ALGEBRAIC METHODS OF LATTICE MANY-BODY SYSTEMS

Boyka Aneva
INRNE, Bulgarian Academy of Sciences
GIQ - 12, 2011, VARNA

This talk is a short review on systems with self-organized dynamics

The original results are joint work with J. Brankov arXiv:1101.2822, to appear in TMPh

Outline

1. SELF-ORGANIZED CRITICALITY AND STOCHASTIC DYNAMICS
2. SAND PILE MODELS
3. DIRECTED ABELIAN ALGEBRAS AND APPLICATIONS
4. STATIONARY STATE AND AVALANCHE EVOLUTION
5. EXTENDING THE RESULTS TO 2 DIMENSIONS

SELF-ORGANIZED CRITICALITY

AVALANCHE CASCADE PROCESSES
WIDE RANGE of APPLICATIONS IN DIVERSE AREAS -
Planetary Dynamics, Life Dynamics, Stellar Dynamics
GAS DISCHARGE, FOREST FIRES, LAND/SNOW SLIDING,
EXTINCTION of SPECIES in BIOLOGY, BRAIN ACTIVITY
EARTHQUAKES, VOLCANOES, STAR FORMATION,
METEORITE SIZE DISTRIBUTION, RIVER NETWORKS
PROCESSES in FINANCE and STOCK MARKET

SELF-ORGANIZED CRITICALITY is due to
LONG-RANGED SPACE-TIME CORRELATIONS in
NONEQUILIBRIUM STEADY STATES of
SLOWLY DRIVEN SYSTEMS without FINE TUNING of
ANY CONTROL PARAMETER
An external agent SLOWLY drives the system and through successive relaxation events a burst of
of activity - cascade process, avalanche -
starts within the system itself.

The SYSTEM becomes CRITICAL under its own
DYNAMICAL EVOLUTION due to EXTERNAL AGENT
SLOW DRIVE of THE SYSTEM by ENERGY, MASS INPUT (MAY ALSO BE the SLOPE, LOCAL VOIDS)

LIMITED ENERGY STORAGE CAPACITY of MANY-BODY SYSTEM
MASS BECOMES LOCALLY TOO LARGE (LOCALLY OVERHEATED) and is REDISTRIBUTED - TRANSPORT PROCESS STARTS

SELF ORGANIZING DYNAMICS

GOVERNED by POWER LAWS
TWO TIME SCALES WIDE SEPARATED
DRIVE TIME SCALE - MUCH SLOWER RATE
RELAXATION TIME SCALE - SHORT TIME
THRESHOLD - above it CASCADE of TOPPLINGS PROPAGATES
SURPLUS of MASS, ENERGY is DISSIPATED
through SYSTEM'S BOUNDARY

The SAND PILE model - PARADIGM
for SELF ORGANIZING DYNAMICS
analogously to
the OSCILLATOR in QUANTUM MECHANICS the ISING MODEL in STATISTICAL PHYSICS the ASEP - the FUNDAMENTAL MODEL of

NONEQUILIBRIUM PHYSICS

The concept SELF-ORGANIZED CRITICALITY SOC

introduced by Bak, Tang and Wiesenfeld (1987)

ABELIAN SANDPILE MODEL ASPM

to illustrate their idea of complexity of a system of many elements
Sand pile is formed on a horizontal circular base with any arbitrary initial distribution of sand grains. Steady state - sand pile of conical shape, formed by slowly adding (external drive) sand grains, one after another. Constant angle of the surface with the horizontal plane. Addition of grains drives the system to a critical point - sand avalanche propagates on the pile surface.

