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Review: KP and 2-Toda 7 functions. KP 7 functions

KP 7 functions.

A KP tau function 7(t) is a function of an infinite set of flow variables
t=(4,b,...), satisfying an infinite set of bilinear equations, the
Hirota Bilinear equations:

res,—o (V7 (z, 1)~ (z,t+8)) =0,
(identically in s := (s1, Sp, ... )), where the Baker-Akhiezer function

Y+ (z,t) and its dual ¢~ (z,t) are defined by the Sato formula:

27 =55 )

z’' 222

Question: How to construct such 7 functions? What do they mean?
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Review: KP and 2-Toda 7 functions. Hilbert space Grassmannian and linear group actions

Hilbert Space Grassmannians
Model for Hilbert space

H:=L%S")=H,+H_, .
Hy =span{Z'}ien, H_ =span{Z~'}icn+,

The Sato-Segal-Wilson Grassmannian is defined as

Gry. (H) = {closed subspaces W C H “commensurable” with H }

i.e., such that orthogonal projection to H along H_
™t w—H,
is a Fredholm map and orthogonal projection to H_

Tt w—H_

is “small” (e.g., Hilbert-Schmidt).  (H4 € Gry, (H) is the “origin".)
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Review: KP and 2-Toda 7 functions. Hilbert space Grassmannian and linear group actions

Basis labelling and frames

Orthonormal basis for 7:

i
{ei :=z""""}iez,
In terms of frames, let
w = span{wy, Wo, ... },

and expand the basis vectors w; in the orthonormal basis {e;}

Wi = Z W/-,-e/-.

jez
Define doubly co column vectors {W;};—1 > . with components
(W)); == W

and the rectangular 200 x oo matrix W with columns {W;},—1 »..
W = (W1,W2,‘-')
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Review: KP and 2-Toda 7 functions. Hilbert space Grassmannian and linear group actions

Linear and abelian group actions
Abelian group actions: Ty x H—H:

M o= {ye(t) = =511}

(1= (1), f € L(S)—r (D)
This induces an action on frames W, for w € Gry, (H)

v (t) x WsW(t) := X 7
where
N(ei) = i1

More generally, we have the general linear group action:

GL(H) x Gry,(H)—Gry, (H)
(9 € GL(H), W)—gW

represented by doubly infinite, invertible matrices

g=¢€" Acgl(x). A=(A)

ij,€Z
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Review: KP and 2-Toda 7 functions. The 7 function as a determinant

Sato-Segal-Wilson definition of KP 7 functions

For w =€ Gry, (H), the KP- 7 function 7(t) is obtained as the
Fredholm determinant of the orthogonal projection of W(t) to H,:

KP -function

w(t) = det(rt : w(t)=H,), t=(,b,...)
or, equivalently if
_(WA(Y)
wo= (' (o)

() = detW, (1)).

then
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Review: KP and 2-Toda 7 functions. Examples of 7 functions

Example: 1. Schur functions (“elementary building blocks”)

Consider Partitions:
A=, dy), A== X0, A eNT
of length ¢(\) and weight |\| := Zf(:ﬁ) Ai
Define wy € Gry, (H) as
W)y ;= span{e, _;}
Then
Tw, (1) = Sa(t)
where the Schur function

sx(t) == t(pa(g)), g€ GL(N)
t= (t1, b, - ), L= }tr(g’), gec GL(N)

is the character of the irreducible representation
px : GL(N)—End(TW c (cN)=P)
obtained by restricting to tensors of symmetry type .
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Review: KP and 2-Toda 7 functions. Examples of 7 functions

Example: 2. Orthogonal polynomials and Random Matrix integrals

Let 1
Wy, = Span{szN+i}i:O,1,2,... € Gry, (H)

where {p;(z)};cn are orthogonal polynomials with respect to a
measure du(z) on some set of curve segments I in the complex plane
(e.g., the real line R)

/ p(2)pi(2)d(2) = 5
Then
N .
T (1) = [[1 /r dp(22) €571 12 A% (2)

where A(z) = [ ,(za — ) ( (Vandermonde determinant)
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Review: KP and 2-Toda 7 functions. Examples of 7 functions

Random matrix integrals

By the Weyl integral formula on U(N)), we have

de#(t) X ZN,f(t) = / dMNJ(M, t)

HNXN

where |
dun(M, ) == dpn(M)e™== M)

is a deformation family of U(N) conjugation invariant measures on the
space HV*N of Hermitan N x N matrices.

