Lorentz surfaces in pseudo-Riemannian

space forms of neutral signature

 with horizontal reflector liftsKazuyuki HASEGAWA (Kanazawa University, Japan)
Joint work with Dr. K. Miura (Ochanomizu Univ. Japan)

0. Introduction.

($\widetilde{M}, \widetilde{g}$) : oriented n-dimensional pseudo-Riemannian manifold
(M, g) : oriented pseudo-Riemannian submanifold
$f: M \rightarrow \widetilde{M}:$ isometric immersion
H : mean curvature vector field

Problem. : Classify $f: M \rightarrow \widetilde{M}$ with $H=0$

- Riemannian case : When $\widetilde{M}=S^{n}(c), M=S^{2}(K)$ of constant curvatures $c>0$ and $K>0$, a full immersion f with $H=0$ is congruent to the standard immersion (E. Calabi, J. Diff. Geom., 1967). The twistor space of $\widetilde{M}=S^{n}(c)$ and the twistor lift play an important role.
- In this talk, we consider the problem above in the case of $\widetilde{M}=Q_{s}^{n}(c)=$ pseudo-Riemannian space form of constant curvature c and index s, and $\xrightarrow[M]{ }=$ Lorentz surfaces, in particular, $n=2 m$ and $s=m$.
- This talk is consists of

1. Examples of Lorentz surfaces in pseudo-Riemannian space forms with $H=0$.
2. Reflector spaces and reflector lifts.
3. A Rigidity theorem.
4. Applications.

1. Examples of Lorentz surfaces with $\boldsymbol{H}=0$.

- In "K. Miura, Tsukuba J. math., 2007", pseudo-Riemannian submanifolds of constant curvature in pseudo-Riemannian space forms with $\underline{H}=0$ are constructed from the Riemannian standard immersion using " Wick rotations".
$\mathrm{K}[x]:=\mathrm{K}\left[x_{1}, \ldots, x_{n+1}\right]:$ polynomial algebra in $n+1$ variables

$$
x_{1}, \ldots, x_{n+1} \text { over } \mathrm{K}(\mathrm{~K}=\mathrm{R} \text { or } \mathrm{C}) .
$$

$\mathrm{K}_{d}[x] \subset \mathrm{K}[x]$: space of d-homogeneous polynomials
R_{t}^{n+1} : pseudo-Euclidean space of $\operatorname{dim}=n+1$ and index $=t$

$$
\triangle_{\mathrm{R}_{t}^{n+1}}:=-\sum_{i=1}^{n+1} \varepsilon_{i} \frac{\partial}{\partial x_{i}^{2}}, \text { where } \varepsilon_{i}=\left\{\begin{array}{cc}
-1 & (1 \leq i \leq t) \\
1 & (t+1 \leq i \leq n+1)
\end{array}\right.
$$

$$
\mathcal{H}\left(\mathrm{R}_{t}^{n+1}\right):=\operatorname{Ker} \triangle_{\mathrm{R}_{t}^{n+1}}
$$

$$
\mathcal{H}_{d}\left(\mathbf{R}_{t}^{n+1}\right):=\mathcal{H}\left(\mathbf{R}_{t}^{n+1}\right) \cap \mathbf{K}_{d}[x]
$$

We define $\rho_{t}: \mathrm{C}[x] \rightarrow \mathrm{C}[x]$ by

$$
\rho_{t}\left(x_{i}\right)=\left\{\begin{array}{lc}
\sqrt{-1} x_{i} & (1 \leq i \leq t) \\
x_{i} & (t+1 \leq i \leq n+1)
\end{array}\right.
$$

- ρ_{t} is called "Wick rotation".

Set $\sigma_{t}:=\rho_{t} \circ \rho_{t}$ and $P_{t}^{ \pm}:=\operatorname{Ker}\left(\left.\sigma_{t}\right|_{\mathrm{R}[x]} \mp i d_{\mathrm{R}[x]}\right)$. We define $\mathcal{H}_{d, t}^{ \pm}\left(\mathrm{R}_{0}^{n+1}\right):=P_{t}^{ \pm} \cap \mathcal{H}_{d}\left(\mathrm{R}_{0}^{n+1}\right)$.