BTW ASPM - defined on dimensional lattice (on any graph) site i of the lattice is occupied by a number of sand grains associated characteristics - height h_{i}; critical value $h_{\text {crit }}$
$h_{i}<h_{\text {crit }} \quad$ stable site
$h_{i} \geq h_{\text {crit }} \quad$ unstable site
UNSTABLE SITE TOPPLES - dissipates energy REDISTRIBUTES GRAINS TO THE NEIGHBOUR SITES

DIFFERENT SAND PILE MODELS DIFFER in the TOPPLING RULES

DETERMINISTIC SPM - the number of grains transmitted from a site i to j are fixed, (BTW -1987, Dhar -1999)

STOCHASTIC SPM - sites where grains are redistributed are chosen at random, (Manna - 1991, Paczuski, Bassler-2000, Kloster, Maslov, Tang - 2001)

ABELIAN PROPERTY - FINAL STABLE CONFIGURATION is
INDEPENDENT of the ORDER of ADDING the GRAINS
If in a stable configuration C a particle is added first at a site i, then at a site j - the final stable configuration is the same, if a particle is first added at a site j, then at a site i

DIRECTED ABELIAN MODELS - redistribution in a fixed direction(s)
Application of DIRECTED ABELIAN ALGEBRAS
correspond to DIRECTED GRAPHS
with each site of the L dimensional lattice a generator a_{i}
of an Abelian algebra is associated
Alcaraz, Rittenberg, Phys.Rev.E78 (2008)

MAIN CHARACTERISTICS

- SIZE s-total number of topplings
- AREA a-total number of sites that topple
- LIFE TIME t-duration, length, short virtual time
- WIDTH x - radius or maximum distance of a toppled site from the origin
these quantities are not independent
related to each other by scaling laws

FINITE-SIZE SCALING
SCALE INVARIANCE - POWER LAWS ARE DIRECT CONSEQUENCE
lower bound - size of smallest element (one grain)
upper bound - through dissipation at the border size, area, duration are limited

CUT OFF at the UPPER BOUND described by the SCALING HYPOTHESES (LAWS)

$$
\begin{aligned}
& P(s)=s^{-\sigma_{s}} f\left(s_{c}\right) \\
& P(t)=s^{-\sigma_{\tau}} g\left(t_{c}\right) \\
& P(x)=s^{-\sigma_{x}} h\left(x_{c}\right)
\end{aligned}
$$

$\begin{array}{llll}\sigma_{s} & \sigma_{\tau} & \sigma_{x} & \text { CRITICAL EXPONENTS }\end{array}$ define the UNIVERSALITY CLASS
s_{c}, t_{c}, x_{c} CUT OFF PARAMETERS
in the limit $L \rightarrow \infty \quad s_{c} \sim L^{D}, t_{c} \sim L^{z}, x_{c} \sim L^{1 / \zeta}$
D - FRACTAL DIMENSION of the AVALANCHE CLUSTER
z, ζ - DYNAMICAL EXPONENTS
THE EXPONENTS - NOT INDEPENDENT
PROBABILITY CONSERVATION - for any two AVALANCHE CHARACTERISTICS $\left(y_{1}, y_{2}\right)$ and corresponding dynamical exponents one has

$$
\frac{\sigma_{y_{1}}-1}{\sigma_{y_{2}}-1}=\frac{D_{y_{2}}}{D_{y_{1}}}
$$

$D_{y}\left(\sigma_{y}-1\right)$ IS AN INVARIANT

DSPM - $z=1$

$$
\sigma_{\tau}-1=D\left(\sigma_{s}-1\right)=\left(\sigma_{x}-1\right) / \zeta \quad D=\sigma_{\tau}
$$

Numerical and analytical results for critical exponents
DETERMINISTIC $-\sigma_{s}=1.43, \quad D=\sigma_{\tau}=3 / 2$
STOCHASTIC $-\sigma_{s}=1.43, \quad D=\sigma_{\tau}=7 / 4$
RECENT - Alcaraz and Rittenberg
$D=\sigma_{\tau}=1.78 \pm 0.01$

DAA FORMALISM on L-site 1 DIMENSIONAL LATTICE generators $a_{i}, i=1,2, \ldots, L$

$$
\left[a_{i}, a_{j}\right]=0
$$

QUADRATIC ALGEBRA

$$
a_{i}^{2}=\mu a_{i+1}^{2}+(1-\mu) a_{i} a_{i+1}
$$

BC $\quad a_{L}^{2}=\mu+(1-\mu) a_{L} \quad\left(a_{L+1}=1\right)$
The algebra is semisimple - all representations are decomposable into irreducible representations.

