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0. Introduction.

(fM, eg) : oriented n-dimensional pseudo-Riemannian manifold
(M, g) : oriented pseudo-Riemannian submanifold

f :M → fM : isometric immersion

H : mean curvature vector field
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Problem. : Classify f :M → fM with H = 0

• Riemannian case : When fM = Sn(c), M = S2(K) of constant

curvatures c > 0 and K > 0, a full immersion f with H = 0 is congru-

ent to the standard immersion (E. Calabi, J. Diff. Geom., 1967). The

twistor space of fM = Sn(c) and the twistor lift play an important

role.

• In this talk, we consider the problem above in the case of fM = Qn
s (c) =

pseudo-Riemannian space form of constant curvature c and index s, and

M =Lorentz surfaces , in particular, n = 2m and s = m.
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• This talk is consists of

1. Examples of Lorentz surfaces in pseudo-Riemannian space forms

with H = 0.

2. Reflector spaces and reflector lifts.

3. A Rigidity theorem.

4. Applications.
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1. Examples of Lorentz surfaces with H = 0.

• In “K. Miura, Tsukuba J. math., 2007”, pseudo-Riemannian subman-

ifolds of constant curvature in pseudo-Riemannian space forms with

H = 0 are constructed from the Riemannian standard immersion us-

ing “ Wick rotations ”.

K[x] := K[x1, . . . , xn+1] : polynomial algebra in n+ 1 variables

x1, . . . , xn+1 over K (K = R or C).

Kd[x] ⊂ K[x] : space of d-homogeneous polynomials

Rn+1
t : pseudo-Euclidean space of dim=n+ 1 and index=t
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4Rn+1t
:= −

n+1X
i=1

εi
∂

∂x2i
, where εi =

⎧⎪⎨⎪⎩−1 (1 ≤ i ≤ t)

1 (t+ 1 ≤ i ≤ n+ 1)

H(Rn+1
t ) := Ker4Rn+1t

Hd(R
n+1
t ) := H(Rn+1

t ) ∩Kd[x]
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We define ρt : C[x]→ C[x] by

ρt(xi) =

⎧⎪⎨⎪⎩
√−1xi (1 ≤ i ≤ t)

xi (t+ 1 ≤ i ≤ n+ 1)

• ρt is called “Wick rotation”.

Set σt := ρt ◦ ρt and P±
t := Ker(σt|R[x] ∓ idR[x]).

We define H±
d,t(R

n+1
0 ) := P±

t ∩Hd(R
n+1
0 ).
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• Hd(R
n+1
0 ) = H−d,t(Rn+1

0 )⊕H+
d,t(R

n+1
0 )

{ui}i :orthonormal basis Hd(R
n+1
0 ) s.t.

u1, . . . , ul ∈ H−d,t(Rn+1
0 ),

ul+1, . . . um+1 ∈ H+
d,t(R

n+1
0 ),

m+1X
i=1

(ui)
2 = (x21 + · · ·+ x2n+1)

2,

where l = l(d, t) = dimH−d,t(Rn+1
0 ) andm+1 = m(d, t)+1 = dimHd(R

n+1
0 ).
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Hereafter, we assume n = 2 and t = 1 (for simplicity). Then we see

that m = 2d+ 1 and l = d. We define

Ui := Imρt(ui) (i = 1, . . . , d)

and

Ui := Reρt(ui) (i = d+ 1, . . . , 2d+ 1)

Using these function, we define an immersion from φ : Q2
1(1)→ Q2d

d (
d(d+1)

2
)

by φ = (U1, . . . , U2d+1). Note that φ satisfies H = 0.
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For example, when d = 2 (n = 1, t = 1), φ : Q2
1(1)→ Q4

2(3) is given by

U1 = xy, U2 = zx

U3 = yz, U4 =

√
3

6
( +2x2 + y2 + z2), U5 =

1

2
(y2 − z2).

• Composing homotheties and anti-isometries of Q2
1(1) and Q

2d
d (

d(d+1)

2
),

we can obtain immersions from Q2
1(2c/d(d+ 1)) to Q2d

d (c) with H = 0

(c 6= 0). We denote this immersion by φd,c .
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2. Reflector spaces and reflector lifts.

(See “G. Jensen and M. Rigoli, Matematiche (Catania) 45 (1990), 407-

443. ”)

(fM, eg) : oriented 2m-dim. pseudo-Riemannian manifold of
neutral signature (index=1

2
dim fM)

Jx ∈ End(TxfM) s.t.

◦ J2x = I,

◦ (Jx)∗egx = −egx,
◦ dimKer(Jx − I) = dimKer(Jx + I) = m,

◦ Jx preserves the orientation.
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Zx : the set of such Jx ∈ End(TxfM)

Z(fM) :=
[
x∈fM

Zx

(the bundle whose fibers are consist of para-complex structures)

• Z(fM) is called the reflector space of fM , which is one of corre-

sponding objects to the twistor space in Riemannian geometry.

(M, g) : oriented Lorentz surface with para-complex structure

J ∈ Z(M).

f :M → fM : isometric immersion
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Def. : The map eJ : M → Z(fM) satisfying eJ(x)|TxM = f∗ ◦ Jx is

reflector lift of f .

Def. : The reflector lift is called horizontal if e∇ eJ = 0, where e∇ is

the Levi-Civita connection of fM .

