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1. Introduction

Heisenberg ferromagnet equation (spin of a 1D ferromagnetic)

St = S × Sxx, S2 = 1

or in a matrix notation

iSt =
1

2
[S, Sxx], S2 = 11, S =

3
∑

k=1

Skσk.

Its Lax representation reads

L(λ) := i∂x − λS(x, t),

A(λ) := i∂t + A0(x, t) + λA1(x, t) + λ2A2(x, t).

All matrices above belong to su(2).
Purpose of the talk: studying properties of 2-component system

iut +uxx + (uu∗
x + vv∗x)ux + (uu∗

x + vv∗x)xu = 0,

ivt +vxx + (uu∗
x + vv∗x)vx + (uu∗

x + vv∗x)xv = 0,
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to generalize the Heisenberg model. The functions u and v are infinitely
smooth to satisfy

lim
x→±∞

u(x, t) = 0, lim
x→±∞

v(x, t) = 1.

Moreover, u and v obey the constraint |u|2 + |v|2 = 1.
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2. Preliminaries

• Lax representation

NEE ⇔ [L(λ), A(λ)] = 0,

where the Lax pair (polynomial bundle) is given by:

L(λ) := i∂x + λL1(x, t),

A(λ) := i∂t + λA1(x, t) + λ2A2(x, t),

where

L1 =





0 u v
u∗ 0 0
v∗ 0 0



 , A2 = −





1/3 0 0
0 |u|2 − 2/3 u∗v
0 v∗u |v|2 − 2/3



 ,

A1 =





0 a b
a∗ 0 0
b∗ 0 0



 ,
a = iux + i(uu∗

x + vv∗x)u
b = ivx + i(uu∗

x + vv∗x)v
.
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The specific structure of the matrices is a result of a Z2 × Z2 re-
duction on generic Lax operators

L†(λ∗) = −L̆(λ), A†(λ∗) = −Ă(λ),

CL(−λ)C = L(λ), CA(−λ)C = A(λ),

where C = diag (1,−1,−1) and the operation˘is defined as follows

L̆(λ)ψ(x, t, λ) := i∂xψ(x, t, λ) − λψ(x, t, λ)L†
1(x, t, λ).

The matrix C represents Cartan’s involutive automorphism in-
volved in the definition of SU(3)/S(U(1)×U(2)), that is it induces
a Z2-grading in the Lie algebra sl(3, C)

sl(3) = sl
0(3) ⊕ sl

1(3), sl
σ(3) = {X ∈ g; CXC = (−1)σX}.

Thus any function X(x, t, λ) with values in sl(3) is presented as

X0(x, t, λ) + X1(x, t, λ), X0,1(x, t, λ) ∈ sl
0,1(3).
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• Scattering problem

– Fundamental solutions

Introduce the auxiliary linear system

L(λ)ψ(x, t, λ) = i∂xψ(x, t, λ) + λL1(x, t)ψ(x, t, λ) = 0.

Since L(λ) and A(λ) commute ψ also satisfies the equation

A(λ)ψ(x, t, λ) = [i∂t+λA1(x, t)+λ2A2(x, t)]ψ(x, t, λ) = ψ(x, t, λ)f(λ)

for some matrix-valued function f(λ). We choose

f(λ) = lim
x→±∞

g−1
as [λA1(x, t) + λ2A2(x, t)]gas = −λ2I,

where

gas =
1√
2





1 0 −1

0
√

2 0
1 0 1



 , I = diag (1/3,−2/3, 1/3).
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– Jost solutions and scattering matrix

lim
x→±∞

ψ±(x, t, λ)e−iλJxg−1
as = 11,

where J = diag (1, 0,−1) is the diagonal form of the asymp-
totic limx→±∞ L1(x, t). The transition matrix

T (t, λ) = [ψ+(x, t, λ)]−1ψ−(x, t, λ)

is called scattering matrix. It can be shown that T evolves
with time according to

i∂tT+[f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.
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– Construction of fundamental analytic solutions

χ±(x, λ) = ψ−(x, λ)S± = ψ+(x, λ)T∓(λ)D±(λ),

where
T (λ) = T∓(λ)D±(λ)(S±(λ))−1.

