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• Completely integrable Hamiltonian systems (Liouville 1855)
are dynamical systems admitting a Hamiltonian description
and possessing sufficiently many constants of motion, so that
they can be integrated by quadratures.

• Some qualitative features of these systems remain true in
some special classes of infinite-dimensional Hamiltonian
systems expressed by nonlinear evolution equations (e.g.
Korteweg-de Vries and sine-Gordon).

ut + uux + uxxx = 0, L̇ = [B,L]

L = ∂xx +
1

6
u (x, t)

B = −4∂xxx − u (x, t) ∂x −
1

2
ux (x, t)
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• For ∞-d phase manifoldM, Lax Representation (Lax, 68)
has played an important role in formulating the Inverse
Scattering Method (ISM ) and of the AKNS scheme.

• ISM allows the integration of non linear dynamics, both with
a finitely or infinitely many degrees of freedom, for which a
Lax representation can be given (Gardner, Greene, Kruskal
and Miura, 67), this being both of physical and mathematical
relevance (Faddeev and Takhtajan book, 87).

u0 (x)→ L0
L0ψ

0=k2ψ0

−→ S0

|
↓ B

u (x, t)← L GLM←− S
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• Most of the evolution equations admitting a Lax
Representation are generally Hamiltonian dynamics on
infinite dimensional (weakly) symplectic manifolds.

• So the natural arena, for the analysis of their integrability, is
represented by the phase space with its natural symplectic
structure.

• In terms of this structure, the scattering data associated with
the Lax operator have a natural interpretation as
action-angle type variables (Faddeev Zakharov 71).
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• Many of these systems are Hamiltonian dynamics with
respect to two compatible symplectic structures (Magri 78,
Gelfand, I. Ya. Dorfman, G. V. 80), this leading to a
geometrical interpretation of the recursion operator (Lenard,
67).

• Then integrability of non linear field theories could be
naturally explained in terms of mixed tensor fields, whose
relation with Lax operators is still unclear (De Filippo,
Marmo, Salerno, G. V. 82) .

• Indeed, integrability criteria can be given in terms of invariant
mixed tensor field, having 2-d eigenspaces and vanishing
Nijenhuis torsion. (De Filippo, Marmo, Salerno, G. V. 82, 84
and 85, Florko, Yanovski 83, Landi, Marmo, G. V. 94)
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• The analysis of the integrability realized with the help of a
such tensor field leads to the formulation of an integrability
criterion (DMSV 82,84, DSV85, LMV94) which, for finite
dimensional systems, is essentially equivalent to the classic
Liouville theorem.

• The mentioned essential equivalence means that the
equivalence holds for non resonant Hamiltonian systems.
This is the case when the number of first integrals, defined on
the entire phase space, is larger than one half of the phase
space dimension. The prototype is Kepler dynamics which,
however, is bihamiltonian and has a recursion operator with
the right properties (Marmo and G.V. 92).
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• The analysis of symmetries shows that generally one is faced
with a non Abelian algebra corresponding, for Hamiltonian
systems, to a non Abelian algebra of first integrals
(Krasil’shchik, Lichagin and Vinogradov 86). The
integrability of such systems, with finitely many degrees of
freedom, has been analyzed in several papers (Mishenko and
Fomenko 78).

• However, there exist field dynamics, related to vector and
matrix nonlinear Schroedinger equation (Kulish 85, Gerdjikov
94), possessing a noncommutative set of first integrals, and
for them it is useful to have a noncommutative integrability
criterion formulated in terms of a recursion operator.
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The best known criterion of integrability goes back to Liouville

LIOUVILLE

If on a 2n-d symplectic manifold M are defined a Hamiltonian
dynamics and n functionally independent first integrals f1, . . . , fn
in involution {fi, fj} = 0 ∀i, j = 1, . . . , n , whose associated
Hamiltonian fields Xi are complete, then the level manifolds

Mf(π) = {p ∈M : fi (p) = πi , i = 1, . . . , n} ,

are invariant with respect to the dynamics and each of their con-
nected components is diffeomorphic either to Tm × <n−m or, if
compact, to a torus Tn. Moreover, for every point p ∈ M near
which m is constant, there exists a neighborhood U invariant under
the composed flow of the vector fields Xi, and canonical coordinates(
P1, · · · , Pn, Q1, · · · , Qn

