On the Involute B-scrolls In the Euclidean 3 - space $/ E^{3}$
 The Involute B-scrolls

Şeyda Kılıçoğlu

Bașkent University, Turkey
XIII ${ }^{\text {th }}$ International Conference Geometry, Integrability and Quantization, June 3-8 2011, Varna, Bulgaria

Introduction

Some of the earliest research results about plane curves were motivated by the desire to build more accurate clocks. Practical designs were based on the motion of a pendulum, requiring careful study of motion due to gravity first carried out by Galileo, Descartes, and Mersenne. The culmination of these studies was the work of Christian Huygens(1629-1695) in his 1673 treatise. He is also known for his work in optics. Some of the ideas introduced in Huygens's classic work,[6] such as the involute and evolute of a curve, are part of our current geometric language. The idea of a string involute is due to C . Huygens, he discovered involutes while trying to build a more accurate clock[1].

Introduction

The involute of a given curve is a well-known concept in Euclidean-3 space $I E^{3}$. We can say that ;evolute and evolvent is a method of derivying a new curve based on a given curve. The evolvent is often called the involute of the curve. Involvents play a part in the construction of gears[7]. Evolute is the locus of the centers of tangent circles of the given planar curve.

Introduction

It is well-known that, if a curve is differentiable in an open interval, at each point, a set of mutually orthogonal unit vectors can be constructed. And these vectors are called Frenet frame or moving frame vectors. The rates of these frame vectors along the curve define curvatures of the curves. $B-$ scrolls are the special ruled surfaces. B-scroll over null curves with null rulings in 3-dimensional Lorentzian space form has been introduced by L. K. Graves [2].
In this study we will define and work on involute curves and involute B -scroll of any curve in Euclidean-3 space $I E^{3}$.

Preliminaries

Let α and β be the curves in Euclidean 3-space. The tangent lines to a curve $\alpha(s)$ generate a surface called the tores of α. If the curve $\beta(s)$ which lies on the tores intersect the tangent lines orthogonally is called an involute of $\alpha(s)$. If a curve $\beta(s)$ is an involute of $\alpha(s)$, then by definition $\alpha(s)$ is an evolute of $\beta(s)$. Hence given $\beta(s)$, its evolutes are the curves whose tangent lines intersect $\beta(s)$ orthogonally. If $\beta(s)$ is a point on an involute β, then $\beta(s)-\alpha(s)$ is propotional to $V_{1}(s)$. Thus the involute $\beta(s)$ will have a representation of the form
$\beta(s)=\alpha(s)+\lambda(s) V_{1}(s)[5]$.

Preliminaries

Theorem

In the Euclidean 3 - space $E^{3}, \beta \subset I E^{3}$, if the curve $\beta(s)$ is the involute of $\alpha(s)$ with tangent vector $V_{1}(s)[5]$, then we have that $\beta(s)=\alpha(s)+(c-s) V_{1}(s) ; \forall s \in I, c=$ constant

Preliminaries

Example

As an example for the involute curve, the red curve is the involute of the blue sine curve

Preliminaries

Thus there exist an infinite number of involutes for each constant c. If curve α is the evolute of curve β, then curve β is the involute of curve α. The opposite is true locally. When the tangent line of a curve $\alpha(s)=\alpha$ is given by $\beta=\alpha+\lambda V_{1},-\infty<\lambda<+\infty$, then

$$
\left\|\frac{d \beta(s)}{d \lambda}\right\|=\left\|V_{1}\right\|=1
$$

That is, λ is a natural parameter. Also since $\beta=\alpha$ for $\lambda=0$, it follows that $|\lambda|$ is the distance between the point β on the tangent line and the point α on $\alpha(s)[5]$.

