Varna 6 June 2011

Balanced metrics, TYZ expansion
and
quantization of Kähler manifolds
http://arxiv.org/abs/1105.5315
joint with
Claudio Arezzo and Fabio Zuddas

Balanced metrics

(M, L) polarized manifold (M compact complex manifold, L very ample holomorphic line bundle over M).

Let g be a Kähler metric on M such that $\omega \in c_{1}(L)$ and h hermitian metric on L such that $\operatorname{Ric}(h)=\omega$.

Kempf's distortion function $T_{g} \in C^{\infty}\left(M, \mathbb{R}^{+}\right)$

$$
T_{g}(x)=\sum_{j=0}^{N} h\left(s_{j}(x), s_{j}(x)\right), x \in M
$$

where $\left\{s_{0}, \ldots, s_{N}\right\}, N+1=\operatorname{dim} H^{0}(L)$, is an o.b. with respect to

$$
\langle s, t\rangle_{h}=\int_{M} h(s, t) \frac{\omega^{n}}{n!}, s, t \in H^{0}(L)
$$

Definition (Donaldson): a polarized metric $g \in c_{1}(L)$ is said to be balanced if $T_{g}=$ cost $=\frac{N+1}{V(M)}, V(M)=\int_{M} \frac{\omega^{n}}{n!}$.

Main results on balanced metrics

Theorem (Zhang, 1996): $\exists g$ balanced, $g \in c_{1}(L) \Leftrightarrow(M, L)$ Chow polystable.

Theorem (Donaldson, 2001): Let $g_{c s c K} \in c_{1}(L)$ and $\frac{\operatorname{Aut}(M, L)}{\mathbb{C}^{*}}$ discrete. Then, for all $m \gg 1, \exists$! balanced metric $g_{m} \in c_{1}\left(L^{m}\right)$ such that $\frac{g_{m}}{m} \xrightarrow{C^{\infty}} g_{\text {cscK }}$. Moreover, if $g_{m} \in c_{1}\left(L^{m}\right)$ is a sequence of balanced metrics such that $\frac{g_{m}}{m} \xrightarrow{C^{\infty}} g_{\infty}$ then g_{∞} is cscK.

Corollary: Let $g_{c s c K} \in c_{1}(L)$ and $\frac{\operatorname{Aut}(M, L)}{\mathbb{C}^{*}}$ discrete. Then (M, L) is asymptotically Chow stable.

Corollary: If $\frac{\operatorname{Aut}(M, L)}{\mathbb{C}^{*}}$ is discrete and it exists $g_{c s c K} \in c_{1}(L)$ then $g_{c s c K}$ is unique in $c_{1}(L)$.

What happens without the assumption on $\operatorname{Aut}(M, L)$

Theorem (C. Arezzo - L. , 2004): Let g and \tilde{g} be two balanced metrics in $c_{1}(L)$. Then there exists $F \in \operatorname{Aut}(M, L)$ such that $F^{*} \tilde{g}=g$.

Theorem (A. Della Vedova - F. Zuddas, 2011): Let $M=$ $B l_{p_{1}, \ldots, p_{4}} \mathbb{C} P^{2}$ (four points in the same line except one). Then there exists a polarization L of M and $g_{c s c K} \in c_{1}(L)$ such that $\left(M, L^{m}\right)$ is not Chow polystable for $m \gg 1$.

Theorem (Chen -Tian, 2008): If $\tilde{g}_{c s c K} \sim g_{c s c K} \Rightarrow \exists F \in \operatorname{Aut}(M)$ such that $F^{*} \tilde{g}_{c s c K}=g_{c s c K}$.

Some problems on balanced metrics

$$
\begin{gathered}
\mathcal{B}(L)=\left\{g_{B} \text { balanced } \mid g_{B} \in c_{1}\left(L^{m_{0}}\right), \text { for some } m_{0}\right\} \\
\mathcal{B}_{c}(L)=\mathcal{B}(L) / \sim \\
\mathcal{B}_{g_{B}}=\left\{m g_{B} \in \mathcal{B}(L) \mid m \in \mathbb{N}\right\}, \quad g_{B} \in \mathcal{B}(L)
\end{gathered}
$$

Problem: study $\# \mathcal{B}_{c}(L)$ and $\# \mathcal{B}_{g_{B}}$.

