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Review: KP and 2-Toda τ functions. KP τ functions

KP τ functions.

A KP tau function τ(t) is a function of an infinite set of flow variables
t = (t1, t2, . . . ), satisfying an infinite set of bilinear equations, the
Hirota Bilinear equations:

resz=0
(
ψ+(z, t)ψ−(z, t + s)

)
= 0,

(identically in s := (s1, s2, . . . )), where the Baker-Akhiezer function
ψ+(z, t) and its dual ψ−(z, t) are defined by the Sato formula:

ψ±(z, t) := e±
P∞

i=1 ti z i × τ(t∓ [z−1])

τ(t)

[z−1] := (
1
z
,

1
2z2 . . . )

Question: How to construct such τ functions? What do they mean?
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Review: KP and 2-Toda τ functions. Hilbert space Grassmannian and linear group actions

Hilbert Space Grassmannians

Model for Hilbert space

H : = L2(S1) = H+ +H−,
H+ = span{z i}i∈N, H− = span{z−i}i∈N+ ,

The Sato-Segal-Wilson Grassmannian is defined as

GrH+(H) = {closed subspaces w ⊂ H “commensurable” with H+}

i.e., such that orthogonal projection to H+ along H−

π⊥ : w→H+

is a Fredholm map and orthogonal projection to H−

π⊥ : w→H−

is “small” (e.g., Hilbert-Schmidt). (H+ ∈ GrH+(H) is the “origin".)
Harnad (CRM and Concordia) Tau Functions and Convolution Symmetries July 26-30, 2010 4 / 37



Review: KP and 2-Toda τ functions. Hilbert space Grassmannian and linear group actions

Basis labelling and frames

Orthonormal basis for H:

{ei := z−i−1}i∈Z,

In terms of frames, let

w = span{w1,w2, . . . },

and expand the basis vectors wi in the orthonormal basis {ej}

wi :=
∑
j∈Z

Wjiej .

Define doubly∞ column vectors {Wi}i=1,2... with components

(Wi)j := Wji

and the rectangular 2∞×∞ matrix W with columns {Wi}i=1,2...

W := (W1,W2, · · · )
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Review: KP and 2-Toda τ functions. Hilbert space Grassmannian and linear group actions

Linear and abelian group actions

Abelian group actions: Γ± ×H→H:

Γ± := {γ±(t) := e
P∞

i=1 ti z±i}

(γ±(t), f ∈ L2(S1)7→γ±(t)f

This induces an action on frames W , for w ∈ GrH+(H)

γ±(t)×W 7→W (t) := e
P∞

i=1 ti Λ±i
W

where
Λ(ei) = ei−1

More generally, we have the general linear group action:

GL(H)×GrH+(H)→GrH+(H)
(g ∈ GL(H),W )→gW

represented by doubly infinite, invertible matrices

g = eA, A ∈ gl(∞). A = (Aij)|i,j,∈Z
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Review: KP and 2-Toda τ functions. The τ function as a determinant

Sato-Segal-Wilson definition of KP τ functions

For w =∈ GrH+(H), the KP- τ function τw (t) is obtained as the
Fredholm determinant of the orthogonal projection of W (t) to H+:

KP τ -function

τw (t) = det(π⊥ : w(t)→H+), t = (t1, t2, . . . )

or, equivalently if

W (t) =

(
W+(t)
W−(t)

)
then

τw (t) = detW+(t)).
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Review: KP and 2-Toda τ functions. Examples of τ functions

Example: 1. Schur functions (“elementary building blocks”)

Consider Partitions:

λ = (λ1, . . . λ`(λ)), λ1 ≥ · · · ≥ λ`(λ, λi ∈ N+

of length `(λ) and weight |λ| :=
∑`(λ)

i=1 λi

Define wλ ∈ GrH+(H) as

wλ := span{eλi−i}
Then

τwλ(t) = sλ(t)
where the Schur function

sλ(t) := tr(ρλ(g)), g ∈ GL(N)
t := (t1, t2, · · · ), ti := 1

i tr(g
i), g ∈ GL(N)

is the character of the irreducible representation

ρλ : GL(N)−→End(T (λ) ⊂ (CN)⊗|λ|)

obtained by restricting to tensors of symmetry type λ.
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Review: KP and 2-Toda τ functions. Examples of τ functions