- $\mathcal{H}_{d}\left(\mathbf{R}_{0}^{n+1}\right)=\mathcal{H}_{d, t}^{-}\left(\mathbf{R}_{0}^{n+1}\right) \oplus \mathcal{H}_{d, t}^{+}\left(\mathbf{R}_{0}^{n+1}\right)$
$\left\{u_{i}\right\}_{i}$:orthonormal basis $\mathcal{H}_{d}\left(\mathrm{R}_{0}^{n+1}\right)$ s.t.

$$
\begin{gathered}
u_{1}, \ldots, u_{l} \in \mathcal{H}_{d, t}^{-}\left(\mathrm{R}_{0}^{n+1}\right), \\
u_{l+1}, \ldots u_{m+1} \in \mathcal{H}_{d, t}^{+}\left(\mathrm{R}_{0}^{n+1}\right), \\
\sum_{i=1}^{m+1}\left(u_{i}\right)^{2}=\left(x_{1}^{2}+\cdots+x_{n+1}^{2}\right)^{2},
\end{gathered}
$$

where $l=l(d, t)=\operatorname{dim} \mathcal{H}_{d, t}^{-}\left(\mathbf{R}_{0}^{n+1}\right)$ and $m+1=m(d, t)+1=\operatorname{dim} \mathcal{H}_{d}\left(\mathbf{R}_{0}^{n+1}\right)$.

Hereafter, we assume $n=2$ and $t=1$ (for simplicity). Then we see that $m=2 d+1$ and $l=d$. We define

$$
U_{i}:=\operatorname{Im} \rho_{t}\left(u_{i}\right) \quad(i=1, \ldots, d)
$$

and

$$
U_{i}:=\operatorname{Re} \rho_{t}\left(u_{i}\right) \quad(i=d+1, \ldots, 2 d+1)
$$

Using these function, we define an immersion from $\phi: Q_{1}^{2}(1) \rightarrow Q_{d}^{2 d}\left(\frac{d(d+1)}{2}\right)$ by $\phi=\left(U_{1}, \ldots, U_{2 d+1}\right)$. Note that ϕ satisfies $H=0$.

For example, when $d=2(n=1, t=1), \phi: Q_{1}^{2}(1) \rightarrow Q_{2}^{4}(3)$ is given by

$$
\begin{gathered}
U_{1}=x y, U_{2}=z x \\
U_{3}=y z, U_{4}=\frac{\sqrt{3}}{6}\left(+2 x^{2}+y^{2}+z^{2}\right), U_{5}=\frac{1}{2}\left(y^{2}-z^{2}\right)
\end{gathered}
$$

- Composing homotheties and anti-isometries of $Q_{1}^{2}(1)$ and $Q_{d}^{2 d}\left(\frac{d(d+1)}{2}\right)$, we can obtain immersions from $Q_{1}^{2}(2 c / d(d+1))$ to $Q_{d}^{2 d}(c)$ with $H=0$ $(c \neq 0)$. We denote this immersion by $\phi_{d, c}$.

2. Reflector spaces and reflector lifts.

(See "G. Jensen and M. Rigoli, Matematiche (Catania) 45 (1990), 407443. ")
$(\widetilde{M}, \widetilde{g}):$ oriented $2 m$-dim. pseudo-Riemannian manifold of neutral signature $\left(\right.$ index $\left.=\frac{1}{2} \operatorname{dim} \widetilde{M}\right)$

$$
J_{x} \in \operatorname{End}\left(T_{x} \widetilde{M}\right) \text { s.t. }
$$

- $J_{x}^{2}=I$,
$\circ\left(\boldsymbol{J}_{x}\right)^{*} \widetilde{\boldsymbol{g}}_{x}=-\widetilde{\boldsymbol{g}}_{x}$,
$\circ \operatorname{dim} \operatorname{Ker}\left(J_{x}-I\right)=\operatorname{dim} \operatorname{Ker}\left(J_{x}+I\right)=m$,
- J_{x} preserves the orientation.
Z_{x} : the set of such $J_{x} \in \operatorname{End}\left(T_{x} \widetilde{M}\right)$

$$
\mathcal{Z}(\widetilde{M}):=\bigcup_{x \in \widetilde{M}} Z_{x}
$$

(the bundle whose fibers are consist of para-complex structures)

