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This talk is based on the joint work with H. Omori, Y.

Maeda and N. Myazaki.

Abstract
We extend star products by means of complex symmet-

ric matrices. We obtain a family of star products.

We consider star exponentials with respect to these star

products, and we obtain several interesting identities.

Plan
➀ First we explain general setting; introducing the con-

cept of q-number functions.

➁ Then we consider the example of star exponential and

its application.
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§1. A family of star products
§1.1. Moyal product, normal and anti-normal prod-

ucts

It is well known that the star products such as the Moyal

product, normal product and the anti-normal product are

obtained by fixing the orderings in the Weyl algebra.

These are products on polynimals and the obtained al-

gebras are all isomorphic to the Weyl algebra.

§1.2, Extension

We extend these products and we obtain a family star

products parametrized by the space of all complex sym-

metric matrices.

The intertwiners are also extended to these star prod-

ucts, and then all star product algebras are also mutually

isomorphic and isomorophic to the Weyl algebra.
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§1.3. Definition of star product

For simplicity, we consider star products of 2 variables
(u1, u2). The general case for (u1, u2, · · · , u2m) is similar.

1. First we consider biderivation

For a complex matrix Λ =

(
λ11 λ12
λ21 λ22

)
∈ M2(C), we

consider a bi-derivation acting on complex polynoimals

p1(u1, u2), p2(u1, u2) ∈ P(C2)

such that

p1

(←−
∂ Λ

−→
∂

)
p2 = p1




2∑

k,l=1

λkl
←−
∂ uk

−→
∂ ul


 p2

=
2∑

k,l=1

λkl∂ukp1∂ulp2 (1)
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2. Star product

We fix the skew symmetric matrix

J =

(
0 1
−1 0

)
(2)

For an arbitrary complex symmetric matrix K ∈ SC(2)
we put

Λ = J + K

and we define a product ∗K on the space of complex poly-
nomials p1(u1, u2), p2(u1, u2) ∈ P(C2);

p1 ∗K p2 = p1 exp

(
i~
2

←−
∂ Λ

−→
∂

)
p2

= p1p2 +
i~
2

p1

(←−
∂ Λ

−→
∂

)
p2

+ · · ·+ 1

n!

(
i~
2

)n

p1

(←−
∂ Λ

−→
∂

)n
p2 + · · · (3)
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3. Associativity

We have

Proposition 1 For an arbitrary complex symmetric

matrix K ∈ SC(2) the product ∗Kis associtaive on the

space of all complex polynomials P(C2).

4. Isomorphic to the Weyl algebra

CCR

For an artibrary K ∈ SC(2), the product ∗K satisfies the

canonical commutation relations

[uk, ul]∗K = uk ∗K ul − ul ∗K uk = i~δkl, k, l = 1,2. (4)

and hence it follows that all algebras (P(C2), ∗K) are iso-

morphic to the Weyl algebra W2 of two generators u1, u2.
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Intertwiners

The algebra isomorphis (intertwiners)

I
K2
K1

: (P(C2), ∗K1
) → (P(C2), ∗K2

) (5)

are explicitly given by

I
K2
K1

(p) = exp

(
i~
4
(K2 −K1)∂

2
)

p (6)

where

(K2 −K1)∂
2 =

2∑

kl=1

(K2 −K1)kl∂uk∂ul (7)

We have the relations

Proposition 2 (i) I
K3
K2

I
K2
K1

= I
K3
K1

(ii) (IK2
K1

)−1 = I
K1
K2
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Infinitesimal intertwiner

By differentiating the intertwiner with respect to K, we

obtain the infinitesimal intertwiner at K

∇κ(p) = d
dtI

K+tκ
K (p)|t=0

= i~
4 κ∂2p (8)

Then the infinitesimal intertwiner satisfies

∇κ(p1 ∗K p2) = ∇κ(p1) ∗K p2 + p1 ∗K ∇κ(p2) (9)

for any p1(u1, u2), p2(u1, u2) ∈ P(C2).
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§1.4. q-number polynomials