Example: 2. Orthogonal polynomials and Random Matrix integrals

Let
wdµ = span{ 1

zN pN+i}i=0,1,2,... ∈ GrH+(H)

where {pi(z)}i∈N are orthogonal polynomials with respect to a
measure dµ(z) on some set of curve segments Γ in the complex plane
(e.g., the real line R) ∫

pi(z)pj(z)dµ(z) = δij

Then

τwdµ(t) =
N∏

a=1

∫
Γ

dµ(za)e
P∞

i=1 ti z i
a∆2(z)

where ∆(z) =
∏N

a<b(za − zb) ( (Vandermonde determinant)
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Review: KP and 2-Toda τ functions. Examples of τ functions

Random matrix integrals

By the Weyl integral formula on U(N)), we have

τwdµ(t) ∝ ZN,f (t) :=

∫
HN×N

dµN,f (M, t)

where
dµN(M, t) := dµN(M)etr(

P∞
i=1 ti M i )

is a deformation family of U(N) conjugation invariant measures on the
space HN×N of Hermitan N × N matrices.

dµN(UMU†) = dµN(M), ∀U ∈ U(N), M ∈ HN×N
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Fermionic Fock space F

For every partition λ = (λ1, λ2, . . . ) and integer N ∈ Z define the
extended semi-infinite sequence

λ = (λ1, . . . λ`(λ)),0,0, . . . )

and “particle positions”

lj := λj − j + N

The fermionic Fock space F is the exterior space (orthogonal direct
sum of charge N subspaces )

F := ΛH =
⊕
N∈Z

FN .

spanned by semi-infinite wedge products (orthonormal basis for FN )

|λ,N〉 := el1 ∧ el2 ∧ · · ·
Each charge N sector FN has a charged vacuum vector

|0,N〉 = eN−1 ∧ eN−2 ∧ . . . ,
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Fermionic creation and annihilation operators

In terms of the Orthonormal basis for H, and dual basis for H∗

{ei := z−i−1}i∈Z, {ẽi}i∈Z, ẽi(ej) = δij

define the Fermi creation and annihilation operators (exterior and
interior muliplication):

ψiv := ei ∧ v , ψ†i v := iẽi v , v ∈ H.

These satisfy the usual anti-commutation relations

[ψi , ψj ]+ = [ψ†i , ψ
†
j ]+ = 0, [ψi , ψ

†
j ]+ = δij .

determining the∞ dimensional Clifford algebra of fermionic operators.
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Plücker map and Plücker coordinates

The Plücker map P : GrH+(H)→P(F) into the projectivization of F ,

P : span(w1,w2, . . . ) 7→ [w1 ∧ w2 ∧ · · · ] ,

embeds GrH+(H) in P(F) as the intersection of an infinite number of
quadrics. If orthogonal projection to H+

π⊥ : w→H+

has Fredholm index N, is in the charge N sector P(w) ⊂ FN .
Expanding in the standard orthonormal basis,

P(w) = w1 ∧ w2 ∧ · · · =
∑
λ

πλ(w ,N)|λ,N >,

the coefficients πλ(w ,N) are the Plücker cordinates of w
(which satisfy the infinite set of bilinear Plücker equations.)
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Fermionic representation of group actions and flows

The Plücker map
P : GrH+(H)→P(F)

interlaces the action of the abelian groups

Γ± × GrH+(H)→GrH+(H)

with the following representations on F (and its projectivization)