• e∇ eJ = 0⇒ H = 0

• Surfaces with horizontal reflector lifts are corresponding to superminimal

surfaces in Riemannian cases.
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Prop. The immersion φm,c : Q
2
1(2c/m(m + 1)) → Q2m

m (c) in §1

admits horizontal reflector lift.
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3. A Rigidity theorem.

(fM, eg) : oriented n-dim pseudo-Riemannian manifold

(M, g) : oriented pseudo-Riemannian submanifold

f :M → fM : isometric immersione∇ : Levi-Civita connection of fM .

We define e∇X1 := X1, e∇(X1, X2) = e∇X1X2 and inductively for k ≥ 3

e∇(X1, . . . , Xk) = e∇X1
e∇(X2, . . . , Xk),

where Xi ∈ Γ(TM).
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We define

Osckx(f) := {( e∇(X1, . . . , Xk))x | Xi ∈ Γ(TM), 1 ≤ i ≤ k}

and

Osck(f) :=
[
x∈M

Osckx(f).

• TM = Osc1(f) ⊂ Osc2(f) ⊂ · · · ⊂ Osck(f) ⊂ · · · ⊂ f#(T fM).

• There exists the maximum numberm such that Osc1(f), . . . ,Oscm(f)

are subbundles of f#(T fM) and the induced metrics of all subbundles

Osc1(f), . . . ,Oscm(f) are nondegenerate. Then f is called

nondegenerately nicely curved

up to m.
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Thm. : Let f , f̄ :M → Q2m
m (c) be an isometric immersions from

a connected Lorentz surface M with horizontal reflector lifts. If

both immersions f and f̄ are nondegenerately nicely curved up to

m, then there exist an isometry Φ of Q2m
m (c) such that f̄ = Φ ◦ f .

Remark. The immersion φm,c : Q
2
1(2c/m(m+1))→ Q2m

m (c) in §1

is nondegenerately nicely curved up to m.
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Cor. : Let f : M → Q2m
m (c) be an isometric immersion from a

connected Lorentz surface M with horizontal reflector lift. If f is

nondegenerately nicely curved up to m and the Gaussian curvature

K is constant, then K = 2c/m(m + 1) and f is locally congruent

to φm,c.
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4. Applications.

• When f is called nondegenerately nicely curved up to m, we can

define the (k−1)-th normal space Nk−1 which is defined the orthogonal

complement subspace of Osck−1(f) in Osck(f).

Def. : When f is nondegenerately nicely curved up to m, we

define (k + 1)-th fundamental form αk+1 as follows :

αk+1(X1, . . . , Xk+1) := ( e∇(X1, . . . , Xk+1)
Nk
,

where Xi ∈ Γ(TM) (1 ≤ i ≤ k + 1) and 1 ≤ k ≤ m− 1
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• If fM = Qn
s (c), α

k+1 is symmetric.

V , W : vector spaces with inner products h , i

β : V × V · · · × V →W : symmetric k-multilinear map to W .

For the sake of simplification, we set

β(Xk) := β(X, . . . ,X| {z }
k

)

for X ∈ V .
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Def. : We say that β is spacelike (resp. timelike) isotropic if

hβ(uk),β(uk)i is independent of the choice of all spacelike (resp.

timelike) unit vectors u. The number hβ(uk),β(uk)i is called space-

like (resp. timelike) isotropic constant of β.

• β is spacelike isotropic with spacelike isotropic constant λ ⇐⇒ β is

timelike isotropic with timelike isotropic constant (−1)kλ.
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Def. : We say that the k-th fundamental form αk is spacelike

(resp. timelike) isotropic if αkp is spacelike (reps. timelike)

isotropic at each point p ∈ M . The function λk : M → R de-

fined by λk(p) := spacelike isotropic constant of αkp is called the

spacelike (resp. timelike) isotoropic function. If the spacelike (resp.

timelike) isotoropic function λk is constant, then k-th fundamental

form αk is called constant spacelike (resp. timelike) isotropic .
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Prop. : Let f :M → Qn
s (c) be an isometric immersion with H =

0. If the higher fundamental forms αk are spacelike isotropic for

2 ≤ k ≤ m and their spacelike isotropic functions are everywhere

nonzero on M . Then we have n ≥ 2m and s ≥ m. In particular, if

n = 2m, then s = m and f admits horizontal reflector lift.
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Cor. : If f :M → Q2m
s (c) be an isometric immersion with H = 0

such that αk are spacelike isotropic for 2 ≤ k ≤ m whose isotropic

functions are everywhere nonzero and M has a constant Gaussian

curvature K, then we have s = m, K = 2c/m(m + 1) and f is

locally congruent to the immersion φm,c
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Consider the following condition :

(†) An isometric immersion f maps each null geodesic of M into

a totally isotropic and totally geodesic submanifold L of fM .

• L is totally isotropic :⇐⇒ eg|L = 0.

• L is totally geodesic :⇐⇒ e∇XY ∈ Γ(TL) for all X, Y ∈ Γ(TL).

Remark. The immersion φm,c satisfies the condition (†).
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Cor. : Let f : M → Q2m
s (c) be an isometric immerison with

H = 0. If K = 2c/m(m + 1) and the condition (†) holds, then

s = m and f is locally congruent to the immersion φm,c.
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