)
, where Q1, · · · , Qm are angles, such that

the equation of the motion take the form:

Ṗi = 0, Q̇i = νi (P ) , 1 ≤ i ≤ n.
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Invariance
Because of the bi-Hamiltonian structure of (some) evolution equations, the first
relevant property is the existence of an invariant the tensor field T

L∆T = 0

This characterization of the dynamics is very suggestive because of the similitude

Dynamics Invariant structure
Symplectic ω a not degenerate, skewsymmetric, closed

(0
2

)
tensor field

Geodesical Γ a connection 2-form
Killing g a symmetric, not degenerate

(0
2

)
tensor field

Hamiltonian Λ a skewsymmetric
(2
0

)
tensor field, fulfilling Jacobi Identity

Liouville Ω a volume form
Lax T a

(1
1

)
tensor field with vanishing torsion

Vanishing of Nijenhuis torsion
The second relevant property, coming by the Lenard sequence, is δ(Ťnα) ≡ 0 if α
is δ-closed and δT -closed, i.e., if δα = 0 and δ(Ťα) = 0.
Such a property is ensured by

NT (α,X, Y ) = 0

where
NT (α,X, Y ) ≡ 〈α,HT (X,Y )〉

and
HT (X,Y ) ≡

[
(LT̂XT )

∧ − T̂ (LXT )
∧
]
Y
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Bidimensionality of eigenspaces of T

Since T is a (1, 1)-tensor field, we can put a corresponding eigenvalue problem for
the associated endomorphism Ť on Λ(M) :

ŤGλ = λGλ.

It is not difficult to see that for each λ there exist two (generalized) eigenvectors,
namely G1

λ , G
2
λ such that

ŤG
1
λ = λG

1
λ, ŤG

2
λ = λG

2
λ +G

1
λ,

this corresponding to Jordan’s normal form for a finite matrix.
Explicitly, we have:

G
1
λ = e

2`j [f2(ikj , x)]
2
, G

2
λ = e

2`j
∂

∂kj
[f2(ikj , x)]

2

where f(k, x) are the Jost solutions of the Lax operator L

L
2
f = −k2

f, k
2

= −λ.
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A more general setting for the commutative integrability is

LMV

Let M be a a smooth 2n-d manifold M, where n vector fields
X1, . . . , Xn ∈ X (M) and n functions f1, . . . , fn ∈ F(M) exist:

[Xi, Xj ] = 0 ,

LXif
j = 0 . i, j ∈ {1, . . . , n} .

Then, a dynamical system ∆ onM which is of the form

∆ =
∑n
i=1 ν

iXi , νi = νi(f1, . . . fn) ,

is completely integrable in any open dense submanifold where

X1 ∧ · · · ∧Xn 6= 0 ,

df1 ∧ · · · ∧ dfn 6= 0 .

If the fields Xi are complete, by using the n-functions f1, . . . , fn ,
a family of symplectic structures can defined with respect to which
the dynamics is Hamiltonian.R
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An alternative integrability criterium, suggested by the analysis of
integrable models in field theory, can be formulated (DMSV82,
DMSV84, DSV85) using invariant tensor fields and it reads:

DMSV
Let ∆ be a dynamical vector field on a differential manifoldM
which admits a mixed tensor field T which

• is invariant
L∆T = 0,

• has a vanishing Nijenhuis torsion

NT = 0,

• is diagonalizable with doubly degenerate eigenvalues λj whose
differentials dλj are independent at each point

Then, the vector field ∆ is separable, completely integrable and
Hamiltonian.
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• The Hamiltonian character of the dynamics ∆ is not assumed a priori but it
follows from the properties of the tensor field T , so that all dynamics,
satisfying the given hypotheses, result to be Liouville integrable.

• Integrability of dissipative dynamics can be put in the same setting by
assuming different spectral hypothesis for the tensor field T .

• The last formulation has the advantage of being more appropriate to deal
with dynamics with infinitely many degrees of freedom (completely
integrable field theories). We also observe that the Lax Representation, the
powerful integration tool for such systems, may not be useful in more than
one space dimension since the inverse problem in Quantum Mechanics has
been solved only for 1-dimensional systems.