Preliminaries

All involutes of a given curve are parallel to each other. This property also makes it easy to see that evolute of a curve is the envelope of its normals. If we calculate the distance between the congruent points of two involutes $\beta_{1}(s)=\alpha(s)+\left(c_{1}-s\right) V_{1}(s)$ and $\beta_{2}(s)=\alpha(s)+\left(c_{2}-s\right) V_{1}(s)$ we have remains constant for all s and equal to $\left|c_{1}-c_{2}\right|, \forall s \in I[5]$

Preliminaries

In the Euclidean $3-$ space $I E^{3}, \alpha, \beta \subset I E^{3}$, if the curve $\beta(s)$ is the involute of $\alpha(s)$, then for $\forall s \in I, c=$ constant

$$
d(\alpha(s), \beta(s))=|c-s|
$$

is the distance between the arclengthed curves $\alpha(s)$ and $\beta(s)$.

Preliminaries

Example

Along the circle $\alpha(t)=(a \cos t, a \sin t), a>0$, we have the involute curve of $\alpha(t)$ is
$\beta(t)=(a \cos t-(c-a t) \sin t, a \sin t+(c-a t) \cos t)$

Preliminaries

Example

Let us consider the circular helix $\alpha(t)=(a \cos t, a \sin t, b t), a>0$ is a, then the involute curve of the curve $\alpha(t)$ is

$$
\begin{aligned}
\beta(t) & =(a[(\cos t+t \sin t)-\gamma \sin t], a[(\sin t-t \cos t)+\gamma \cos t], \gamma b \\
\gamma & =c\left(a^{2}+b^{2}\right)^{\frac{-1}{2}} \text { and } t=s\left(a^{2}+b^{2}\right)^{\frac{-1}{2}}
\end{aligned}
$$

Frenet apparatus and Frenet formulas of the Involute curve

As shown in the following Figure, that the involute is a planar curve, whose plane is $z=\gamma b$

Frenet apparatus and Frenet formulas of the Involute curve

The set, whose elements are frame vectors and curvatures of a curve, is called Frenet apparatus of the curves. The following result shows that we can write the Frenet apparatus of the involute curve based on the its evolute curve. And also we can introduce the Frenet Formulas of the involute curve based on the Frenet apparatus of its evolute curve.

Frenet apparatus and Frenet formulas of the Involute curve

Theorem

In the Euclidean $3-$ space $I E^{3}, \alpha, \beta \subset I E^{3}, \alpha(s)$ and $\beta\left(s^{*}\right)$ are the arclengthed curves with the arcparametres s and
s^{*},respectively. Let V_{1}, V_{2}, V_{3} and $V_{1}^{*}, V_{2}^{*}, V_{3}^{*}$ be Frenet vectors belong to the the curves $\alpha(s)$ and the involute $\beta\left(s^{*}\right)$, respectively. If the curve $\beta\left(s^{*}\right)$ is the involute of the curve $\alpha(s)$ then we have the equation[3]

$$
\left\langle V_{1}, V_{1}^{*}\right\rangle=0
$$

Frenet apparatus and Frenet formulas of the Involute curve

Theorem

In the Euclidean $3-$ space $I E^{3}, \alpha, \beta \subset I E^{3}, \alpha(s)$ and $\beta\left(s^{*}\right)$ are the arclengthed curves with the arcparametres s and s^{*}, respectively. Let the first and second curvatures of the curve $\alpha(s)$ and $\beta\left(s^{*}\right)$ be k_{1}, k_{2} and k_{1}^{*}, k_{2}^{*} respectively. The Frenet vector fields V_{1}, V_{2}, V_{3} and $V_{1}^{*}, V_{2}^{*}, V_{3}^{*}$ which belong to the curve α and β, respectively. If $\beta\left(s^{*}\right)$ is the involute of the curve $\alpha(s)$. We have the following equations[3]

$$
\begin{aligned}
& V_{1}^{*}=V_{2} ; \lambda k_{1}>0, \lambda=(c-s) \\
& V_{2}^{*}=\left(-k_{1} V_{1}+k_{2} V_{3}\right)\left(\lambda k_{1} k_{1}^{*}\right)^{-1} \\
& V_{3}^{*}=\left(k_{2} V_{1}+k_{1} V_{3}\right)\left(\lambda k_{1} k_{1}^{*}\right)^{-1}
\end{aligned}
$$