In the star product algebras
{
(P(C2), ∗K)

}
K∈SC(2), the al-

gebras (P(C2), ∗K1
) and (P(C2), ∗K2

) are mutually isomor-

phic by the intertwiner I
K2
K1

and the elements p1 ∈ (P(C2), ∗K1
)

and p2 ∈ (P(C2), ∗K2
) are identified when

p2 = I
K2
K1

(p1) (10)

In order to give a geometric picture to the family of star

product algebras
{
(P(C2), ∗K)

}
K∈SC(2), we introduce an

algebra bundle over SC(2) whose fibres consisit of the Weyl

algebra in the following way.
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1. Algebra bundle

We consider the the trivial bundle

π : P = P(C2)× SC(2) → SC(2) (11)

whose fibre over K ∈ SC(2) consists of the star product
algebra

π−1(K) = (P(C2), ∗K) (12)

2. Flat connection and parallel translation

On this bundle, we regard the infinitesimal intertwiner ∇
as a flat connection and the intertwiner I

K2
K1

as its parallel
translation.

We consider a section p̃ ∈ Γ(P) of this bundle satisfying

p̃(K2) = I
K2
K1

(p̃(K1)) (13)

This means that p̃ is parallel

∇κp̃(K) = 0 (14)
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3. q-number polynomial

We denote by P(P) the space of all parallel sections, and

call an element p̃ ∈ P(P) q-number polynomial.

Due to the identies I
K3
K2

I
K2
K1

= I
K3
K1

and (IK2
K1

)−1 = I
K1
K2

the

intertwiners naturally induce the product ∗ on P(P). Then

the algebra (P(P), ∗) is regarded as a geometric realization

of the Weyl algebra.
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§2. q-number functions

We introduce a locally convex topology into the family of

star product algebras by means of a system of semi-norms.

We take the completion of the algebras and then we can

consider star exponentials.

1. Topology

We introduce a topology into P(C2) by a system of semi-

norms in the following way.

Let ρ be a positive number. For every s > 0 we define a

semi-norm for polynomials by

|p|s = sup
u∈C2

|p(u1, u2)| exp (−s|u|ρ) (15)

Then the system of semi-norms {| · |s}s>0 defines a locally

convex topology Tρ on P(C2).
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2. Fréchet space Eρ(C2)

Definition We take the completion of P(C2) with re-
spect to the topology Tρ, we obtain a Fréchet space Eρ(C2).

Proposition 3 For a positive number ρ, the Fréchet space
Eρ consists of entire functions on the complex plane C2 with
finite semi-norm for every s > 0, namely,

Eρ(C
2) =

{
f ∈ H(C2) | |f |s < +∞, ∀s > 0

}
(16)

Continuity for the case 0 < ρ ≤ 2

As to the continuitiy of star products and intertwiners,
the space Eρ(C2), 0 < ρ ≤ 2 is very good, namely, we have
the following
Theorem 1 On Eρ(C2), 0 < ρ ≤ 2 every product ∗K is

continuous, and every intertwiner I
K2
K1

: (Eρ(C2), ∗K1
) →

(Eρ(C2), ∗K2
) is continuous.

ª¢ 12(Â)

dviout: jf�
dviout: d6�
dviout: je�


Continuity as a bimodule for the case ρ > 2

As to the spaces Eρ(C2) for ρ > 2, the situation is no so

good, but still we have the following.

Theorem 2 For ρ > 2, take ρ′ > 0 such that

1

ρ′
+

1

ρ
= 1

then every star product ∗K defines a continuous bilinear

product

∗K : Eρ(C
2)×Eρ′(C

2) → Eρ(C
2), Eρ′(C

2)×Eρ(C
2) → Eρ(C

2)

This means that (Eρ(C2), ∗K) is a continuous Eρ′(C
2)-

bimodule.
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3. q-number functions

The case 0 < ρ ≤ 2

Due to the previous theorem, we can introduce a similar
concept as q-number polynomials into the Fréchet spaces.