dun(UMUY) = dun(M), YU € U(N), M e HVN*N
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Review: KP and 2-Toda 7 functions. Fermionic Fock space
Fermionic Fock space F
For every partition A = (A, Ao, ...) and integer N € Z define the
extended semi-infinite sequence
A= (A, An),0,0,...)
and “particle positions”
/j = )\j —j—l— N

The fermionic Fock space F is the exterior space (orthogonal direct
sum of charge N subspaces )

F =N =D Fn.
Nez

spanned by semi-infinite wedge products (orthonormal basis for Fy)
IANN) :=e, Ne, A---
Each charge N sector Fy has a charged vacuum vector
O,N)=en_1Aen2A...,
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Review: KP and 2-Toda 7 functions. Fermionic Fock space

Fermionic creation and annihilation operators

In terms of the Orthonormal basis for 7{, and dual basis for +*

{ei =27}z, {&}icz, éi(ej) =

define the Fermi creation and annihilation operators (exterior and
interior muliplication):

PYiVi=€ AV, 1/1Tv =liyVv, VeEH.
These satisfy the usual anti-commutation relations
[l =[], ¢/l =0, [ 9f1 =05

determining the oo dimensional Clifford algebra of fermionic operators.
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Review: KP and 2-Toda 7 functions. Fermionic Fock space

Pliicker map and Pliicker coordinates
The Plicker map P : Gry, (H)—P(F) into the projectivization of F,
P :span(Wq, Wo,...) — [Wqg AWs A---],

embeds Gry, (H) in P(F) as the intersection of an infinite number of
quadrics. If orthogonal projection to H.

Tt w—Hy

has Fredholm index N, is in the charge N sector P(w) C Fj.
Expanding in the standard orthonormal basis,

P(W) =W AW A--- :Zﬂ‘)\(W,N)‘)\,N>,
A

the coefficients 7, (w, N) are the Pliicker cordinates of w
(which satisfy the infinite set of bilinear Pliicker equations.)
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Review: KP and 2-Toda 7 functions. Fermionic Fock space

Fermionic representation of group actions and flows

The Plicker map
P : Gry, (H)—P(F)
interlaces the action of the abelian groups

M+ x Gry, (H)—Gry, (H)
with the following representations on F (and its projectivization)

va(t) Vi An(t)y, Au(t)=eXmi veF

where

Ji = Zlbn?ﬂjﬂ_,’y ieZ

nez

More generally, if g = * € GL(H), A € gl(H) has the fermionic
representation

~ o AT
g = ezl,]EZ Ul ’l/),’tp] ,
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Review: KP and 2-Toda 7 functions. Fermionic Fock space

Fermionic representation of KP-chain and 2-Toda 7 function

For w € Gry, (H) = 9(H+), g € GL(H), with P(w) C Fy in the
charge-N sector, the KP chain 7-function has the fermionic
representation:

Tw(t, N) = (NI5+(D9IN) =: 74(t, N)

Similarly, for the 2-Toda 7 function:

O (LEN) = (NAL (G- ®)IN) == 7P L EN)
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Review: KP and 2-Toda 7 functions. Fermionic Fock space

Schur function expansions

It follows that we have the Schur function expansions

ZT()\ S)\(t)
(Z’ttN ZZBMQ, A(b)s,().

where

m(g(H+), N) = (A, N|gIN)
Bxu(g, N) = (A, N|g|u, N)

are the Plicker coordinates along the basis direction |\, N) .
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Convolution symmetries Representation on H

Given an infinite sequence of complex numbers T = {T;};cz, define
pi=eli,  r.=eli" i1, ez
Assume the series >~;°, T_; converges and
lim | =r<1,
I—00
The two series
e . e .
pr(2) = poiiZ, p(2)=) pisz,
i=0 i=1
then define analytic functions p..(z) in these regions and

o
R, = Hp_,- < 00
=1
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Convolution symmetries Representation on H

Convolution symmetries (cont’d)

If w € L?(S") has the Fourier series decomposition

o0}

w(z)= ) wiz " =w (2)+w(2)
wo(2) =) Wiz, wi(2)=> w47
i= i=0

Define the bounded linear map C(T) : L?(S")—L?(S")

CMw)(2)= > pwiz"'= " pwe.

i=—o00 i=—o00

so each basis element e; is mutiplied by e’:.
The group of Convolution Symmetries C(T) : H—™H is represented in
the standard monomial basis {e;} by the diagonal matrix

C(T) := diag{e'}.
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Convolution symmetries Fock space representation of convolution symmetries

Fock space representation

This abelian subalgebra of gl(H) is generated by the operators

Yp] i >0
K=l = !