γ±(t) : v 7→ γ̂±(t)v , γ̂±(t) := e
P∞

i=1 ti J±i , v ∈ F

where
Ji :=

∑
n∈Z

ψnψ
†
n+i , i ∈ Z

More generally, if g = eA ∈ GL(H), A ∈ gl(H) has the fermionic
representation

ĝ := e
P

i,j∈Z Aij :ψiψ
†
j :,
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Fermionic representation of KP-chain and 2-Toda τ function

For w ∈ GrH+(H) = g(H+), g ∈ GL(H), with P(w) ⊂ FN in the
charge-N sector, the KP chain τ -function has the fermionic
representation:

τw (t,N) = 〈N|γ̂+(t)ĝ|N〉 =: τg(t,N)

Similarly, for the 2-Toda τ function:

τ
(2)
w (t, t̃,N) = 〈N|γ̂+(t)ĝγ̂−(̃t)|N〉 := τ

(2)
g (t, t̃,N)
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Review: KP and 2-Toda τ functions. Fermionic Fock space

Schur function expansions

It follows that we have the Schur function expansions

τg(t,N) =
∑
λ

πλ(g(H+),N)sλ(t),

τ
(2)
g (t, t̃,N) =

∑
λ

∑
µ

Bλ,µ(g,N)sλ(t)sµ(̃t).

where

πλ(g(H+),N) = 〈λ,N|ĝ|N〉
Bλ,µ(g,N) = 〈λ,N|ĝ|µ,N〉

are the Plücker coordinates along the basis direction |λ,N〉 .
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Convolution symmetries Representation onH

2. Convolution symmetries

Given an infinite sequence of complex numbers T = {Ti}i∈Z, define

ρi := eTi , ri := eTi−Ti−1 , i ∈ Z.

Assume the series
∑∞

i=1 T−i converges and

lim
i→∞
|ri | = r ≤ 1,

The two series

ρ+(z) =
∞∑

i=0

ρ−i−1z i , ρ−(z) =
∞∑

i=1

ρi−1z−i ,

then define analytic functions ρ±(z) in these regions and

Rρ :=
∞∏

i=1

ρ−i <∞
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Convolution symmetries Representation onH

Convolution symmetries (cont’d)

If w ∈ L2(S1) has the Fourier series decomposition

w(z) =
∞∑

i=−∞
wiz−i−1 = w−(z) + w+(z)

w−(z) =
∞∑

i=1

wi+1z−i , w+(z) =
∞∑

i=0

w−i−1z i

Define the bounded linear map C(T) : L2(S1)→L2(S1)

C(T)(w)(z) =
∞∑

i=−∞
ρiwiz−i−1 =

∞∑
i=−∞

ρiwiei .

so each basis element ei is mutiplied by eTi .
The group of Convolution Symmetries C(T) : H→H is represented in
the standard monomial basis {ei} by the diagonal matrix

C(T) := diag{eTi}.

Harnad (CRM and Concordia) Tau Functions and Convolution Symmetries July 26-30, 2010 18 / 37



Convolution symmetries Fock space representation of convolution symmetries

Fock space representation

This abelian subalgebra of gl(H) is generated by the operators

Ki := :ψiψ
†
i : =

{
ψiψ

†
i if i ≥ 0

−ψ†i ψi if i < 0,
[Ki ,Kj ] = 0, i , j ∈ Z.

Define
Ĉ(T) := e

P∞
i=−∞ Ti Ki .

Then Ĉ(T) is diagonal in the basis {|λ,N〉},

Ĉ(T)|λ,N〉 = rλ(N,T)|λ,N〉.

with eigenvalues: rλ(N,T) := r0(N,T)
∏

(i,j)∈λ rN−i+j ,

r0(N,T) :=


e

PN−1
i=0 Ti if N > 0
1 if N = 0

e−
P−N

i=1 T−i if N < 0,
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Convolution symmetries Effect of convolution symmetries on τ -functions

Effect of convolution symmetries on τ -functions

Lemma
Convolution actions multiply the coefficients in the Schur function
expansions of τCρg(N, t) and τ (2)

CρĝCρ̃
(N, t, t̃) by the diagonal factors

rλ(N,T) and rµ(N, T̃).