Liouville
Integrability

in Field
Theory

Gaetano
Vilasi

Università
degli Studi
di Salerno,

Italy
Istituto
Nazionale
di Fisica
Nucleare,

Italy

History

Commutative
integrability
criteria

Non
commutative
integrability
criteria.

• The Hamiltonian character of the dynamics ∆ is not assumed a priori but it
follows from the properties of the tensor field T , so that all dynamics,
satisfying the given hypotheses, result to be Liouville integrable.

• Integrability of dissipative dynamics can be put in the same setting by
assuming different spectral hypothesis for the tensor field T .

• The last formulation has the advantage of being more appropriate to deal
with dynamics with infinitely many degrees of freedom (completely
integrable field theories). We also observe that the Lax Representation, the
powerful integration tool for such systems, may not be useful in more than
one space dimension since the inverse problem in Quantum Mechanics has
been solved only for 1-dimensional systems.



Liouville
Integrability

in Field
Theory

Gaetano
Vilasi

Università
degli Studi
di Salerno,

Italy
Istituto
Nazionale
di Fisica
Nucleare,

Italy

History

Commutative
integrability
criteria

Non
commutative
integrability
criteria.

• The Hamiltonian character of the dynamics ∆ is not assumed a priori but it
follows from the properties of the tensor field T , so that all dynamics,
satisfying the given hypotheses, result to be Liouville integrable.

• Integrability of dissipative dynamics can be put in the same setting by
assuming different spectral hypothesis for the tensor field T .

• The last formulation has the advantage of being more appropriate to deal
with dynamics with infinitely many degrees of freedom (completely
integrable field theories). We also observe that the Lax Representation, the
powerful integration tool for such systems, may not be useful in more than
one space dimension since the inverse problem in Quantum Mechanics has
been solved only for 1-dimensional systems.



Liouville
Integrability

in Field
Theory

Gaetano
Vilasi

Università
degli Studi
di Salerno,

Italy
Istituto
Nazionale
di Fisica
Nucleare,

Italy

History

Commutative
integrability
criteria

Non
commutative
integrability
criteria.

The Burger Hierarchy

An instance of a dynamics which admits an invariant mixed
tensor field T which satisfies Nijenhuis condition, but which is not
diagonalizable without complexification and whose eigenvalues are
trivially constant, is given by Burger’s equation. It can be
linearized through the Hopf-Cole transformation u = vx/v, where
v satisfies the heat equation vt = vxx. Burger’s equation is a
member of a whole hierarchy of nonlinear evolution equations
which linearize to equations of the type vt = Dnv n = 1, 2, . . . .,
D denoting x-derivative. The even elements of sequence obviously
define dissipative dynamics, while the odd ones are integrable
Hamiltonian evolution equations with respect to the following
symplectic form:

ω =

∫ +∞

−∞
δ1v(x)(D−1δ2v)(x)dx, (D−1f)(x) =

∫ +∞

−∞
f(y)dy,

with Hamiltonian functionals given by

Hp =
1

2

∫ +∞

−∞
(Dpv)2dx.
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In order that previous equations make sense, some assumptions on
the functional spaceM must be made, for example thatM
consists of fast-decreasing infinitely differentiable functions. Then
clearly

T [v] = D

is a Nijenhuis ∆-invariant tensor operator for heat equation
hierarchy. In the present geometrical approach, Hopf-Cole
transformation plays the role of a coordinate transformation and
thus a Nijenhuis ∆ invariant tensor operator for Burgers’s
hierarchy is readily obtained from T̂ [v] by,

T [u] =

(
δv

δu

)−1

T [v]

(
δv

δu

)
which easily yields

T [u] = D +DuD−1.
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Burgers hierarchy is then obtained by repeated applications, on
the translation group generator ∆0 = ux, of the tensor operator
T [u]

∆k = T k∆0

The first fields of the hierarchy are

∆0 = ux

∆1 = 2uux + uxx

∆2 = (3u3 + 3uux + uxx)x .