The irreducible representations are one dimensional.
The regular representation has dimension 2^{L} and this is the number of irreducible representations.

Basis of the regular representation - the 2^{L} monomials

$$
1, a_{i}, a_{i} a_{j}, \ldots, a_{1} a_{2} \ldots a_{L-1} a_{L}
$$

Map the regular representation vector space on L-site chain one particle at a site i - if a_{i} appears in the monomial empty site i - otherwise
hence -2^{L} configurations
a_{i} act on the regular representation and can be diagonalized simultaneously; common eigenvalue 1
a_{L} has eigenvalues $1, \mu$

$$
a_{i} \Phi=\Phi, \quad i=1,2, \ldots, L
$$

$$
\Phi=\prod_{i=1}^{L} \frac{\mu+a_{i}}{1+\mu}
$$

a site is occupied with probability $\frac{1}{1+\mu}$ a site is empty with probability $\frac{\mu}{1+\mu}$

Physical meaning of the quadratic relation

$$
a_{i}^{2}=\mu a_{i+1}^{2}+(1-\mu) a_{i} a_{i+1}
$$

$h_{c}=2, \quad$ if $h_{c}(i) \geq 2$ - with a probability μ two particles move to site $i+1$
and with probability $1-\mu$
one particle moves to $i+1$, one stays at i

AVALANCHE EVOLUTION

- adding 2 grains at the first site defined by the ACTION of a_{1}^{2} on the steady state

$$
a_{1}^{2} \prod_{i=2}^{L} \frac{\mu+a_{i}}{1+\mu}=\left(\mu+(1-\mu) a_{1}\right) \prod_{i=2}^{L} \frac{\mu+a_{i}}{1+\mu}
$$

subsequent action

$$
R H S=\left[\frac{\mu(1-\mu) a_{1} a_{2}}{1+\mu}+\frac{\mu a_{2}^{3}+\mu^{2} a_{2}^{2}+(1-\mu) a_{1} a_{2}^{2}}{1+\mu}\right] \prod_{i=3}^{L} \frac{\mu+a_{i}}{1+\mu}
$$

and with $a_{i}=1$ for all a_{i} left behind the avalanche front

$$
a_{i}^{n} \frac{\mu+a_{i}}{1+\mu} \hat{=} \frac{1}{(1+\mu)^{2}}\left[\mu a_{i+1}^{n+1}+\left(1+\mu^{2}\right) a_{i+1}^{n}+\mu a_{i+1}^{n-1}\right]
$$

The virtual time evolution $\tau \geq 2$

$$
a_{1}^{2} \prod_{i=2}^{L} \frac{\mu+a_{i}}{1+\mu} \hat{=} \sum_{n=1}^{\tau} P_{n}(\tau) a_{\tau}^{n} \prod_{k=\tau+1}^{L} \frac{\mu+a_{k}}{1+\mu}
$$

$P_{n}(\tau)$ - PROBABILITY for the AVALANCHE to take place at VIRTUAL TIME τ with n GRAINS at SITE $i=\tau$

Recurrent relations for $P_{n}(\tau)$

$$
\begin{aligned}
P_{1}(\tau) & =R_{-}^{(2)} P_{2}(\tau-1), \\
P_{2}(\tau) & =R_{0}^{(2)} P_{2}(\tau-1)+R_{-}^{(3)} P_{3}(\tau-1), \\
P_{n}(\tau) & =R_{-}^{(n+1)} P_{n+1}(\tau-1)+R_{0}^{(n)} P_{n}(\tau-1) \\
& +R_{+}^{(n-1)} P_{n-1}(\tau-1)
\end{aligned}
$$

$2 \leq n \leq \tau, \quad P_{n}(1)=\delta_{n, 2}$

$$
\begin{gathered}
R_{+}^{(n)}=R_{-}^{(n)}=\frac{\mu}{(1+\mu)^{2}}, \quad R_{0}^{(n)}=\frac{1+\mu^{2}}{(1+\mu)^{2}} \\
R_{+}^{(n)}+R_{0}^{(n)}+R_{-}^{(n)}=1
\end{gathered}
$$