- $\mathcal{Z}(\widetilde{M})$ is called the reflector space of \widetilde{M}, which is one of corresponding objects to the twistor space in Riemannian geometry.
(M, g) : oriented Lorentz surface with para-complex structure

$$
J \in \mathcal{Z}(M)
$$

$f: M \rightarrow \widetilde{M}:$ isometric immersion

$$
\begin{aligned}
& \text { Def. : The map } \widetilde{J}: M \rightarrow \mathcal{Z}(\widetilde{M}) \text { satisfying }\left.\widetilde{J}(x)\right|_{T_{x} M}=f_{*} \circ J_{x} \text { is } \\
& \text { reflector lift of } f .
\end{aligned}
$$

Def. : The reflector lift is called horizontal if $\widetilde{\nabla} \widetilde{J}=0$, where $\widetilde{\nabla}$ is the Levi-Civita connection of \widetilde{M}.

- $\widetilde{\nabla} \widetilde{J}=0 \Rightarrow H=0$
- Surfaces with horizontal reflector lifts are corresponding to superminimal surfaces in Riemannian cases.

Prop. The immersion $\phi_{m, c}: Q_{1}^{2}(2 c / m(m+1)) \rightarrow Q_{m}^{2 m}(c)$ in $\S 1$ admits horizontal reflector lift.
3. A Rigidity theorem.
$(\widetilde{M}, \widetilde{g})$: oriented n-dim pseudo-Riemannian manifold (M, g) : oriented pseudo-Riemannian submanifold
$f: M \rightarrow \widetilde{M}:$ isometric immersion
$\widetilde{\nabla}:$ Levi-Civita connection of \widetilde{M}.

We define $\tilde{\nabla} X_{1}:=X_{1}, \tilde{\nabla}\left(X_{1}, X_{2}\right)=\tilde{\nabla}_{X_{1}} X_{2}$ and inductively for $k \geq 3$

$$
\tilde{\nabla}\left(X_{1}, \ldots, X_{k}\right)=\widetilde{\nabla}_{X_{1}} \tilde{\nabla}\left(X_{2}, \ldots, X_{k}\right),
$$

where $X_{i} \in \Gamma(T M)$.

We define

$$
\operatorname{Osc}_{x}^{k}(f):=\left\{\left(\widetilde{\nabla}\left(X_{1}, \ldots, X_{k}\right)\right)_{x} \mid X_{i} \in \Gamma(T M), 1 \leq i \leq k\right\}
$$

and

$$
\operatorname{Osc}^{k}(f):=\bigcup_{x \in M} \operatorname{Osc}_{x}^{k}(f)
$$

- $T M=\operatorname{Osc}^{1}(f) \subset \operatorname{Osc}^{2}(f) \subset \cdots \subset \operatorname{Osc}^{k}(f) \subset \cdots \subset f^{\#}(T \widetilde{M})$.
- There exists the maximum number m such that $\operatorname{Osc}^{1}(f), \ldots, \operatorname{Osc}^{m}(f)$ are subbundles of $f^{\#}(T \widetilde{M})$ and the induced metrics of all subbundles $\operatorname{Osc}^{1}(f), \ldots, \operatorname{Osc}^{m}(f)$ are nondegenerate. Then f is called nondegenerately nicely curved
up to m.

Thm. : Let $f, \bar{f}: M \rightarrow Q_{m}^{2 m}(c)$ be an isometric immersions from a connected Lorentz surface M with horizontal reflector lifts. If both immersions f and \bar{f} are nondegenerately nicely curved up to m, then there exist an isometry Φ of $Q_{m}^{2 m}(c)$ such that $\bar{f}=\Phi \circ f$.

Remark. The immersion $\phi_{m, c}: Q_{1}^{2}(2 c / m(m+1)) \rightarrow Q_{m}^{2 m}(c)$ in $\S 1$ is nondegenerately nicely curved up to m.

Cor. : Let $f: M \rightarrow Q_{m}^{2 m}(c)$ be an isometric immersion from a connected Lorentz surface M with horizontal reflector lift. If f is nondegenerately nicely curved up to m and the Gaussian curvature K is constant, then $K=2 c / m(m+1)$ and f is locally congruent to $\phi_{m, c}$.