S {—w,w,- if /<0,
[Ki,K] =0, ijeZ.

Define
C(T) == eXi-o Tk
Then C(T) is diagonal in the basis {|A, N)},
C(T)|A, N) = r (N, T)|A, N).
with eigenvalues: (N, T) := ro(N, T) T ; jyer Iv—i+js
el i if N>0
(N, T) == 1 it N=0
e ST if N<O,
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Convolution symmetries Effect of convolution symmetries on r-functions

Effect of convolution symmetries on 7-functions

Lemma

Convolution actions multiply the coefficients in the Schur function
expansions of r¢,4(N, t) and T(Ci)gC,(N, t,t) by the diagonal factors
p

n(N,T) and r, (N, T).
7c,g(N ZFA (N, T)mA(9(H+), N)sa(t),

2 6 (N ZZ& (N.T)Bj,(g: N)ru(N, T)sx(1)s(R).

The Plicker coordinates for the modified Grassmannian elements
C,9(H") and C,gCs(w,, ) are thus:

™(Cp9(H+), N) = (N, T)mn g(A) )
By .(C,gCp, N) = r\ (N, T)B (g, N))r. (N, T).
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Convolution symmetries Applications to matrix models

1. New matrix models as 7 functions. Example 1.

if (N <N
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Convolution symmetries Applications to matrix models

New matrix models from old

Hermitian matrix integrals of the form

“ntt) = /M HNXN du(M) "> im
c X

N .
=11 [ duolxa)e™= a2(x),
a=1 R

are KP-Toda 7-functions. The Schur function expansion is
Zvt) = D wnau(N)sa(b)
(V)N
N
) = I ([ o)) 42001000

a=1
1
= (—1)2NN=DNI det( My, iyjsn-1)l1<ijn

M ::/duo(x)x’“
R
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Convolution symmetries Applications to matrix models

Externally coupled matrix model integral

Now consider the externally coupled matrix model integral

Zn.oxt(A) = / dpu(M)e™AM),

MeHNxN

where A € HV*N is a fixed N x N Hermitian matrix. Applying the
convolution symmetry of Example 1:

Theorem

Applying the convolution symmetry Cp to the T-function Zy(t), where
p+(2) and p_(z) are defined as in Example 1, and choosing the KP
flow parameters as t = [A] gives, within a multiplicative constant, the
externally coupled matrix integral

N—1

Co(Zv)([AD) = (TT 1) " Znext(A).
i=1
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Convolution symmetries Applications to matrix models

Externally coupled two-matrix model integral

Iltzykson-Zuber exponential coupled 2-matrix model
ZOD = [ du(M) [ d(Me) @S (MM )
My eHNxN My eHNxN

N
< ([ dioto) [ oty €57 siiond) ax)a()
a=1 R R

Applying the convolution symmetry C,, 5 to Z ) and evaluating at the
parameter values t = [A], t = [B] gives the external/y coupled matrix
integral

CEZ)(AL1B) = Z{), (A, B)
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Convolution symmetries Applications to matrix models

Convolution flows and the Q operator

The Q-operator
Choose an infinite sequence of constants {g;};cz with

|gj| >1 forj>0

and define the infinite sqquare matrix Q(q) € Mat?*% having matrix
elements

Qj = (g
AQ = Q diag(q;)
1+()Q = Q C(T(q,1))
Ti(q,t) =) ti(q)’

i=1

Harnad (CRM and Concordia) Tau Functions and Convolution Symmetries July 26-30, 2010 25/37



Convolution symmetries Applications to matrix models

The Q-operator (cont’d)

For suitably chosen values of (q, q) (see examples below), it is
possible to make triangular decompositions

Q(q) = Q-(a4)Q(q) Q1 (),
where Qq, is of the form
Qo(@) = diag(e% @),
for a suitably defined infinite sequence
Q) ={¢(q)}, jeZ,
and Q+(q), Q+(q) are invertible triangular matrices of the form
Qi(@) =M@, 0u(@) =@,

where A=(q) and A=(q) , A"(q), AT(q) are, respectively, strictly lower
(—) and strictly upper (+) triangular doubly infinite matrices.
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Convolution symmetries Applications to matrix models

Fermionic representation of the Q-operator

Introduce the fermionic vertex operators

+(q) — eZ?ijAﬁ(ﬁWiw;’ 6 §) = e =A@ )w,-w},

E(6(q)) = eXiez¥@K B(H(q)) = ez di@K,

» QO

By the equivariance of the Pluicker map, we then have
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Convolution symmetries Applications to matrix models

Introduce a new basis for the abelian algebra of convolution flow
generators as follows:

o0

Ki(a) == > (@YK

i=—o0

and define, correspondingly

o

q(t) e 32?21 f’K’(q) = C(T(qvt))a
() = S5 K@ — B(T(§,1).

