_{r-1} on $W^{r-1}P$.

Theorem: Let Γ_r and $\overline{\Gamma}_r$ be two principal connections on $W^r P$ such that they are over the same principal connections Λ_r on $P^r M$ and Γ_{r-1} on $W^{r-1}P$, then the difference $\Gamma_r - \overline{\Gamma}_r$ is identified with a section

$$\Psi_r = \Gamma_r - \overline{\Gamma}_r \colon M \to \operatorname{Ad}(P) \otimes S^r T^* M \otimes T^* M \,.$$

This Theorem is a consequence of

Lemma: The intersection of kernels of the projections $\pi_{r-1}^r \colon \mathfrak{w}_m^r \mathfrak{g} \to \mathfrak{w}_m^{r-1} \mathfrak{g}$ and $p_1 \colon \mathfrak{w}_m^r \mathfrak{g} \to \mathfrak{g}_m^r$ is $\mathfrak{g} \otimes S^r \mathbb{R}^m$ with the action of the group $G_m^1 \times G$ given as the tensor product of the adjoint action of G on \mathfrak{g} and the tensor action of G_m^1 on $S^r \mathbb{R}^m$.

3. Flow prolongation of principal connections

Let ξ be a vector field on M, Γ be a principal connection on P and Λ be a principal connection on P^1M such that the horizontal lift $h^{\Lambda}(\xi) = \mathcal{P}^1(\xi)$. Let $h^{\Gamma}(\xi)$ denote the horizontal lift of ξ with respect to Γ . Let us denote by $Fl_t(h^{\Gamma}(\xi))$ the flow of $h^{\Gamma}(\xi)$. Then the expression

$$W^{r}(Fl_{t}(h^{\Gamma}(\xi))) = (P^{r}(Fl_{t}(\xi)), J^{r}(Fl_{t}(h^{\Gamma}(\xi))) = Fl_{t}(h^{\mathcal{W}^{r}\Gamma}(\xi))$$

gives a principal connection $W^r\Gamma$ on W^rP which depends on Γ in order r and on Λ in order (r-1). So $W^r\Gamma$ is a natural operator

$$\mathcal{W}^{r}\Gamma: J^{r-1}QP^{1}M \times_{M} J^{r}QP \to QW^{r}P$$

called the **flow prolongation** of Γ with respect to Λ and we will denote it by $W^r\Gamma(\Lambda,\Gamma)$.

Remark: Let us remark that the flow prolongation $\mathcal{W}^r\Gamma(\Lambda,\Gamma)$ projects on the natural principal connection on P^rM which depends on Λ only. We denote it by $\mathcal{P}^r\Lambda(\Lambda)$ and we call it the **flow prolongation** of Λ to P^rM .

In the second order we have the coefficients of $\mathcal{W}^2\Gamma(\Lambda,\Gamma)$

$$\Lambda^{\nu}_{\mu_{1}\mu_{2}\lambda} = \frac{1}{2} (\partial_{\mu_{1}}\Lambda^{\nu}_{\mu_{2}\lambda} + \partial_{\mu_{2}}\Lambda^{\nu}_{\mu_{1}\lambda} + \Lambda^{\nu}_{\mu_{1}\alpha}\Lambda^{\alpha}_{\mu_{2}\lambda} + \Lambda^{\nu}_{\mu_{2}\alpha}\Lambda^{\alpha}_{\mu_{1}\lambda}), \quad (1)$$

$$\Gamma^{a}{}_{\mu\lambda} = \partial_{\mu}\Gamma^{a}{}_{\lambda} + \Gamma^{a}{}_{\varrho}\Lambda^{\varrho}_{\mu\lambda}\,,\tag{2}$$

$$\Gamma^{a}_{\mu_{1}\mu_{2}\lambda} = \partial_{\mu_{1}\mu_{2}}\Gamma^{a}_{\ \lambda} + \partial_{\mu_{1}}\Gamma^{a}_{\ \varrho}\Lambda^{\varrho}_{\mu_{2}\lambda} + \partial_{\mu_{2}}\Gamma^{a}_{\ \varrho}\Lambda^{\varrho}_{\mu_{1}\lambda} + \tag{3}$$

$$+\frac{1}{2}\Gamma^{a}{}_{\varrho}\left(\partial_{\mu_{1}}\Lambda^{\varrho}_{\mu_{2}\lambda}+\partial_{\mu_{2}}\Lambda^{\varrho}_{\mu_{1}\lambda}+\Lambda^{\varrho}_{\mu_{1}\sigma}\Lambda^{\sigma}_{\mu_{2}\lambda}+\Lambda^{\varrho}_{\mu_{2}\sigma}\Lambda^{\sigma}_{\mu_{1}\lambda}\right).$$