– Riemann-Hilbert problem

χ+(x, λ) = χ−(x, λ)G(λ).

– Reduction conditions on the Jost solutions, the scattering ma-
trix and fundamental analytic solutions

[

ψ†
±(x, λ∗)

]−1

= ψ±(x, λ),
[

T †(λ∗)
]−1

= T (λ),

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ),

(χ+)†(x, λ∗) = [χ−(x, λ)]−1, Cχ+(x,−λ)C = χ−(x, λ).
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3. Soliton solutions

3.1. Dressing method

• Concept of the dressing method

Let ψ0 be a fundamental solution to

L0(λ)ψ0(x, λ) = i∂xψ0(x, λ) + λL1,0(x)ψ0(x, λ) = 0

with some known potential L1,0. We construct another function
ψ = gψ0 and suppose it satisfies the same linear problem

L(λ)ψ(x, λ) = i∂xψ(x, λ) + λL1(x)ψ(x, λ) = 0.

with a different potential to be found. This implies

i∂xg + λ(L1 g − gL1,0) = 0.
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• Ansatz for the dressing factor

We pick up a dressing factor in the form

g(x, λ) = A(x) +
B(x)

λ − µ
− CB(x)C

λ + µ
, CAC = A

that is compatible with the reduction conditions

Cg(x,−λ)C = g(x, λ),
[

g†(x, λ∗)
]−1

= g(x, λ).

The inverse of g looks like

g−1(x, λ) = A†(x) +
B†(x)

λ − µ∗
− CB†(x)C

λ + µ∗
.

• Algebraic constraints

From the identity gg−1 = 11 it follows

B

(

A† +
B†

µ − µ∗
− CB†C

µ + µ∗

)

= 0.
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At this point we introduce the factorization B = XFT . Hence we
have

AF ∗ =
FT F ∗

µ − µ∗
X +

FT CF ∗

µ + µ∗
CX.

Solving the equation above: F, A ⇒ X. But F, A =?.

• Analysis of the differential constraint on g

At λ = 0 it leads to

∂xA − 1

µ
∂x(B + CBC) = 0 ⇒ A =

1

µ
(B + CBC) + A0.

It suffices to pick up A0 = 11. On the other hand comparing the
residues leads us to the coclusion that

i∂xFT − µFT L1,0 = 0 ⇒ FT (x) = FT
0 ψ−1

0 (x, λ = µ).

After substituting A one obtains

F ∗ = (a + bJ1) X.
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where

a :=
µ∗FT F ∗

µ(µ − µ∗)
, b := −µ∗FT CF ∗

µ(µ + µ∗)
.

By inverting the linear system above we get X expressed by F :

X =





X1

X2

X3



 =





(a + b)−1F ∗
1

(a − b)−1F ∗
2

(a − b)−1F ∗
3



 .

In order to obtain a relation between L1 and L1,0 one takes the
limit λ → ∞ in

i

λ
∂xg + L1g − gL1,0 = 0

to deduce that
L1 = AL1,0A

†.

This relation allows us to generate another solution starting from
a known one by following the sequence

L1,0 → ψ0 → F → X, A → L1.
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• Recovering the time dependence

In order to recover the time dependence one needs to compare the
linear problems

A(λ)ψ = [i∂t + λA1 + λ2A2]ψ = ψf,

A0(λ)ψ = [i∂t + λA1,0 + λ2A2,0]ψ0 = ψ0f.

Therefore the dressing factor satisfies

i∂tg + [λA1 + λ2A2]g − g[λA1,0 + λ2A2,0] = 0.

A more analysis shows that F0 depends on time exponentially

FT
0 7→ FT

0 e−if(µ)t =

(

e
iµ2t

3 F0,1, e−
2iµ2t

3 F0,2, e
iµ2t

3 F0,3

)

.
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3.2. Elementary solitons

Let us choose as a seed solution

L1,0 =





0 0 1
0 0 0
1 0 0



 .