4. Applications.

- When f is called nondegenerately nicely curved up to m, we can define the $(k-1)$-th normal space N^{k-1} which is defined the orthogonal complement subspace of $\operatorname{Osc}^{k-1}(f)$ in $\operatorname{Osc}^{k}(f)$.

Def. : When f is nondegenerately nicely curved up to m, we define $(k+1)$-th fundamental form α^{k+1} as follows :

$$
\alpha^{k+1}\left(X_{1}, \ldots, X_{k+1}\right):=\left(\widetilde{\nabla}\left(X_{1}, \ldots, X_{k+1}\right)^{N^{k}}\right.
$$

where $X_{i} \in \Gamma(T M)(1 \leq i \leq k+1)$ and $1 \leq k \leq m-1$

- If $\widetilde{M}=Q_{s}^{n}(c), \alpha^{k+1}$ is symmetric.
$\boldsymbol{V}, \boldsymbol{W}:$ vector spaces with inner products \langle,
$\boldsymbol{\beta}: \boldsymbol{V} \times V \cdots \times V \rightarrow \boldsymbol{V}:$ symmetric \boldsymbol{k}-multilinear map to \boldsymbol{W}.

For the sake of simplification, we set

$$
\beta\left(X^{k}\right):=\beta(\underbrace{X, \ldots, X}_{k})
$$

for $\boldsymbol{X} \in \boldsymbol{V}$.

Def. : We say that β is spacelike (resp. timelike) isotropic if $\left\langle\beta\left(u^{k}\right), \boldsymbol{\beta}\left(u^{k}\right)\right\rangle$ is independent of the choice of all spacelike (resp. timelike) unit vectors u. The number $\left\langle\beta\left(u^{k}\right), \beta\left(u^{k}\right)\right\rangle$ is called spacelike (resp. timelike) isotropic constant of β.

- β is spacelike isotropic with spacelike isotropic constant $\boldsymbol{\lambda} \Longleftrightarrow \beta$ is timelike isotropic with timelike isotropic constant $(-1)^{k} \lambda$.

Def. : We say that the k-th fundamental form α^{k} is spacelike (resp. timelike) isotropic if α_{p}^{k} is spacelike (reps. timelike) isotropic at each point $p \in M$. The function $\lambda_{k}: M \rightarrow \mathrm{R}$ defined by $\quad \lambda_{k}(p):=$ spacelike isotropic constant of α_{p}^{k} is called the spacelike (resp. timelike) isotoropic function. If the spacelike (resp. timelike) isotoropic function λ_{k} is constant, then \boldsymbol{k}-th fundamental form α^{k} is called constant spacelike (resp. timelike) isotropic.

Prop. : Let $f: M \rightarrow Q_{s}^{n}(c)$ be an isometric immersion with $H=$
0 . If the higher fundamental forms α^{k} are spacelike isotropic for $2 \leq k \leq m$ and their spacelike isotropic functions are everywhere nonzero on M. Then we have $n \geq 2 m$ and $s \geq m$. In particular, if $n=2 m$, then $s=m$ and f admits horizontal reflector lift.

Cor. : If $f: M \rightarrow Q_{s}^{2 m}(c)$ be an isometric immersion with $H=0$ such that α^{k} are spacelike isotropic for $2 \leq k \leq m$ whose isotropic functions are everywhere nonzero and M has a constant Gaussian curvature K, then we have $s=m, K=2 c / m(m+1)$ and f is locally congruent to the immersion $\phi_{m, c}$

Consider the following condition :
(\dagger) An isometric immersion f maps each null geodesic of M into a totally isotropic and totally geodesic submanifold L of \widetilde{M}.
$\bullet L$ is totally isotropic $:\left.\Longleftrightarrow \widetilde{\boldsymbol{g}}\right|_{L}=0$.

- L is totally geodesic $: \Longleftrightarrow \widetilde{\nabla}_{X} Y \in \Gamma(T L)$ for all $X, Y \in \Gamma(T L)$.

Remark. The immersion $\phi_{m, c}$ satisfies the condition (\dagger).

Cor. : Let $f: M \rightarrow Q_{s}^{2 m}(c)$ be an isometric immerison with $H=0$. If $K=2 c / m(m+1)$ and the condition (\dagger) holds, then $s=m$ and f is locally congruent to the immersion $\phi_{m, c}$.