In what follows we will need the gauge version **exponential** reduction given by

I. Kolář: On the gauge version of exponential map, preprint 2009.

Consider a torsion free principal connection Λ on P^1M and a principal connection Γ on P. Then we have a local map

$$\exp_{(u,p)}^{\Lambda,\Gamma} \colon \mathbb{R}^m \times G \to P$$

 $u \in P_x^1 M$, $p \in P_x$. This map is $(G_m^1 \times G)$ -invariant and it is the inverse of the (Λ, Γ) adapted trivialization $P \to \mathbb{R}^m \times G$ by

M. Doupovec, W. M. Mikulski: *Reduction theorems for principal and classical connections*, to appear in Acta Mathematica Sinica.

4. Exponential reduction

The rule

$$E_r(\Lambda,\Gamma)(u,p) = j_{(0,e)}^{r+1} \exp_{(u,p)}^{\Lambda,\Gamma} \in W^{r+1}P$$

defines the exponential reduction

$$E_r(\Lambda,\Gamma)\colon P^1M\times_M P\to W^{r+1}P$$

corresponding to the canonical injection

$$i = (i_m^{r+1} \times j_m^{r+1}) \colon G_m^1 \times G \to W_m^{r+1}G$$

where the injection $j_m^{r+1}: G \to T_m^{r+1}G$ is given by $g \mapsto j_0^{r+1}\hat{g}$ and \hat{g} is the constant mapping on $g \in G$. Moreover, this reduction corresponds to a (torsion free) natural principal connection $E_r(\Lambda, \Gamma)$ on W^rP called the **exponential prolongation** of (Λ, Γ) .

With respect to the above exponential reduction we have the $W_m^r G$ -natural isomorphism

 $\Phi^{\Lambda,\Gamma}: \oplus_{i=1}^r (TM \otimes S^i T^*M) \oplus \oplus_{j=0}^r (\mathrm{Ad}(P) \otimes S^j T^*M) \to \mathrm{Ad}(W^r P).$

Remark: The exponential prolongation is defined for torsion-free connections Λ , but a non-symmetric connection Λ can be decomposed in a unique way as the sum of the classical symmetric connection $\widetilde{\Lambda}$ (obtained by symmetrization of Λ) and the torsion tensor T of Λ , i.e. $\Lambda = \widetilde{\Lambda} + T$. Then $E_r(\widetilde{\Lambda}, \Gamma)$ is a principal connection on $W^r P$ naturally given by the pair (Λ, Γ) .

Main theorem: Let Γ be a principal connection on P and Λ be a classical connection on M. Then any natural principal connection Γ_r on $W^r P$ given by Λ and Γ is of the form

$$\begin{split} &\Gamma_r = \mathcal{W}^r \Gamma + \Sigma_r = \\ &= \mathcal{W}^r \Gamma + (\Phi^{\widetilde{\Lambda},\Gamma} \otimes \operatorname{id}_{T^*M})(\Phi_1,\ldots,\Phi_r,\Psi_0,\ldots,\Psi_r)\,, \end{split}$$

where $\Phi_k \colon M \to TM \otimes S^k T^*M \otimes T^*M$, k = 1, ..., r, and $\Psi_l \colon M \to \operatorname{Ad}(P) \otimes S^l T^*M \otimes T^*M$, l = 0, 1, ..., r, are natural tensor fields given by the pair (Λ, Γ) .

Hence $\Gamma_r \approx (\Phi_1, \dots, \Phi_r, \Psi_0, \dots, \Psi_r)$ and $\Lambda_r \approx (\Phi_1, \dots, \Phi_r)$.

5. Classification of natural principal connections on $W^r P$

To classify natural tensor fields we can use the higher order Utiyama's reduction method by

J. Janyška: *Higher order Utiyama invariant interaction*, Rep. Math. Phys. **59** (2007) 63–81.

and we get

Theorem: 1. Any natural tensor field $\Phi_k(\Lambda, \Gamma)$ has the maximal order (k - 1) and is of the form

$$\Phi_k(j^{k-1}\Lambda, j^{k-1}\Gamma) = \bar{\Phi}_k(c, \widetilde{\nabla}^{(k-2)}R[\widetilde{\Lambda}], \widetilde{\nabla}^{(k-2)}R[\Gamma], \widetilde{\nabla}^{(k-1)}T),$$

where $\widetilde{\nabla}^{(k-2)}R[\Gamma]$ are covariant derivatives of the curvature tensor of Γ with respect to the pair $(\widetilde{\Lambda}, \Gamma)$ and $c = (c_{bd}^a)$ are the structure constants of G. $\overline{\Phi}_k$ is a zero order operator.