Namely, the star product ∗K is well defined on Eρ(C2) and
then we consider the trivial bundle

π : Eρ = Eρ(C
2)× SC(2) → SC(2) (17)

with fibre over the point K ∈ SC(2) consists of

π−1(K) = (Eρ(C
2), ∗K) (18)

The intertwiners I
K2
K1

are well defined for any K1, K2 ∈
SC(2) and then the bundle Eρ has a flat connection ∇ and
the parallel translation is the intertwiner.

The space of flat sections of the bundle denoted by Fρ

naturally has the product ∗ and can be regarded as a com-
pletion of the Weyl algebra W2.
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4. Remark to the case ρ > 2

For the case ρ > 2, at present it is not clear whether the

intertwiners are well-defined and whether the product ∗K
are well defined. However the flat connection ∇ is still well

defined on π : Eρ = Eρ(C2) × SC(2) → SC(2), so we can

define a space Fρ of all parallel sections of this bundle even

for ρ > 2.

For ρ > 2, we are trying to extend the product ∗K and

also the intertwiners I
K2
K1

by means of some regularizations,

for example, Borel-Laplace transform, or finite part regular-

ization. I hope to construct such a concept in near future.
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5. Star expoenential

The space of q-number functions Fρ is a complete topo-

logical algebra for 0 < ρ ≤ 2 (even ρ > 2 for future under

some regularization). We can consider exponential element

exp∗ t

(
H

i~

)
=

∞∑

n=0

tn

n!

H

i~
∗ · · · ∗ H

i~︸ ︷︷ ︸
n

(19)

in this algebra.

For a q-number polynomial H ∈ P(P), we define the star

exponenial exp∗ t(H/i~) by the differential equation

d

dt
exp∗ t

(
H

i~

)
=

H

i~
∗ exp∗ t

(
H

i~

)
, exp∗ t

(
H

i~

)
|t=0 = 1 (20)

ª¢ 16(Â)

dviout: jf�
dviout: d6�
dviout: je�


6. Remark

We set the Fréchet space

Eρ+(C2) = ∩λ>ρEλ(C
2) (21)

and we donote by Eρ+ the correponding bundle and by Fρ+
the space of the flat sections of this bundle.

When H ∈ P(P) is a linear element, then exp∗ t
(

H
i~

)
be-

longs to the good space F1+(⊂ F2).
On the other hand, the most interesting case is given

by quadratic form H ∈ P(P). In this case we can solve
the differential equation explicitly, but the star exponential
belongs to the space F2+, which is difficult to treat at
present.

Although general theory related to the space F2+ is not
yet established, we illustrate the concrete example of the
star expoenential of the quadratic forms and its applica-
tion.
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§3. Star exponential of exp∗ t(2u∗v
i~ )

We very the parameter K ∈ SC(2) and at some K we can

obtain interesting identities in the algebra of ∗K product.

In this section, we construct a Clifford algebra by means

of the star exponential exp∗ t(2u∗v
i~ ) for certain K. In what

follows, we decsribe a rough sketch of construction.

First we consider a generic point in SC(2)

K =

(
τ ′ κ
κ τ

)
∈ SC(2)

In the star product ∗K algebra, we write the generator u =

u1, v = u2 satisfying

[u, v]∗K = −i~
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Star exponential

Then the star exponential of H = 2u ∗ v is explicitly given

at a general point K as

exp∗K t

(
2u ∗ v

i~

)

=
2e−t
√

D
exp

[
et − e−t

i~D

(
(et − e−t)τu2 + 24uv + (et − e−t)τ ′v2

)]

where

D = 42 − (et − e−t)τ ′τ, 4 = et + e−t − κ(et − e−t) (22)
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Vacuum

In the sequel, we assum τ ′ = 0, that is, we take a point

K =

(
0 κ
κ τ

)
(23)

We have a limit

lim
t→−∞$00 = exp∗K t

(
2u ∗ v

i~

)

= 2
1+κ exp

(
− 1

i~(1+κ)
(2uv − τ

1+κu2)
)

(24)

which we call a vacuum.