τCρg(N, t) =
∑
λ

rλ(N,T)πλ(g(H+),N)sλ(t),

τ
(2)
CρgCρ̃

(N, t, t̃) =
∑
λ

∑
µ

rλ(N,T)Bλ,µ(g,N)rµ(N, T̃)sλ(t)sµ(̃t).

The Plücker coordinates for the modified Grassmannian elements
Cρg(HN

+) and CρgCρ̃(wµ,N) are thus:

πλ(Cρg(H+),N) = rλ(N,T)πN,g(λ)

Bλ,µ(CρgCρ̃,N) = rλ(N,T)Bλ,µ(g,N))rµ(N, T̃).
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Convolution symmetries Applications to matrix models

1. New matrix models as τ functions. Example 1.

Example

ρ−(z) =
1
z

e
1
z =

∞∑
i=0

z−i−1

i!
, |z| ≤ 1

ρ+(z) =
1

1− z
=
∞∑
i=1

z i |z| > 1,

ρi =

{
1
i! if i ≥ 0
1 if i ≤ −1,

ri =

{
1
i if i ≥ 1
1 if i ≤ 0,

rλ(N) =
1

(
∏N−1

i=1 i!)(N)λ

if `(λ) ≤ N
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Convolution symmetries Applications to matrix models

New matrix models from old

Hermitian matrix integrals of the form

ZN(t) =

∫
M∈HN×N

dµ(M) etr
P∞

i=1 ti M i

=
N∏

a=1

∫
R

dµ0(xa)e
P∞

i=1 ti x i
a∆2(X ),

are KP-Toda τ -functions. The Schur function expansion is

ZN(t) =
∑

`(λ)≤N

πN,dµ(λ)sλ(t)

πN,dµ(λ) =
N∏

a=1

(∫
R

dµ0(xa)

)
∆2(X )sλ([X ])

= (−1)
1
2 N(N−1)N! det(Mλi−i+j+N−1)|1≤i,j≤N

Mij :=

∫
R

dµ0(x)x i+j
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Convolution symmetries Applications to matrix models

Externally coupled matrix model integral

Now consider the externally coupled matrix model integral

ZN,ext (A) :=

∫
M∈HN×N

dµ(M)etr(AM),

where A ∈ HN×N is a fixed N × N Hermitian matrix. Applying the
convolution symmetry of Example 1:

Theorem

Applying the convolution symmetry C̃ρ to the τ -function ZN(t), where
ρ+(z) and ρ−(z) are defined as in Example 1, and choosing the KP
flow parameters as t = [A ] gives, within a multiplicative constant, the
externally coupled matrix integral

C̃ρ(ZN)([A ]) = (
N−1∏
i=1

i!)−1ZN,ext (A).
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Convolution symmetries Applications to matrix models

Externally coupled two-matrix model integral

Itzykson-Zuber exponential coupled 2-matrix model

Z (2)
N (t, t̃) =

∫
M1∈HN×N

dµ(M1)

∫
M1∈HN×N

d µ̃(M2) etr(
P∞

i=1(ti M i
1+t̃i M i

2)+M1M2)

∝
N∏

a=1

(∫
R

dµ0(xa)

∫
R

d µ̃0(ya) e
P∞

i=1(ti x i
a+t̃i y i

a+xaya)

)
∆(X )∆(Y )

Theorem

Applying the convolution symmetry C̃ρ,ρ̃ to Z (2)
N and evaluating at the

parameter values t = [A], t̃ = [B] gives the externally coupled matrix
integral

C̃(2)
ρ,ρ̃(Z (2)

N )([A], [B])) = Z (2)
N,ρ,ρ̃(A,B)
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Convolution symmetries Applications to matrix models

Convolution flows and the Q operator

The Q-operator
Choose an infinite sequence of constants {qj}j∈Z with

|qj | > 1 for j > 0

and define the infinite sqquare matrix Q(q) ∈ MatZ×Z having matrix
elements

Qij = (qj)
i

ΛQ = Q diag(qi)
γ+(t)Q = Q C(T(q, t))