2. Any natural tensor field $\Psi_I \colon M \to \operatorname{Ad}(P) \otimes S^I T^* M \otimes T^* M$ has the maximal order I and is of the form

$$\Psi_{l}(j^{l}\Lambda,j^{l}\Gamma)=\bar{\Psi}_{l}(c,\widetilde{\nabla}^{(l-1)}R[\widetilde{\Lambda}],\widetilde{\nabla}^{(l-1)}R[K],\widetilde{\nabla}^{l}T),$$

where $\bar{\Psi}_{l}$ is a zero order operator.

5. Classification of natural principal connections on $W^r P$

Lemma:

() All natural tensor fields $\Phi_1(\Lambda,\Gamma)$ form a 3-parameter family

$$\Phi_1(\Lambda) = a_1 T + a_2 \operatorname{id}_{TM} \otimes \widehat{T} + a_3 \widehat{T} \otimes \operatorname{id}_{TM}, \qquad a_i \in \mathbb{R},$$

where \widehat{T} denote the contraction.

Collorary:

- All natural principal connections Λ₁(Λ, Γ) on P¹M form a 3-parameter family Λ₁(Λ, Γ) = Λ + Φ₁(Λ).
- All natural principal connections Λ₂(Λ, Γ) on P²M form a 20-parameter family.

Collorary: All natural connections on P^2M given by symmetric connection Λ on M and by a principal connection Γ on P form a 5-parameter family.

Remark: Let $A \in \mathfrak{g}$ be an Ad-invariant element, i.e. $\operatorname{Ad}_{g}(A) = A$ for all $g \in G$. Then A determines the invariant section $\widetilde{A}: M \to \operatorname{Ad}(P)$ which is an "absolute" natural tensor field (independent of Λ and Γ). Then $\widetilde{A} \otimes \omega$, where ω is a natural (0, r)-tensor field on M given by Λ and Γ , is a natural tensor field $M \to \operatorname{Ad}(P) \otimes \otimes^{r} T^{*}M$.

Remark: Let $\varphi: \mathfrak{g} \to \mathfrak{g}$ be an Ad-invariant linear map, i.e. $\varphi(\operatorname{Ad}_g(X)) = \operatorname{Ad}_g(\varphi(X))$ for all $g \in G$ and $X \in \mathfrak{g}$. Then φ determines the invariant homomorphism $\widetilde{\varphi}: \operatorname{Ad}(P) \to \operatorname{Ad}(P)$ which is "absolute" natural, i.e. independent of Λ and Γ . Then the section $\widetilde{\varphi} \otimes \operatorname{id}_{\otimes^2 T^*M} \circ R[\Gamma]: M \to \operatorname{Ad}(P) \otimes \bigwedge^2 T^*M$ is a natural tensor field given by Γ . In KMS this operator is called **modified curvature operator**.

5. Classification of natural principal connections on $W^r P$

Lemma:

- All natural tensor fields $\Psi_0: M \to \operatorname{Ad}(P) \otimes T^*M$ are of the form $\widetilde{A} \otimes \widehat{T}$, where $A \in \mathfrak{g}$ is an Ad-invariant element.
- ② All natural tensor fields Ψ₁: M → Ad(P) ⊗ T*M ⊗ T*M are of the form

$$\Psi_1 = \widetilde{\varphi} \otimes \operatorname{id}_{\otimes^2 T^* M} \circ R[\Gamma] + \sum_{i=1}^8 \widetilde{B}_i \otimes \omega_i \,,$$

where $\varphi \colon \mathfrak{g} \to \mathfrak{g}$ is an Ad-invariant linear mapping, $B_i \in \mathfrak{g}$ are Ad-invariant elements and ω_i are natural (0,2)-tensor fields given by Λ .

All natural tensor fields Ψ₂: M → Ad(P) ⊗ S²T*M ⊗ T*M are of the maximal order two and depend on Ad-invariant linear mappings ψ_i: g → g, i = 1, 2, 3, and Ad-invariant elements C_k ∈ g, k = 1,..., 28.

Collorary:

 Natural principal connections Γ₀ on P are of zero order and are of the form

$$\Gamma_0 = \Gamma + \widetilde{A} \otimes \widehat{T} ,$$

where $A \in \mathfrak{g}$ is an Ad-invariant element.

