M a complete connected Riemannian manifold, dim M = n.

 $G \subset Iso(M)$, closed and connected.

Isometric action of G on M

$$G \times M \to M$$

 $(g, x) \to gx$

 $x \in M$, the *G*-orbit containing x:

$$G(x) = \{gx : g \in G\}$$

Orbit space $\frac{M}{G} = \{G(x) : x \in M\}$

$$\pi: M \to \frac{M}{G}, \pi(x) = G(x)$$

If $\pi(x)$ is interior (boundary) point of $\frac{M}{G} \mapsto G(x)$ is called a principal (singular) orbit. $dim \frac{M}{G} = n - max_{x \in M} dim G(x)$

Definition: M is a G-manifold of cohomogeneity k if $dim \frac{M}{G} = k$. We denote it by Coh(M, G) = k.

Coh(M,G)=0

M is homogeneous $M\simeq \frac{G}{G_x}$

 $G_x = \{g \in G : gx = x\}$

4 If Coh(M,G) = 0 and $\kappa_M \leq 0 \Rightarrow M \simeq R^m \times T^{n-m}$ (Wolf).

Coh(M,G)=1

 $\clubsuit \frac{M}{G}$ is homeomorphic to one of the following

$$R, S^1, [0, +\infty), [-1, 1]$$

4 If $\kappa_M < 0$, dimM > 2 then $\pi_1(M) = 0$ or $\pi_1(M) = Z^p, p \ge 1$

If $p = 1 \Rightarrow$ One orbit $\simeq S^1$; other orbits covered by $S^{n-2} \times R$. $p > 1 \Rightarrow$ each orbit $\simeq R^{n-1-p} \times T^p$; $M \simeq R^{n-p} \times T^p$.

 $\kappa_M \leq 0$ are also studied recently.

 $\kappa_M > 0$ open problem.

$Coh(M,G)=2, \kappa_M=0$

Example: $M = R^{n-1} \times S^1$, $n \ge 3$, G = SO(n-1)

 $g \in SO(n-1), \ x = (x_1, x_2) \in R^{n-1} \times S^1 \Rightarrow g(x) = (gx_1, x_2)$

Principal orbit = $S^{n-2}(c)$, for some c depending on orbits. $x = (0, x_2) \in \mathbb{R}^{n-1} \times S^1$, then the (singular) orbit G(x) is equal to $\{x\}$. The union of singual orbits $\simeq S^1$.

Example Let $G_1 \subset SO(m-1)$, $Coh(G_1, S^{m-1}) = 1$ (for example $G_1 = SO(m-2)$). Put $M^n = R^m \times T^{n-m}$, $n > m \ge 3$, $G = G_1 \times T^{n-m}$, which acts on $R^m \times T^{n-m}$ by product action. Each principal C orbit $= N^{m-2}(c) \times T^{n-m}$, where $N^{m-2}(c)$ is a homogeneous by

Each principal G-orbit = $N^{m-2}(c) \times T^{n-m}$, where $N^{m-2}(c)$ is a homogeneous hypersurface of $S^{m-1}(c)$ (c depends on orbits).

If $x = (0, y) \in \mathbb{R}^m \times T^{n-m}$ then the (singular) orbit G(x) is isometric to T^{n-m} .

Example Let $M^n = R^3 \times T^{n-3}$, $n \ge 3$, and let $G = \{g_\theta = (e^{i\theta}, \theta) : \theta \in R\}$. Consider the following action of G on M:

$$x = (x_1, x_2, x_3) \in \mathbb{R}^3, \ (x, y) \in \mathbb{R}^3 \times T^{n-3}, \ g_\theta \in G$$
$$\Rightarrow g_\theta(x, y) = (x_1 \cos\theta, x_2 \sin\theta, x_3 + \theta, y)$$

M is a cohomogeneity two *G*-manifold and each principal orbit is isometric to $H \times T^{n-3}$, where *H* is a helix in \mathbb{R}^3 . If $x = (0, 0, x_3) \in \mathbb{R}^3$ then the (singular) orbit G(x, y) is isometric to $\mathbb{R} \times T^{n-3}$.