Frenet apparatus and Frenet formulas of the Involute curve

The ratio of the arc parametres of these curves is $\frac{d s}{d s^{*}}=\frac{1}{\lambda k_{1}}$. The first curvature of involute β is

$$
k_{1}^{*}=\sqrt{\frac{k_{1}^{2}+k_{2}^{2}}{\lambda^{2} k_{1}^{2}}}, \lambda=(c-s), k_{1} \neq 0 .
$$

If we use this result at the equation V_{2}^{*} and V_{3}^{*}, we have

$$
\begin{aligned}
& V_{1}^{*}=V_{2} ; \lambda k_{1}>0 \\
& V_{2}^{*}=\left(-k_{1} V_{1}+k_{2} V_{3}\right)\left(k_{1}^{2}+k_{2}^{2}\right)^{\frac{-1}{2}} \\
& V_{3}^{*}=\left(k_{2} V_{1}+k_{1} V_{3}\right)\left(k_{1}^{2}+k_{2}^{2}\right)^{\frac{-1}{2}}
\end{aligned}
$$

Frenet apparatus and Frenet formulas of the Involute curve

Corollary

If the second curvature k_{2} of the curve $\alpha(s)$ is equal to zero, that is $\alpha(s)$ is a planar curve, then

$$
k_{1}^{*}=\frac{1}{\lambda}, \lambda>0
$$

Corollary

If the second curvature k_{2} of the curve $\alpha(s)$ is constant but not equal to zero, then $\dot{k}_{2}=0$. Hence we have that

$$
\left(k_{1}^{*}\right)^{2}=\frac{k_{1}^{2}+k_{2}^{2}}{\lambda^{2} k_{1}^{2}}, k_{1} \neq 0
$$

Frenet apparatus and Frenet formulas of the Involute curve

Theorem

In the Euclidean 3 - space $I E^{3}$, let $\alpha(s)$ and $\beta\left(s^{*}\right)$ be the arclengthed curves with the arcparametres s and s^{*}, respectively. Let $\beta\left(s^{*}\right)$ be the involute of the curve $\alpha(s)$. The Frenet vector fields V_{1}, V_{2}, V_{3} and $V_{1}^{*}, V_{2}^{*}, V_{3}^{*}$ of α and β, respectively. Let the first and second curvatures of the curve $\alpha(s)$ be k_{1} and k_{2}, respectively. We have the differantial of the Frenet vector fields $V_{1}^{*}(s), V_{2}^{*}(s), V_{3}^{*}(s)$
as $\left[\begin{array}{c}\dot{V}_{1}^{*} \\ \dot{V}_{2}^{*} \\ \dot{V}_{3}^{*}\end{array}\right]=\left[\begin{array}{ccc}\frac{-1}{\lambda} & 0 & \frac{k_{2}}{\lambda k_{1}} \\ \frac{k_{2} k_{2}^{*}}{\lambda k_{1} k_{1}^{*}} & -k_{1}^{*} & \frac{k_{2}^{*}}{\lambda k_{1}^{*}} \\ \frac{1}{\lambda} & 0 & -\frac{k_{2}}{\lambda k_{1}}\end{array}\right]\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]$.

Frenet apparatus and Frenet formulas of the Involute curve

Theorem

In the Euclidean 3 - space $I E^{3}$, let $\alpha(s)$ and $\beta\left(s^{*}\right)$ are the arclengthed curves with the arcparametres s and s^{*}, respectively. . Let the first and second curvatures of the curve $\alpha(s)$ be k_{1} and k_{2}, respectively. If the second curvature of β involute is k_{2}^{*}, If $\beta\left(s^{*}\right)$ is the involute of the curve $\alpha(s)$ for $\lambda=(c-s)$ then

$$
k_{2}^{*}=\frac{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}{\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)}, c \text { is constant. }
$$

Frenet apparatus and Frenet formulas of the Involute curve

Corollary

If the second curvature k_{2} of the curve α is equal to zero, $k_{2}=0$, then $k_{2}^{*}=0$; that is if the curve α is a planar curve, then the involute of α is a planar curve too.