>

e}}
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Convolution symmetries Applications to matrix models

Convolution flows and 7 functions (cont’d)

Theorem

The fermionic representation of the tau function may be expressed in
terms of the corresponding Convolution Symmetry flows as: follows

Ta(a) (N-1) = 1o(N, &(@))(N| Q1 (@) Ca(DGIN) .
8 N LD = (N, 6(q) + 6(§)) (N| @+ (a) Ca ()5 C4(HQ_(G)IN),

where

9(a) = Q-(@)C(¢(a)) @+ (a)
9(d,9) := Q_(q)C(4(q))Q+(q)

n

Q_(@)C(4(d)) Q1 (d)-

g
g
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(&) of Toeplitz type

Let o
g=¢€q’, jek
where .
g=¢€"", J(r)>0
and a = «a(q) is a real valued function of g. Then

Q(q)mn = €M*g=™" = eimaqf%mzq%(mfn)zef%n

Q(q) = Q(q) ( > qn'faima/\m> Qo(9),

m=—oo

2

where
1,2

Qo(q) = diag(q 2" )mez
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Convolution symmetries Applications to matrix models

Triangular boundary operators @(q), 6(&) of Toeplitz type (cont’d)

Example (cont’d)

The infinite product formula for Jacobi theta functions implies

Z q2 eIozm n I/(q H(1 +qn—%eiaz)(1 +qn—1§e—iaz—1)

Nn=—o0 n=1
where -
v(g)=JJ(1 - a".
n=1

Expressing the factors in the infinite product as

1+ g™ Y6z — exp (_ S (—;) glok gh(n—1) 7k )

k=1

o2 k
14+ qnf%efiaz — exp (B_ Z (—;) eiaqu(n;)zk)
2010 31/37
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(&) of Toeplitz type (cont’d)

Example (cont’d)

Replacing the complex parameter z by the infinite shift matrix A, we
obtain the factorization

Q(q) = v(9)Q(q)Q—(a, 9) Q- (v, ) Qo(q)

where o
Qsi(a,q) = [ r(m, o, q)

n=1

are lower/upper triangular infinite Toeplitz matrices, and

— (—1)k
1+(n; @, q) := exp (—Z( K ’“"q"(”)/\“>.
k=1
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(6|) of Toeplitz type (cont’d)

Example (cont’d)
The fermionic representation of this infinite matrix is therefore given by

A

Q = v(9)C(6(9))Q(, ) Q1 (. 9)C(4(q))
where
N 0 0 ( q\kgiak o&
Qs(a,q) = [[A2(n, o, q) = exp (— > W‘&O
n=1 k=1

k
(-1) glokghn=1) 4,

NE

/}\/i(n’aaq) =exp | —
k=1

#(q) == {0j(q)}, ¢j(q) =—inTf?, jEL.
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(&) of Toeplitz type (cont’d)

Example (cont’d)

The formula for the 7 function therefore becomes

7g(N, 1) = ro(N, $(q))(N| Qs (a, ) C(T)g(c, q)IN),

where
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(&) of Toeplitz type (cont’d)

Example (cont’d)

Similarly, we introduce a second pair (a(g), § = €?™'7) and define

Q:(8,8) = 0;'(a.9). (2.1)

Then the 2-Toda 7 function becomes 74(N, t,1) =

=) teq,  ¢(g) = —in7f?, jeL.
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q(q), 6(6|) of Toeplitz type (cont’d)

In particular, choosing g so that
Q(a7 d? q’ a) = )

setting
d=a=m q=q, L=t

and replacing f; by %t,-, we obtain the g-deformed partition function for
plane partitions that was studied by Okounkov and Pandharipande,
and by Nakatsu and Takahashi.

Other choices for the gj’s give other "convolution flow” representations
of various 7 functions (cf. e.g. Wiegmann, Bettelheim, et al).
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Convolution symmetries Applications to matrix models

Fermionic approach to  functions
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