Tj(q, t) :=
∞∑

i=1

ti(qj)
i
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Convolution symmetries Applications to matrix models

The Q-operator (cont’d)

For suitably chosen values of (q, q̃) (see examples below), it is
possible to make triangular decompositions

Q(q) = Q−(q)Q0(q)Q+(q),

where Q0, is of the form

Q0(q) = diag(eφj (q)),

for a suitably defined infinite sequence

φ(q) = {φj(q)} , j ∈ Z,

and Q±(q),Q±(q̃) are invertible triangular matrices of the form

Q±(q) = eA±(q), Q±(q̃) = eA±(q̃),

where A−(q) and A−(q̃) , A+(q), A+(q̃) are, respectively, strictly lower
(−) and strictly upper (+) triangular doubly infinite matrices.
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Convolution symmetries Applications to matrix models

Fermionic representation of the Q-operator

Introduce the fermionic vertex operators

Q̂+(q) := e
P∞

i<j A+
ij (q)ψiψ

†
j , Q̂−(q) := e

P∞
i>j A−ij (q)ψiψ

†
j ,

ˆ̃Q+(q̃) := e
P∞

i<j A−ji (q̃)ψiψ
†
j ,

ˆ̃Q−(q̃) := e
P∞

i>j A+
ji (q̃)ψiψ

†
j ,

Ĉ(φ(q)) := e
P

i∈Z φi (q)Ki , Ĉ(φ(q̃)) := e
P

i∈Z φi (q̃)Ki .

By the equivariance of the Plücker map, we then have

γ̂+(t)Q̂−(q)Ĉ(φ(q))Q̂+(q) = Q̂−(q)Ĉ(φ(q))Q̂+(q)Ĉ(T),
ˆ̃Q−(q̃)Ĉ(φ(q̃))

ˆ̃Q+(q̃)γ̂−(̃t) = Ĉ(T̃)
ˆ̃Q−(q̃)Ĉ(φ(q̃))

ˆ̃Q+(q̃).
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Convolution symmetries Applications to matrix models

Convolution flows and τ functions

Introduce a new basis for the abelian algebra of convolution flow
generators as follows:

Kj(q) :=
∞∑

i=−∞
(qi)

jKi ,

and define, correspondingly

Ĉq(t) := e
P∞

i=1 ti Ki (q) = Ĉ(T(q, t)),

Ĉq̃(̃t) := e
P∞

i=1 t̃i Ki (q̃) = Ĉ(T(q̃, t̃)).
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Convolution symmetries Applications to matrix models

Convolution flows and τ functions (cont’d)

Theorem
The fermionic representation of the tau function may be expressed in
terms of the corresponding Convolution Symmetry flows as: follows

τg(q)(N, t) = r0(N, φ(q))〈N|Q̂+(q)Ĉq(t)ĝ|N〉
τ

(2)
g(q,q̃)

(N, t, t̃) = r0(N, φ(q) + φ(q̃))〈N|Q̂+(q)Ĉq(t)ĝĈq̃(̃t) ˆ̃Q−(q̃)|N〉,

where

ĝ(q) := Q̂−(q)Ĉ(φ(q))Q̂+(q)ĝ

ĝ(q, q̃) := Q̂−(q)Ĉ(φ(q))Q̂+(q)ĝ ˆ̃Q−(q̃)Ĉ(φ(q̃))
ˆ̃Q+(q̃).
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type

Example
Let

qj = eiαq−j , j ∈ Z

where
q = e2πiτ , =(τ) > 0

and α = α(q) is a real valued function of q. Then

Q(q)mn = eimαq−mn = eimαq−
1
2 m2

q
1
2 (m−n)2

e−
1
2 n2

Q(q) = Q0(q)

( ∞∑
m=−∞

q
m2
2 aimαΛm

)
Q0(q),

where
Q0(q) = diag(q−

1
2 m2

)m∈Z
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

Example (cont’d)
The infinite product formula for Jacobi theta functions implies

∞∑
n=−∞

q
n2
2 eiαmzn = ν(q)

∞∏
n=1

(1 + qn− 1
2 eiαz)(1 + qn− 1

2 e−iαz−1)

where

ν(q) =
∞∏

n=1

(1− qn).