RANDOM WALKER at time τ stays
at position n with probability $\frac{1+\mu^{2}}{(1+\mu)^{2}}$
moves to positions $n+1$ or $n-1$ with probability $\frac{\mu}{(1+\mu)^{2}}$
Probability for duration τ avalanche is the

FIRST PASSAGE PROBABILITY

at virtual time τ to return to initial position $n=1$
(discrete coordinates: virtual time τ, space n)
form an

$$
p(T)=P_{1}(T) \sim \frac{1}{\sqrt{D T^{3}}} \approx \frac{1}{T^{\sigma_{\tau}}}
$$

CRITICAL EXPONENT $\quad \sigma_{\tau}=3 / 2$
RANDOM WALKER UNIVERSALITY CLASS
IN ONE DIMENSION
DETERMINISTIC and STOCHASTIC AVALANCHE
BELONG to the SAME UNIVERSALITY CLASS

TWO DIMENSIONS

rotated by $\pi / 4$ square lattice $i, j, i, j=1,2, \ldots, L$
DAA of Alcaraz and Rittenberg

$$
\begin{aligned}
a_{i, j}^{2} & =\alpha\left(\mu a_{i+1, j}^{2}+(1-\mu) a_{i, j} a_{i+1, j}\right) \\
& +(1-\alpha)\left(\mu a_{i, j+1}^{2}+(1-\mu) a_{i, j} a_{i, j+1}\right)
\end{aligned}
$$

Monte Carlo simulations - critical exponent

$$
\sigma_{\tau}=1.78 \pm 0.01
$$

CONTRADICTION to PREVIOUSLY determined VALUE

$$
\sigma_{\tau}=1.75
$$

CONSIDER DAA on a rotated square lattice

 sites form the triangular array $\mathcal{L}=(i, j), i=1, \ldots, T ; j=1, \ldots, i$, i labels the integer step τ, j numbers the sites visited at time $\tau=i$ in the horizontal (spacial) direction; T is the avalanche size in temporal direction$$
\begin{gathered}
a_{i, j}^{2}=\alpha a_{i+1, j}^{2}+\beta a_{i+1, j+1}^{2}+\gamma a_{i+1, j} a_{i+1, j=1} \\
\alpha+\beta+\gamma=1
\end{gathered}
$$

$h_{i} \geq 2$ unstable site - relaxes by multiple (successive) 2-particle topplings to the left (right) neighbour in front with probability $\alpha(\beta)$ and one - left, one -right with probability γ

Фигура: Schematic representation of the rotated by $\pi / 4$ square lattice and the directed toppling rules. The bottom boundary of the lattice is open.

A SITE CAN EMIT ONLY EVEN NUMBER OF GRAINS, BUT RECEIVES ANY NUMBER

On the open boundary generators satisfy

$$
a_{T, j}^{2}=1, \quad j=1,2, \ldots, T
$$

stationary state

$$
\begin{aligned}
\Phi_{1, T} & =\prod_{i=1}^{T} \prod_{j=1}^{i} \frac{1+a_{i, j}}{2} \\
a_{i, j} \Phi_{1, T} & =\Phi_{1, T}, \quad(i, j) \in \mathcal{L}
\end{aligned}
$$

The avalanche evolution starts by

$$
\begin{aligned}
a_{1,1}^{2} \Phi_{2, T} & = \\
\left(\alpha a_{2,1}^{2}\right. & \left.+\beta a_{2,2}^{2}+\gamma a_{2,1} a_{2,2}\right) \frac{1+a_{2,1}}{2} \frac{1+a_{2,2}}{2} \Phi_{3, T}
\end{aligned}
$$

to describe evolution one needs NUMBER of PARTICLES
TRANSFERRED from TIME STEP τ to $\tau+1$.
a layer τ emits even number - hence

$$
a_{i, j}^{2 p} \frac{1+a_{i, j}}{2} \hat{=} \sum_{k=0}^{2 p} C_{k}^{(2 p)} a_{i+1, j}^{2 p-k} a_{i+1, j+1}^{k}
$$