Example Let $M^n = T^2 \times T^{n-2} \times R^m$, $n \ge 3$, and let $G = T^{n-2} \times R^m$, which acts on M in the following way:

$$g = (h, b) \in T^{n-2} \times R^m, \ (x_1, x_2, x_3) \in T^2 \times T^{n-2} \times R^m$$

 $\Rightarrow g(x) = (x_1, h(x_2), x_3 + b)$

M is a cohomogeneity two G-manifold and each orbit is diffeomorphic to $T^{n-2}\times R^m.$

Theorem ($Coh(M,G)=2, \kappa_M = 0$) One of the

following is true:

(a) *M* is simply connected or $\pi_1(M) = Z$ Each principal orbit= $S^{n-2}(c)$, for some c > 0 (*c* depends on orbits).

(b) $\pi_1(M) = Z^l$ and one of the following is true:

. **(b1)** There is a positive integer m, 2 < m < n, such that Each principal orbit is covered by $N^{m-2}(c) \times R^{n-m}$, where $N^{m-2}(c)$ is a homogeneous hypersurface of $S^{m-1}(c)$ (c > 0 depends on orbits). There is a unique orbit diffeomorphic to $T^l \times R^{n-m-l}$.

. **(b2)** Each principal orbit is covered by $S^r \times R^{n-r-2}$, for some positive integer r.

. **(b3)** Each principal orbit is covered by $H \times R^{n-m}$, such that H is a helix in R^m . There is an orbit diffeomorphic to $T^l \times R^t$, for some non-negative integer t.

(c) Each orbit $\simeq R^t \times T^l$, for some nonnegative integer t (t = n - l - 2, if the orbit is principal)

Theorem (Coh $(M^{n+2}, G) = 2, \kappa_M < 0, Fix(G, M) \neq \emptyset$) *Then*

(a) M is diffeomorphic to $S^1 \times R^{n+1}$ or $B^2 \times R^n$ (B^2 is the mobius band).

(b) Fix(G, M) is diffeomorphic to S^1 .

(c) Each principal orbit is diffeomorphic to S^n .

Theorem ($Coh(M^{n+2}, G) = 2$, $\kappa_M < 0$, G is non-semisimple, singular orbits (if there is any) are fixed points of G) *Then one of the following is true:*

(1) M is simply connected (diffeomorphic to \mathbb{R}^{n+2}).

(2) *M* is diffeomorphic to $S^1 \times R^{n+1}$ or $B^2 \times R^n(B^2)$ is the mobious band). Each principal orbit is diffeomorphic to S^n . Union of singular orbits (Fix(G, M)) is diffeomorphic to S^1 .

(3) *M* is diffeomorphic to $S^1 \times R^2$ or $B^2 \times R$. All orbits are diffeomorphic to S^1 . (4) $\pi_1(M) = Z^p$ for some positive integer *p*, and all orbits are diffeomorphic to $R^{n-p} \times T^p$.

Theorem (Coh $(M^{n+2}, G) = 2, \kappa_M = c < 0$)

Then either M is simply connected or one of the following is true: (1) All orbits $\simeq T^{n-m} \times R^m$. (2) $\pi_1(M) = Z$, There is on orbit $\simeq S^1$ or $Fix(G, M) = S^1$. (3) $\pi_1(M) = Z^k$, k > 1, and there is two types of orbits, one type diffeomorphic to $T^k \times R^n$ and the other types covered by $S^{n-m} \times R^m$.

Theorem If \mathbb{R}^n , $n \ge 3$, is of cohomogeneity two under the action of a closed and connected Lie group G of isometries, then $\frac{\mathbb{R}^n}{G}$ is homeomorphic to \mathbb{R}^2 or $[0, +\infty) \times \mathbb{R}$.