- Natural principal connections Γ₁ on W¹P form a family of connections depending on 3 real parameters, an Ad-invariant linear mapping φ: g → g and 9 Ad-invariant elements A, B_j ∈ g, j = 1,...,8.
- Natural principal connections Γ₂ on W²P form a family of connections depending on 20 real parameters, 4 Ad-invariant linear mappings φ, ψ_i: g → g, i = 1, 2, 3, and 37 Ad-invariant elements A, B_j, C_k ∈ g, j = 1,..., 8, k = 1,..., 28.

5. Classification of natural principal connections on $W^r P$

Let us note that to give the coordinate expression of $\Gamma_r(\Lambda, \Gamma)$ for $r \geq 1$ is not a trivial problem, because we have not the coordinate expression of the exponential identification $\Phi^{\widetilde{\Lambda},\Gamma} \otimes \operatorname{id}_{T^*M}$. But we can give it in the case of r = 1. If we consider Λ_1 and Γ_0 , then $\mathcal{W}^1\Gamma_0(\Lambda_1,\Gamma_0)$ is a principal natural connection on W^1P over Λ_1 and Γ_0 . Then any other natural connection $\Gamma_1(\Lambda,\Gamma)$ on W^1P over Λ_1 and Γ_0 is of the form

$$\Gamma_1(\Lambda,\Gamma) = \mathcal{W}^1\Gamma_0(\Lambda_1,\Gamma_0) + \Psi_1\,.$$

On the other hand, by Main theorem,

$$\Gamma_1(\Lambda,\Gamma) = \mathcal{W}^1 \Gamma(\Lambda,\Gamma) + (\Phi^{\widetilde{\Lambda},\Gamma} \otimes \mathsf{id}_{\mathcal{T}^*\mathcal{M}})(\Phi_1,\Psi_0,\Psi_1)$$

and if we compare these two expressions in coordinates we get

$$\begin{aligned} (\Phi^{\widetilde{\lambda},\Gamma}\otimes \operatorname{id}_{\mathcal{T}^*M})(\Phi_1,\Psi_0,\Psi_1) &= \left((\Phi_1)^{\lambda}_{\mu\nu},\,(\Psi_0)^{a}_{\lambda},\,\\ \partial_{\mu}(\Psi_0)^{a}_{\lambda} + (\Psi_0)^{a}_{\rho}\,\Lambda^{\rho}_{\mu\lambda} + \Gamma^{a}_{\ \rho}\,(\Phi_1)^{\rho}_{\mu\lambda} + (\Psi_0)^{a}_{\rho}\,(\Phi_1)^{\rho}_{\mu\lambda} + (\Psi_1)^{a}_{\mu\lambda}\right). \end{aligned}$$

5. Classification of natural principal connections on $W^r P$: the case of linear gauge group GL(n)

For the linear gauge group GL(n) we can describe explicitly Ad-invariant elements in $\mathfrak{gl}(n)$ and Ad-invariant linear mappings $\varphi \colon \mathfrak{gl}(n) \to \mathfrak{gl}(n)$.

Lemma: Any Ad-invariant element in $\mathfrak{gl}(n)$ is of the form

$${\sf A}^i_j={\sf a}\,\delta^i_j\,,\qquad {\sf a}\in\mathbb{R}\,.$$

Lemma: Any Ad-invariant linear mapping $\varphi : \mathfrak{gl}(n) \to \mathfrak{gl}(n)$ is of the form

$$\varphi = a \operatorname{id}_{\mathfrak{gl}(n)} + B tr,$$

where $a \in \mathbb{R}$, tr is the trace of (n, n) matrices and $B \in \mathfrak{gl}(n)$ is an Ad-invariant element.

5. Classification of natural principal connections on $W^r P$: the case of linear gauge group GL(n)

Let $E \to M$ be a vector bundle with *n*-dimensional fibres and let us denote by $PE \to M$ the frame bundle of *E*, i.e. *PE* is the principal bundle with the structure group GL(n).

Theorem: (Vondra, 2008) **1.** All natural operators transforming a classical connection Λ on M and a principal connection K on PE into principal connections $\Gamma_0(\Lambda, K)$ on PE are of the maximal order 0 and form a 1-parameter family.

2. All natural operators transforming a classical connection Λ on M and a principal connection K on PE into principal connections $\Gamma_1(\Lambda, K)$ on W^1PE are of the maximal order 1 and form a 14-parameter family.

3. All natural operators transforming a classical connection Λ on M and a principal connection K on PE into principal connections $\Gamma_2(\Lambda, K)$ on W^2PE are of the maximal order 2 form a 65-parameter family.