Then for ψ0 one obtains

ψ0(x, t, λ) =





cos λx 0 i sinλx
0 1 0

i sinλx 0 cos λx



 .

Inserting ψ0 into the expressions for F leads to

F (x, t) =





F0,1 cos µx − iF0,3 sinµx
F0,2

F0,3 cos µx − iF0,1 sinµx



 .
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Particular cases (elementary solitons):

1. Consider F0,2 = 0. In this case the solution is stationary, namely

u(x) = 0,

v(x) = exp

[

4i arctan
γ cos(2ωx + δ0)

ω cosh(2γx + ξ0)

]

,

where ω := Re µ > 0, γ := Im µ > 0 and

sinh ξ0 =
2|F0,1F0,3| cos(arg F0,1 − arg F0,3)

√

(|F0,1|2 + |F0,3|2)2 − 4|F0,1F0,3|2 cos2(arg F0,1 − arg F0,3)
,

sin δ0 =
2|F0,1F0,3| sin(arg F0,1 − arg F0,3)

√

(|F0,1|2 + |F0,3|2)2 − 4|F0,1F0,3|2 cos2(arg F0,1 − arg F0,3)
.
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2. F0,1 = F0,3. Now F is given by

F (x, t) =





F0,1e
−iµx

F0,2

F0,1e
−iµx





and after recovering the time dependence the soliton solution reads

u(x, t) = − 4iωγ
[

2ωeγ(x−2ωt+ϑ0) + (ω − iγ)e−γ(x−2ωt+ϑ0)
]

(ω − iγ)
[

2ωeγ(x−2ωt+ϑ0) + (ω + iγ)e−γ(x−2ωt+ϑ0)
]2 ,

× exp[iωx + i(γ2 − ω2)t + iφ0],

v(x, t) = 1 − 8ωγ2

(ω − iγ)
[

2ωeγ(x−2ωt+ϑ0) + (ω + iγ)e−γ(x−2ωt+ϑ0)
]2 ,

where

ϑ0 =
1

γ
ln

|F0,1|
|F0,2|

, φ0 = arg F0,2 − arg F0,1.
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4. Generalized Fourier Transform

• Wronskian relations and ‘squared solutions’

(χ±)−1L1χ
±

∣

∣

∞

x=−∞
=

∫ ∞

−∞

dx χ̂±L1,xχ±

Therefore one can write

〈

(χ±)−1L1χ
±, Eα

〉∣

∣

∞

−∞
=

∫ ∞

−∞

dx
〈

L1,x, e±α
〉

.

The quantities e±α (x, λ) = χ±(x, λ)Eα[χ±(x, λ)]−1 introduced above
are called ‘squared solutions’ and

〈X, Y 〉 := tr (XY )

is the Cartan-Killing form.

• Splitting of e±α (x, λ) due to Z2-grading of the Lie algebra

eα(x, λ) = Hα(x, λ)+Kα(x, λ), Hα(x, λ) ∈ sl
0(3), Kα(x, λ) ∈ sl

1(3).
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In addition, Hα(x, λ) and Kα(x, λ) split into

Hα(x, λ) = Hα(x, λ) + hα(x, λ)L2(x), 〈Hα, L2〉 = 0,

Kα(x, λ) = Kα(x, λ) + kα(x, λ)L1(x), 〈Kα, L1〉 = 0,

where L2 := L2
1 − 2/3 ∈ sl

0(3).

It can be proven that the ’squared solutions’ form a complete sys-
tem in the space of smooth functions with values in sl(3)/ ker ad L1

.
Hence they play a role quite similar to the exponential functions in
the usual Fourier analysis — by expanding all quantities involved
in NEE one obtains a linearized version of the NEE.

• Recursion operators

Consider the equation

i∂xeα + λ[L1, eα] = 0.

Due to the grading condition Hα and Kα are interrelated through

i∂xHα + λ[L1, Kα] = 0,

i∂xKα + λ[L1, Hα] = 0.
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After we extract the terms proportional to L1 we obtain

〈L2, ∂xHα〉 + ∂xhα = 0 ⇒ hα = hα,0 − 3
2∂−1

x 〈L2, ∂xHα〉 ,

〈L1, ∂xKα〉 + ∂xkα = 0 ⇒ kα = kα,0 − 1
2∂−1

x 〈L1, ∂xKα〉 .