Some problems on balanced metrics

$$
\begin{aligned}
& \Longrightarrow ? \\
& \# \mathcal{B}_{g_{B}}=\infty \Longrightarrow \# \mathcal{B}_{c}(L)=\infty \Longleftarrow(M, L) \text { asynt.Chow pol. } \\
& \Uparrow \Downarrow ? \text { ? } \downarrow \downarrow \\
& \left\{m g_{B} \quad \text { balanced } \quad \forall m \gg 1 \Leftrightarrow \exists \text { CGR } * \text {-product on }\left(M, \omega_{B}\right)\right\} \\
& \Uparrow \Downarrow ? \\
& \left\{L \quad \text { polarization of }\left(M, g_{h o m}=g_{B}\right), \pi_{1}(M)=1\right\}
\end{aligned}
$$

A conjecture

Conjecture: Let (M, L) be a polarized manifold. If there exists $g_{B} \in \mathcal{B}(L)$ such that $\# \mathcal{B}_{g_{B}}=\infty$ then (M, g_{B}) is homogeneous and $\pi_{1}(M)=1$.

Some results

Theorem 1: Let (M, L) be a polarized manifold, $\operatorname{dim} M=1$. If there exists $g_{B} \in \mathcal{B}(L)$ such that $\# \mathcal{B}_{g_{B}}=\infty$ then $M=\mathbb{C} P^{1}$.

Theorem 2: Let M be a toric manifold, $\operatorname{dim} M \leq 4$. If $g_{K E} \in$ $c_{1}(L), L=K^{*}$. Then $\# \mathcal{B}_{c}(L)=\infty$. Moreover, there exists $g_{B} \in \mathcal{B}(L)$ such that $\# \mathcal{B}_{g_{B}}=\infty$ iff M is either the projective space or the product of projective spaces.

Theorem 3: Let $g_{c s c K}$ be a cscK on a manifold M and let $\tilde{g}_{c s c K}$ be a cscK on $\tilde{M}=B l_{p_{1}, \ldots, p_{k}} M$ obtained by Arezzo-Pacard construction. Assume that there exists a polarization L of $\tilde{g}_{c s c K}$. Then $\# \mathcal{B}_{g_{B}}<\infty$ for all $g_{B} \in \mathcal{B}(L)$.

Balanced and projectively induced metrics

(M, L) polarized manifold, $g \in c_{1}(L), m \in \mathbb{N}^{+}, \operatorname{Ric}\left(h_{m}\right)=m \omega$, $\left\{s_{0}, \ldots, s_{d_{m}}\right\}, d_{m}+1=\operatorname{dim} H^{0}\left(L^{m}\right)$, o.b. for

$$
\langle s, t\rangle_{h}=\int_{M} h_{m}(s, t) \frac{\omega^{n}}{n!}, s, t \in H^{0}\left(L^{m}\right) .
$$

$\varphi_{m}: M \rightarrow \mathbb{C} P^{d_{m}}: x \mapsto\left[s_{0}(x): \cdots: s_{d_{m}}(x)\right]$ coherent states map

$$
\varphi_{m}^{*} \omega_{F S}=m \omega+\frac{i}{2} \partial \bar{\partial} \log T_{m g}(x)
$$

$T_{m g}(x)=\sum_{j=0}^{d_{m}} h_{m}\left(s_{j}(x), s_{j}(x)\right)$.
Therefore: $m g \in c_{1}\left(L^{m}\right)$ is balanced $\Leftrightarrow m g$ is projectively induced by φ_{m}.