Corollary

If the second curvature k_{2} of the curve $\alpha(s)$ is constant but not equal to zero, then $\dot{k}_{2}=0$. Hence we have that

$$
k_{2}^{*}=-\frac{k_{1}^{\prime} k_{2}}{\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)} .
$$

Frenet apparatus and Frenet formulas of the Involute curve

Corollary

If the curve $\alpha(s)$ is a helix, then the involute $\beta(s)$ of the curve $\alpha(s)$ is a planar curve. If the curve $\alpha(s)$ is a helix
$k_{2}^{*}=\frac{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}{\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)}=\frac{\left(\frac{k_{2}}{k_{1}}\right)^{\prime}}{\frac{\lambda\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}}}=0$

Involute B-scroll In the Euclidean 3-space

Definition

In the Euclidean 3 - space $I E^{3}$, let $\alpha(s)$ be an arclengthed curve.
The equation

$$
\varphi(s, u)=\alpha(s)+u V_{3}(s)
$$

is the parametrization of the ruled surface which is called $B-$ scroll (binormal scroll) [1]. The directrix of this $B-$ scroll is the curve $\alpha(s)$. The generating space of this $B-$ scroll is spaned by binormal subvector V_{3}. Here $S p\left\{V_{1}, V_{2}\right\}$ is the osculator plane of the curve $\alpha(s)$.

Involute B-scroll In the Euclidean 3-space

Definition

In the Euclidean 3 - space $I E^{3}$, let $\alpha(s)$ and $\beta\left(s^{*}\right)$ be the arclengthed curves. Let Frenet vector fields V_{1}, V_{2}, V_{3} and $V_{1}^{*}, V_{2}^{*}, V_{3}^{*}$ of α and β, respectively. If the curve $\beta(s)$ is the involute of the curve $\alpha(s)$. The equation

$$
\varphi^{*}(s, v)=\beta(s)+v V_{3}^{*}(s)
$$

is the parametrization of the ruled surface which is called involute $B-$ scroll (binormal scroll) of the curve α. The directrix of this involute B-scroll is the involute curve
$\beta(s)=\alpha(s)+(c-s) V_{1}(s)$ of the curve $\alpha(s)$. The generating space of $B-s c r o l l$ is spaned by binormal subvector V_{3}^{*}. Here $\operatorname{Sp}\left\{V_{1}^{*}, V_{2}^{*}\right\}$ is the osculator plane of the curve β.

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean 3 - space $I E^{3}$, let $V_{1}, V_{2}, V_{3}, k_{1}, k_{2}$ and
$V_{1}^{*}, V_{2}^{*}, V_{3}^{*}, k_{1}^{*}, k_{2}^{*}$ be Frenet apparatus of the curve α and the involute curve β, respectively. The parametrization of the involute B - scroll of the curve $\alpha(s)$ is

$$
\begin{aligned}
\varphi^{*}(s, v) & =\alpha(s)+\left(\lambda+\frac{v k_{2}(s)}{\sqrt{k_{1}^{2}+k_{2}^{2}}}\right) V_{1}(s)+\frac{v k_{1}(s)}{\sqrt{k_{1}^{2}+k_{2}^{2}}} V_{3}(s) \\
\lambda & =(c-s), \lambda k_{1}>0
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean 3 - space $I E^{3}$, let $k_{1}, k_{2}, V_{1}, V_{2}, V_{3}$ and
$k_{1}^{*}, k_{2}^{*}, V_{1}^{*}, V_{2}^{*}, V_{3}^{*}$ be Frenet apparatus of the nonplanar curve α and the involute curve β, respectively. The intersection of the involute B - scroll of $\alpha(s)$ and B - scroll of the curve $\alpha(s)$ is a curve with parametrization

$$
\varphi(s)=\alpha(s)+\left(-\lambda \frac{k_{1}(s)}{k_{2}(s)}\right) V_{3}(s), \lambda=c-s
$$

Involute B-scroll In the Euclidean 3-space

Proof.