On the other hand the orthogonal part reads:

iπ∂xHα + ihαL2,x = −λ[L1, Kα],

iπ∂xKα + i kαL1,x = −λ[L1, Hα].

After substituting hα and kα in the equations above we get

Λ1Kα = λHα − kα,0Λ2L2,

Λ2Hα = λKα − hα,0Λ1L1,

where

Λ1 = −iad−1
L1

(

π∂x(·) − L1,x

1

2
∂−1

x 〈∂x(·), L1〉
)

,

Λ2 = −iad−1
L1

(

π∂x(· ) − 3

2
L2,x∂−1

x 〈∂x(· ), L2〉
)

.

0-18



Let us apply Λ2 to the first relation and Λ1 to the second one. The
result reads:

Λ±
2 Λ±

1 K±
α = λ2K±

α − λhα,0Λ
±
1 L1 − kα,0Λ

±
2 Λ±

2 L2,

Λ±
1 Λ±

2 H±
α = λ2H±

α − λkα,0Λ
±
2 L2 − hα,0Λ

±
1 Λ±

2 L2.

The constants hα,0 and kα,0 are determined by the asymptotic of
the relevant ‘squared solution’ for x → ∞ (or for x → −∞). More
detailed analysis shows that the following equalities holds:

Λ+
2 Λ+

1 K±
∓α(x, λ) = λ2K±

∓α(x, λ), Λ−
2 Λ−

1 K±
±α(x, λ) = λ2K±

±α(x, λ)

Λ+
1 Λ+

2 H±
∓α(x, λ) = λ2H±

∓α(x, λ), Λ−
1 Λ−

2 H±
±α(x, λ) = λ2H±

±α(x, λ)

The operator Λ± introduced as

Λ±X := Λ±
1 Λ±

2 X, X ∈ sl
0(3),

Λ±Y := Λ±
2 Λ±

1 Y, Y ∈ sl
1(3).

is the called recursion operator.
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5. Integrable hierarchy

• Description of the integrable hierarchy in terms of the recursion
operator

Any member of the integrable hierarchy under consideration has a
Lax pair in the form

L(λ) = i∂x + λL1(x, t),

A(λ) = i∂t +

N
∑

k=1

λkAk(x, t).

As before the operators L and A are subject to the reductions

CA2q−1C = −A2q−1 ⇒ A2q−1 ∈ sl
1(3),

CA2qC = A2q, ⇒ A2q ∈ sl
0(3).

The original Lax pair corresponds to the simplest nontrivial case
(N = 2) of this general flow pair.

The compatibility condition [L(λ), A(λ)] = 0 gives rise to the fol-
lowing set of recurrence relations:
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[L1, AN ] = 0,

i∂xAN + [L1, AN−1] = 0,

. . .

i∂xAk + [L1, Ak−1] = 0, k = 2, . . . , N − 1,

. . .

∂xA1 − ∂tL1 = 0.

It follows from the first relation that the highest order term is a
polynomial of L1 and hence we have two possibilities for AN :

a) AN = f2pL2, for N = 2p,

b) AN = f2p+1L1, for N = 2p + 1.

It suffices to restrict oursleves with the case when N = 2p.

We shall split each element Ak into two mutually orthogonal parts:

A2q−1 = A⊥
2q−1 + f2q−1L1,

A2q = A⊥
2q + f2qL2.
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Substituting the splitting of AN−1 we have

if2p,xL2 + if2pL2,x + [L1, A
⊥
2p−1] = 0.

After taking the Killing form 〈. , L2〉 to separate the L1-commuting
part and its orthogonal complement we deduce that

fN = cN = const, A⊥
2p−1 = −ic2p ad−1

L1
L2,x.