Expressing the factors in the infinite product as

1 + qn− 1
2 eiαz = exp

(
−
∞∑

k=1

(−1)k

k
eiαkqk(n− 1

2 )zk

)

1 + qn− 1
2 e−iαz = exp

(
−
∞∑

k=1

(−1)k

k
e−iαkqk(n− 1

2 )z−k

)
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

Example (cont’d)
Replacing the complex parameter z by the infinite shift matrix Λ, we
obtain the factorization

Q(q) = ν(q)Q0(q)Q−(α,q)Q+(α,q)Q0(q)

where

Q±(α,q) =
∞∏

n=1

γ±(m, α, q)

are lower/upper triangular infinite Toeplitz matrices, and

γ±(n, α, q) := exp

(
−
∞∑

k=1

(−1)k

k
eiαkqk(n− 1

2 )Λ±k

)
.
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Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

Example (cont’d)
The fermionic representation of this infinite matrix is therefore given by

Q̂ = ν(q)Ĉ(φ(q))Q̂−(α,q)Q̂+(α,q)Ĉ(φ(q))

where

Q̂±(α,q) =
∞∏

n=1

γ̂±(n, α, q) = exp

(
−
∞∑

k=1

(−1)keiαkq
k
2

k(1− qk )
J±k

)

γ̂±(n, α, q) := exp

(
−
∞∑

k=1

(−1)k

k
eiαkqk(n− 1

2 )J±k

)
φ(q) := {φj(q)}, φj(q) = −iπτ j2, j ∈ Z.
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Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

Example (cont’d)
The formula for the τ function therefore becomes

τg(N, t) = r0(N, φ(q))〈N|Q̂+(α,q)Ĉ(T)ĝ(α,q)|N〉,

where

ĝ(α,q) := Q̂−1
+ (α,q)Q̂−1

− (α,q)Ĉ−1(φ(q))ĝ,

Tj(q, t) :=
∞∑

k=1

tjeikαq−jk .
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Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

Example (cont’d)

Similarly, we introduce a second pair (α(q̃), q̃ = e2πi τ̃ ) and define

˜̂Q±(α̃, q̃) := Q̂−1
± (α̃, q̃). (2.1)

Then the 2-Toda τ function becomes τg(N, t, t̃) =

r0(N, φ(q)− φ̃(q̃))〈N|Q̂+(α,q)Ĉ(T)ĝ(α, α̃,q, q̃)Ĉ(T̃)
˜̂Q−(α̃, q̃)|N〉,

where ĝ(α, α̃,q, q̃) =

:= Q̂−1
+ (α,q)Q̂−1

− (α,q)Ĉ−1(φ(q))ĝ Ĉ−1(φ(q̃))
˜̂Q−1

+ (α̃, q̃)
˜̂Q−1
− ((α̃, q̃),

T̃j :=
∞∑

k=1

t̃jeikα̃q̃−jk , φj(q̃) = −iπτ̃ j2, j ∈ Z.
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Convolution symmetries Applications to matrix models

Triangular boundary operators Q̂(q),
ˆ̃Q(q̃) of Toeplitz type (cont’d)

In particular, choosing ĝ so that

ĝ(α, α̃,q, q̃) = I,

setting
α̃ = α = π, q = q̃, ti = t̃i

and replacing ti by 1
2 ti , we obtain the q-deformed partition function for

plane partitions that was studied by Okounkov and Pandharipande,
and by Nakatsu and Takahashi.

Other choices for the qj ’s give other "convolution flow” representations
of various τ functions (cf. e.g. Wiegmann, Bettelheim, et al).
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