Under the conditions

$$
\left(\lambda+\frac{v k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}}\right)=0 \text { and } \frac{v k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}}=u
$$

we get

$$
u=-\lambda \frac{k_{1}}{k_{2}}, k_{2} \neq 0
$$

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean $3-$ space $I E^{3}$, the Frenet vectors V_{1}, V_{2}, V_{3} of curve α

$$
\varphi(s, u)=\alpha(s)+u V_{3}(s)
$$

is the parametrization of the ruled surfaces which is called B - scroll (binormal scroll). Then the normal vector field [4] of ruled surface B - scroll is

$$
N=\frac{-u k_{2} V_{1}-V_{2}}{\sqrt{1+u^{2} k_{2}^{2}}}
$$

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean 3 - space $I E^{3}$, the normal vector field of involute $B-$ scroll of the curve $\alpha(s)$ is

$$
\begin{aligned}
N^{*}= & \frac{\lambda k_{1}^{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}{\sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}}} V_{1} \\
& +\frac{-v\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}}} V_{2} \\
& -\frac{\lambda k_{1} k_{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}{\sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}}} V_{3}
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Proof.

We already have the equation of the involute B - scroll of the curve $\alpha(s)$, And also it is well known that the normal vector field N^{*} of any B - scroll surface [4] is

$$
N^{*}=\frac{-v k_{2}^{*} V_{1}^{*}-V_{2}^{*}}{\sqrt{1+v^{2} k_{2}^{* 2}}}
$$

so normal vector field N^{*} of the involute $B-$ scroll is

Involute B-scroll In the Euclidean 3-space

Proof.

$$
\begin{aligned}
N^{*}= & \frac{-v\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}}} V_{2} \\
& -\frac{-k_{1} V_{1}+k_{2} V_{3}}{\left(\frac{\sqrt{k_{1}^{2}+k_{2}^{2}}}{\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)}\right) \sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}}}
\end{aligned}
$$

This completes the proof.

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean 3 - space $I E^{3}$, let us consider the involute $B-$ scroll of the curve $\alpha(s)$ given by $\varphi^{*}(s, v)=\beta(s)+v V_{3}^{*}(s)$. if the normal vector field N^{*} of involute $B-$ scroll of the curve $\alpha(s)$ and the normal vector field N of B-scroll of the curve $\alpha(s)$ are perpendicular to each other, then

$$
v=u \frac{\lambda k_{1}^{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}{\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}
$$

Involute B-scroll In the Euclidean 3-space

Proof.

Lets rename the coefficients of the normal vector fields N^{*} of involute B - scroll of the curve $\alpha(s)$ as δ, ε and η, we get $N^{*}=\delta V_{1}+\varepsilon V_{2}+\eta V_{3}$. Using the orthogonality condition; If $N^{*} \perp N$, then $\left\langle N^{*}, N\right\rangle=0$ and

$$
\begin{aligned}
\delta \frac{-u k_{2}}{\sqrt{1+u^{2} k_{2}^{2}}} & =\varepsilon \frac{1}{\sqrt{1+u^{2} k_{2}^{2}}} ; \sqrt{1+u^{2} k_{2}^{2}} \neq 0 \\
u k_{2} \delta & =-\varepsilon ; \sqrt{\left(\lambda k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)^{2}+v^{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)^{2}} \neq 0 \\
\frac{u}{v} & =\frac{\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\lambda k_{1}^{2} k_{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Corollary

If $\alpha(s)$ is helix , then $\left(\frac{k_{2}}{k_{1}}\right)^{\prime}=0$ the normal vector field N^{*} of involute B - scroll of the curve $\alpha(s)$ and the normal vector field N of B - scroll of the curve $\alpha(s)$ cant be perpendicular to each other.

$$
\begin{aligned}
\frac{u}{v} & =\frac{1}{\lambda k_{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}\left(\frac{k_{2}}{k_{1}}\right)^{\prime}=0 \\
v & \neq 0, u=0
\end{aligned}
$$

That is there are not any B - scroll surfaces.