Similarly, after extracting the L1-commuting part from the generic
recurrence relations we determine for the coefficient f2q−1 (resp.
f2q)

f2q−1 = c2q−1 −
1

2
∂−1

x

〈

(

A⊥
2q−1

)

x
, L1

〉

,

f2q = c2q −
3

2
∂−1

x

〈

(

A⊥
2q

)

x
, L2

〉

,

where c2q−1 (resp. c2q) is a constant of integration. On the other
hand from the orthogonal parts of generic recurrence relations one
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can express A⊥
2q−1 (resp. A⊥

2q), namely :

A⊥
2q = Λ1

(

A⊥
2q+1

)

− ic2q+1ad−1
L1

L1,x,

A⊥
2q−1 = Λ2

(

A⊥
2q

)

− ic2q ad−1
L1

L2,x.

The last recurrence relation yields to

f1 = c1 −
1

2
∂−1

x 〈(A⊥
1 )x, L1〉,

iad−1
L1

∂tL1 + Λ1A
⊥
1 − ic1ad−1

L1
L1,x = 0.

Finally for an arbitrary member of the integrable hierarchy we
obtain

a) ∂tL1 =

p
∑

q=1

c2q(Λ1Λ2)
q−1Λ1ad−1

L1
L2,x +

p−1
∑

q=0

c2q+1(Λ1Λ2)
qad−1

L1
L1,x,

b) ∂tL1 =

p
∑

q=1

c2q(Λ1Λ2)
q−1Λ1ad−1

L1
L2,x +

p
∑

q=0

c2q+1(Λ1Λ2)
qad−1

L1
L1,x.
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The coefficients ck are involved in the dispersion law of the corre-
sponding NEE:

f(λ) = lim
x→±∞

g−1
as

N
∑

k=1

λkAk(x, t)gas.

The dispersion law determines the evolution of scattering matrix

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

It is not hard to check that the equalities below are valid

a) f(λ) =

p−1
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI,

b) f(λ) =

p
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI,

where J = diag (1, 0,−1), I = diag (1/3,−2/3, 1/3). The initial
NEE can be derived from the above formulae in the simplest case
N = 2 after inserting c2 = −1 and c1 = 0.
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• Integrable hierarchy in terms of the scattering data

The following theorem holds true:

Theorem 1 Let the Lax operator L be such that its potential sat-

isfies the conditions:

1. L1(x) − limx→±∞ L1 is complex valued function of Schwartz

type;

2. L1(x) is such that the principal minors of the scattering matrix

have a finite number of simple zeroes which do not coincide;

3. The principal minors have no zeroes on the real axis of the com-

plex λ-plane.

Then the NEE are equivalent to each of the following set of linear

evolution equations:

i∂tS
± + [f(λ), S±(λ)] = 0, ∂tD

+(λ) = 0,

i∂ts
±
k +

[

f(λ±
k ), s±k

]

= 0,
dλ±

k

d t
= 0.
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where S±(λ) = exp s±(λ) and

s+(λ) =





0 s+
α1

s+
α3

0 0 s+
α2

0 0 0



 , s+
k =









0 Res
λ=λ

+

k

s+
α1

Res
λ=λ

+

k

s+
α3

0 0 Res
λ=λ

+

k

s+
α2

0 0 0









,

s−(λ) =





0 0 0
s−α1

0 0
s−α3

s−α2
0



 , s−k =









0 0 0
Res
λ=λ

−

k

s−α1
0 0

Res
λ=λ

−

k

s−α3
Res
λ=λ

−

k

s−α2
0









The variables {s±α (λ), λ ∈ R, s±α;k, ∀α ∈ ∆+}n
k=1 define a

minimal set of scattering data.
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Conclusions

• A 2-component generalization of HF equation has been studied.
The direct scattering problem for the corresponding L operator
has been developed in terms of Jost solutions, scattering matrix
and fundamental analytic solutions.

• The soliton solutions have been constructed analytically. For that
purpose we have used the dressing technique.

• The basic notions of the generalized Fourier intepretation of the
inverse scattering method has been introduced. These are Wron-
skian relations, ’squared solutions’ and recursion operators. By
using them we have described the integrable hierarchy of NEE, as-
sociated to L in terms of recursion operators and scattering data.

0-27