Approximation of polarized metrics

Theorem (G. Tian, 1990): Let (M, L) be a polarized manifold and $g \in c_{1}(L)$. Then

$$
\frac{\varphi_{m}^{*} g_{F S}}{m} \xrightarrow{C^{2}} g .
$$

TYZ (Tian-Yau-Zelditch) expansion

Theorem (S. Zelditch, 1998): Let (M, L) be a polarized manifold and $g \in c_{1}(L)$. Then

$$
T_{m g}(x) \sim \sum_{j=0}^{\infty} a_{j}(x) m^{n-j}, a_{0}(x)=1
$$

namely, for all r and k there exists $C_{k, r}$ such that

$$
\left\|T_{m g}(x)-\sum_{j=0}^{k} a_{j}(x) m^{n-j}\right\|_{C^{r}} \leq C_{k, r} m^{n-k-1}
$$

Corollary: Let (M, L) be polarized manifold and $g \in c_{1}(L)$. Then $\frac{\varphi_{m}^{*} g_{F S}}{m} \xrightarrow{C^{\infty}} g$.

Theorem (Z. Lu, 2000): Each $a_{j}(x)$ is a polynomial of the curvature (of the metric g) and of its covariant derivatives. Moreover,

$$
\left\{\begin{array}{l}
a_{1}(x)=\frac{1}{2} \rho \\
a_{2}(x)=\frac{1}{3} \Delta \rho+\frac{1}{24}\left(|R|^{2}-4|R i c|^{2}+3 \rho^{2}\right) \\
a_{3}(x)=\frac{1}{8} \Delta \Delta \rho+\frac{1}{24} \operatorname{div} \operatorname{div}(R, R i c)-\frac{1}{6} \operatorname{div} \operatorname{div}(\rho R i c)+ \\
+\frac{1}{48} \Delta\left(|R|^{2}-4|R i c|^{2}+8 \rho^{2}\right)+\frac{1}{48} \rho\left(\rho^{2}-4|R i c|^{2}+|R|^{2}\right)+ \\
+\frac{1}{24}\left(\sigma_{3}(R i c)-\operatorname{Ric}(R, R)-R(R i c, R i c)\right)
\end{array}\right.
$$

Lemma 1: Let (M, L) be a polarized manifold and $g \in c_{1}(L)$. Let $\mathcal{B}_{g}=\{m g$ is balanced $\mid m \in \mathbb{N}\}$. If $\# \mathcal{B}_{g}=\infty$ then the coefficients $a_{j}(x)$ of $T_{m g}(x) \sim \sum_{j=0}^{\infty} a_{j}(x) m^{n-j}$ are constants for all $j=0,1, \ldots$
proof: Let $\left\{m_{s}\right\}_{s=1,2, \ldots}$ be an unbounded sequence such that $T_{m_{s} g}(x)=T_{m_{s}}$. We know that $a_{0}=1$. Assume that $a_{j}(x)=a_{j}$, for $j=0, \ldots, k-1$. Then,

$$
\left|T_{s, k, n}-a_{k}(x) m_{s}^{n-k}\right| \leq C_{k} m_{s}^{n-k-1}, \quad T_{s, k, n}=T_{m_{s}}-\sum_{j=0}^{k-1} a_{j} m_{s}^{n-j}
$$

for some constants C_{k}.
Then $\left|m_{s}^{k-n} T_{s, k, n}-a_{k}(x)\right| \leq C_{k} m_{s}^{-1}$ and if $\rightarrow \infty$ then $m_{s}^{k-n} T_{s, k, n} \rightarrow$ $a_{k}(x)$ and hence a_{k} is costant. \qquad

The proof of Theorem 1

Theorem 1: Let (M, L) be a polarized manifold, $\operatorname{dim} M=1$. If there exists $g_{B} \in \mathcal{B}(L)$ such that $\# \mathcal{B}_{g_{B}}=\infty$ then $M=\mathbb{C} P^{1}$.
proof:
If $\# \mathcal{B}_{g_{B}}=\infty \stackrel{\text { Lemma1 }}{\Longrightarrow} g_{B} \csc K \Rightarrow M=\mathbb{C} P^{1}$ and $g_{B}=m_{0} g_{F S} . \square$

Lemma 2: Let (M, L) be a polarized manifold and $g=g_{c s c K} \in$ $c_{1}(L)$. Assume that one of the following conditions is satisfied:

1. $m g$ is not proj. induced $\forall m$;
2. there exists $j_{0} \geq 2$ such that $a_{j_{0}} \neq \operatorname{cost}\left(T_{m g}(x) \sim \sum_{j=0}^{\infty} a_{j}(x) m^{n-j}\right)$

Then $\# \mathcal{B}_{g_{B}}<\infty$ for all $g_{B} \in \mathcal{B}(L)$.
proof: Let $g_{B} \in \mathcal{B}(L)$ (g_{B} balanced and $g_{B} \in c_{1}\left(L^{m_{0}}\right)$ for some m_{0})

If $\# \mathcal{B}_{g_{B}}=\infty \quad$ Lemma $1 \quad a_{j}^{B}\left(T_{m g_{B}}(x) \sim \sum_{j=0}^{\infty} a_{j}^{B}(x) m^{n-j}\right)$ are constants for all $j=0,1, \ldots$.

In particular $a_{1}^{B}=\rho_{B} / 2$ is constant and hence (by Chen-Tian theorem) there exists $F \in \operatorname{Aut}(M)$ such that $F^{*} g_{B}=m_{0} g$.

This implies that $m_{0} g$ is proj. induced and that all the a_{j} 's are constants for all $j=0,1, \ldots$ in contrast with 1. and 2 . \square

Remark: There exist polarized metrics $g_{c s c K} \in c_{1}(L)$ such that all the coefficients of TYZ are costants but mg is not projectively induced for all m (e.g. hyperbolic metrics, flat metrics on abelian varieties).

The proof of Theorem 2

Theorem 2: Let M be a toric manifold, $\operatorname{dim} M \leq 4$. If $g_{K E} \in$ $c_{1}(L), L=K^{*}$. Then $\# \mathcal{B}_{c}(L)=\infty$. Moreover, there exists $g_{B} \in \mathcal{B}(L)$ such that $\# \mathcal{B}_{g_{B}}=\infty$ iff M is either the projective space or the product of projective spaces.
idea of the proof:
$\# \mathcal{B}_{c}(L)=\infty$ follows by the fact that symmetric toric manifolds ($M, L=K^{*}$) are asympt. Chow polystable.

Hard part: $m g_{K E}$ is proj. induced for some m iff M is either the projective space or the product of projective spaces. Conclusion follows by Lemma 2. \square

The proof of Theorem 3

Theorem 3: Let $g_{c s c K}$ be a csck on a manifold M and let $\tilde{g}_{c s c K}$ be a csck on $\tilde{M}=B l_{p_{1}, \ldots, p_{k}} M$ obtained by Arezzo-Pacard construction. Assume that there exists a polarization L of $\tilde{g}_{c s c K}$. Then $\# \mathcal{B}_{g_{B}}<\infty$ for all g_{B} in $\mathcal{B}(L)$.
idea of the proof: One can prove that the coefficient a_{2} of TYZ is not constant so the conclusion follows again by Lemma 2. \square

Some open problems on TYZ

1. Classify the Kähler manifolds where the coefficients of TYZ are all constants.
2. Classify the Kähler manifolds where $a_{k}=0$, for $k>n$.

Teorema (L., 2005): There exists an open set $U \subset M$ such that:

$$
a_{k}(x)=C_{k}(1)+\sum_{\substack{r+j=k \\ r \geq 0 \\ j \geq 1}} C_{r}\left(\tilde{a}_{j}(x, y)\right)_{\mid y=x}
$$

$$
\mathcal{L}_{m}(f(x))=\int_{U} f(y) e^{-m D(x, y)} \frac{\omega^{n}}{n!}(y) \sim \frac{1}{m^{n}} \sum_{r \geq 0} m^{-r} C_{r}(f)(x),
$$

$$
T_{m g}(x, \bar{y}) \sim \sum_{j \geq 0} a_{j}(x, \bar{y}) m^{n-j} \Rightarrow\left|T_{m \omega}(x, \bar{y})\right|^{2} \sim m^{2 n}\left(1+\sum_{j=1}^{+\infty} \tilde{a}_{j}(x, y) m^{-j}\right)
$$