Involute B-scroll In the Euclidean 3-space

Theorem

In the Euclidean 3 - space $I E^{3}$, if the Normal vector field N^{*} of involute B-scroll of the curve $\alpha(s)$ and the Normal vector field N of B - scroll of the curve $\alpha(s)$ can not be parallel to each other.

Involute B-scroll In the Euclidean 3-space

Proof.

Using the condition of parallellizm;

$$
\text { If } N / / N^{*}, \frac{\delta}{\frac{-u k_{2}}{\sqrt{1+u^{2} k_{2}^{2}}}}=\frac{\varepsilon}{\frac{-1}{\sqrt{1+u^{2} k_{2}^{2}}}} \text { and } \eta=0
$$

we get

$$
\begin{aligned}
u v & =\frac{-\lambda k_{1}^{2} \sqrt{k_{1}^{2}+k_{2}^{2}}}{k_{2}\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)} \text { and } \lambda k_{1} k_{2} \sqrt{k_{1}^{2}+k_{2}^{2}}=0 \\
u v & =0
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Example

In the Euclidean 3 - space $I E^{3}$, along the helix $\alpha(t)=(a \cos t, a \sin t, b t), a>0$, we have the involute $B-s c r o l l$ of the helix $\alpha(t)$ is

$$
\begin{aligned}
\varphi^{*}(t, v) & =\beta(t)+v V_{3}^{*}(t) \\
& =(a[(\cos t+t \sin t)-\gamma \sin t], a[(\sin t-t \cos t)+\gamma \cos t]
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Example

Then we obtain the intersection of the involute B -scroll of the helix $\alpha(s)$ and B-scroll of a nonplanar curve $\alpha(s)$ as a curve with parametrization

$$
\begin{aligned}
\varphi(s) & =\left(a \cos t+\frac{\lambda a \sin t}{\sqrt{\left(a^{2}+b^{2}\right)}}, a \sin t-\frac{\lambda a \cos t}{\sqrt{\left(a^{2}+b^{2}\right)}}, b t+\frac{\lambda a^{2}}{b \sqrt{\left(a^{2}+1\right.}}\right. \\
t & =s\left(a^{2}+b^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

Involute B-scroll In the Euclidean 3-space

Example

Along the circle $\alpha(t)=(a \cos t, a \sin t, 0), a>0$ we have the involute B-scroll of the circle $\alpha(t)$ with the parametrization

$$
\begin{aligned}
\varphi^{*}(t, v) & =\beta(t)+v V_{3}^{*}(t) \\
& =(a \cos t-(c-a t) \sin t, a \sin t+(c-a t) \cos t, v)
\end{aligned}
$$

References

囯［1］C．Boyer，A History of Mathematics（1968）New York： Wiley，

目［2］Graves L．K．，Codimension one isometric immersions between Lorentz spaces．Trans．Amer．Math．Soc．，252；（1979）367－392
－［3］Hacısalihoğlu，H．H．Diferensiyel geometri，cilt 1．İnönü Üniversitesi Yayınları，（1994） 269 s．，Malatya．

嗇［4］Kılıçoğlu Ș．，n－Boyutlu Lorentz uzayında B－scrollar．Doktora tezi，Ankara Üniversitesi Fen Bilimleri Enstitüsü， 131 s．（2006）， Ankara．

References

[5]Lipschutz M.M., Schaum's Outlines, Differential Geometry
围 [6]McCleary John. Geometry from a Differentiable Viewpoint, Vassar Collage. Cambridge University Press 1994
[7] Springerlink, Encyclopaedia ofMathematics, Copyright c ${ }^{\circ}$ (2002) Springer-Verlag Berlin Heidelberg New York ISBN 1-4020-0609-8