Then we have

Lemma 1 i) $00 ∗K $00 = $00

ii) v ∗K $00 = $00 ∗K u = 0.
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Putting t = πi, we have the identity

exp∗K πi

(
2u ∗ v

i~

)
= 1 (25)

Using

v ∗K (u ∗K v) = (v ∗K u) ∗K v = (u ∗K v + i~) ∗K u

we see that the star exponential satisfies

v ∗K exp∗K t

(
2u ∗ v

i~

)
= exp∗K t

(
2v ∗ u

i~

)
∗K v

= exp∗K t

(
2u ∗ v + 2i~

i~

)
∗K v

= e2t exp∗K t

(
2u ∗ v

i~

)
∗K v
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Then the integral 1
2

∫ 0
−∞ exp∗K t(2v∗u

i~ )dt converges and then

we define

1

2

∫ 0

−∞
exp∗K t

(
2v ∗ u

i~

)
dt = (v ∗K u)−1

+ (26)

and
◦
v = u ∗K (v ∗K u)−1

+ . (27)

Then we have

Lemma 2 The element
◦
v is the right inverse of v satisfying

v ∗K

◦
v = 1,

◦
v ∗K v = 1−$00
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Now we fix an integer l. By putting

t = tl = πi
2l

we obtain 2l roots of the unity

Ωl = exp∗K
πi
2l

(
2u∗v

i~

)
, $l = exp2

(
πi
2l

)
(28)

such that

Ω2l

l∗K = Ωl ∗K · · · ∗K Ωl︸ ︷︷ ︸
2l

= 1, $2l

l = 1

Then we have

Lemma 3 These satisfy

Ωk
l∗K ∗K um∗K ∗K $00 ∗K vm∗K = $km

l um∗K ∗K $00 ∗K vm∗K
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Now we take appropriate complex numbers a0, a1, · · · , a2l−1
so that an element

E =
2l−1∑

k=0

akΩ
k
l∗K

satisfies the identies

E ∗K um∗K ∗K $00 ∗K vm∗K

=

{ ∗Kum∗K ∗K $00 ∗K vm∗K · · ·0 ≤ m ≤ 2l−1 − 1

0 · · ·2l−1 ≤ m ≤ 2l − 1

We see this is equivalent to

2l−1∑

k=0

ak$km
l =

{
1 · · ·0 ≤ m ≤ 2l−1 − 1
0 · · ·2l−1 ≤ m ≤ 2l − 1

The complex numbers a0, a1, · · · , a2l−1 are uniquely deter-

mined by these equations.
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Then we have

Lemma 4 The element E satisfies

E ∗K E = 1

and the element F = 1− E satisfies

F ∗K F = 1, E ∗K F = F ∗K E = 0

Further we have

Lemma 5

E ∗K (v)2
l−1

∗K = (v)2
l−1

∗K ∗K F, (
◦
v)2

l−1

∗K ∗K F = E ∗ (
◦
v)2

l−1

∗K
where (v)2

l−1
∗K = v ∗K · · · ∗K v︸ ︷︷ ︸

2l−1

and (
◦
v)2

l−1
∗K =

◦
v ∗K · · · ∗K

◦
v︸ ︷︷ ︸

2l−1
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Now we set

ξ = E ∗K (v)2
l−1

∗K , η = (
◦
v)2

l−1

∗K ∗K F

Then we have

Theorem 3 The elements ξ and η of the ∗K product alge-

bra satisfies the identities

ξ ∗K ξ = η ∗K η = 0

ξ ∗K η + ξ ∗K η = 1
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End of slides. Click [END] to finish the presentation.

Thank you!
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