AVALANCHE EVOLUTION

$$
\begin{gathered}
a_{1,1}^{2} \Phi_{2, T} \hat{=} \sum_{n=0}^{n_{\max }(\tau)}\left[\sum_{n_{1}+\ldots+n_{\tau}=n} P\left(n_{1}, \ldots, n_{\tau} \mid \tau\right) \prod_{k=1}^{\tau} a_{\tau, k}^{n_{k}}\right] \Phi_{\tau+1, T} \\
\tau=2, \ldots, T-1
\end{gathered}
$$

$P\left(n_{1}, \ldots, n_{\tau} \mid \tau\right)$ - PROBABILITY that at time $i=\tau$
the SITES $(\tau, 1),(\tau, 2), \ldots,(\tau, \tau)$ have
OCCUPATION NUMBERS $n_{1}, n_{2}, \ldots, n_{\tau}$

$$
n_{1}+n_{2}+\ldots+n_{\tau}=0,1, \ldots, n_{\max }(\tau)
$$

MONOMIAL

$\prod_{k=1}^{\tau} a_{\tau, k}^{n_{k}}$ shows

DISTRIBUTION of PARTICLES at row τ

FLUX OF PARTICLE to next row $\tau+1$ is obtained
by applying the action of $a_{\tau, i}^{2 p_{i}}$ whose form
two types of terms - passive component and active component

$$
a_{i, j}^{2 p} \hat{=} \sum_{2 p}^{\text {even }}+\sum_{2 p-2}^{\text {even }} a_{i+1, j} a_{i+1, j+1}
$$

Recurrent relations for the probabilities
$P\left(n_{1}, \ldots, n_{\tau} \mid \tau\right)$ - OPEN PROBLEM
written - only up to $\tau=3$

IMPORTANT CHARACTERISTICS
MAXIMUM CURRENT $I_{\max }(\tau)$
MAXIMUM HIGHT $h_{\max }(\tau)$

MAXIMUM CURRENT

of particles leaving a row τ

$$
\begin{array}{llll}
I_{\max }(\tau) & =\frac{\tau^{2}+1}{2}+1, & \tau & \text { odd } \\
I_{\max }(\tau) & =\frac{\tau^{2}}{2}+2, & \tau & \text { even }
\end{array}
$$

result is based on

- configurations with all sites occupied
- recurrent relations

$$
I_{\max }(\tau)-I_{\max }(\tau-2)=2 \tau-2, \quad \tau>2
$$

Global maximum of hight is reached

- odd $\tau=2 n-1$ at central site $(2 n-1, n)$

$$
h_{\max }(\tau,(\tau+1) / 2)=\left(\tau^{2}-1\right) / 4+3
$$

- even $\tau=2 n$ at central site $(2 n, n),(2 n, n+1)$

$$
\begin{array}{lll}
h_{\max }(\tau)=\frac{\tau^{2}}{4}+3, & & \tau / 2 \quad \text { even } \\
h_{\max }(\tau) & =\frac{\tau^{2}}{4}+2, & \tau / 2 \quad \text { odd }
\end{array}
$$

Фигура: Schematic illustration of an avalanche leading to a maximum unstable at the central site of an odd- τ row. The integers besides the arrows indicate the number of particles transferred in the corresponding direction

Фигура: Schematic illustration of an avalanche leading to a maximum unstable at a central site of an even $-\tau$ row when $\tau / 2$ is even. The integers besides the art indicate the number of particles transferred in the corresponding direction

Фигура: The same as in Fig. 3 for even- τ row when $\tau / 2$ is odd.

ATTEMPT to extend DAA (Alc, Rit,) to 2-dim. STOCHASTIC DSM the considered QUADRATIC ALGEBRA CORRESPONDS to ANALYTICALLY STUDIED STOCHASTIC TOPPLING RULES (M.Paczuski, K.Bassler; M.Kloster, S.Maslov, C.Tang) and predicted a consistent set of critical exponents

Within DAA we suggest virtual time evolution of 2-dim
DIRECTED STOCHASTIC AVALANCHES from which the probability distribution of avalanche duration can be derived.