This hierarchy is just the transcription in the new coordinate
frame of the linear one and, apart some technical points on the
phase manifoldM, one can translate what has been said for heat
hierarchy to the Burgers hierarchy.
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Liouville integrability vs invariant mixed tensor fields

How to construct invariant mixed tensor fields, with the appro-
priate properties (also called a recursion tensor field), for a given
Liouville’s integrable Hamiltonian dynamics ∆?
If H is the Hamiltonian function and {·, ·} denotes the Poisson
bracket, we have

∆f = {H, f} .

Let us introduce in some neighborhood of a Liouville’s torus Tn
action-angle coordinates

(
J1, ..., Jn, ϕ

1, ..., ϕn
)
, in which we have:

ω =
∑
h

dJh ∧ dϕh, ∆ =
∂H

∂Jh

∂

∂ϕh
.
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Let us distinguish two cases:
• The Hamiltonian H is separable

H =
∑
kHk(Jk) .

In this case a class of recursion tensor fields can be easily
defined

T =
∑
h λh(Jh)(dJh ⊗ ∂

∂Jh
+ dϕh ⊗ ∂

∂ϕh
) ,

with the λ’s arbitrary and functionally independent. Indeed,
the tensor field T is invariant and has vanishing Nijenhuis
torsion and doubly degenerate eigenvalues.
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• The Hamiltonian has a non vanishing Hessian:

det

(
∂2H

∂Jh∂Jk

)
6= 0

In this case, in the chosen neighborhood, setting

νh(J) =
∂H

∂Jh
,

new coordinates (ν/ϕ) can be introduced, so that the
dynamics can be described, with respect to the new
symplectic structure

ω1 =
∑
h dν

h ∧ dϕh =
∑
hk

∂2H
∂Jh∂Jk

dJk ∧ dϕh,

by a separable Hamiltonian function:

H1 =
1

2

∑
h(νh)2 .

As before, a class of recursion tensor fields is then given by

T =
∑

h
λh(νh)(dνh ⊗ ∂

∂νh
+ dϕh ⊗ ∂

∂ϕh
) .
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Outline

1 History

2 Commutative integrability criteria

3 Non commutative integrability criteria.
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If the number of independent first integrals is larger than half the
dimension of the symplectic manifold, they cannot be in involution
anymore and one will have to deal with non commuting sets of
first integrals. For a finite number of degrees of freedom a non
commutative generalization of Liouville theorem is the following:
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MISHENKO E FOMENKO I
A Hamiltonian vector field on a symplectic manifold (M, ω)
having a noncommutative Lie algebra A of first integrals
satisfying the condition

dimA+ rankA = dimM,

is completely integrable, i.e. the joint level surfaces of the first
integrals are invariant, and in a neighborhood of each invariant
surface one can define canonical coordinates (λ/χ/p/q), the χ’s
being the coordinates on the invariant surfaces, such that
Hamilton’s equations take the form

λ̇i = 0, χ̇i = νi, ṗα = 0, q̇α = 0, 1 ≤ i ≤ r, r + 1 ≤ α ≤ n,

with r = rankA. If these invariant surfaces are compact and
connected one can prove, as in the commutative case, that they
are tori, and the χ’s can be chosen to be angle variables. The
canonical coordinates are called, in this case, ”generalized action-
angle variables”.
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MISHENKO E FOMENKO II
IfM is compact, then, under the hypotheses of the previous
theorem, one can find n = 1

2 dimM first integrals which are in
involution.
Even in this case, however, the noncommutative theorem, showing the full
symmetry of the system, remains of interest.
In the commutative case the level surfaces of the first integrals fi define an
invariant Lagrangian foliation F1 ofM. The Hamiltonian vector fields Xi
associated to the functions fi are then a basis of commuting tangent vector fields
for the leaves and can be used to define local coordinates χi on the leaves. These
fields also commute with the Hamiltonian vector field ∆ which, consequently, can
be expressed as ∆ = νi (f)Xi. In a neighborhood of a point p ∈ M, the set (χ/f)
define canonical coordinates and Hamilton’s equations of motion take the simple
following form:

χ̇
i

= ν
i
, ḟi = 0 .

In the noncommutative case the first integrals fa, 1 ≤ a ≤ 2n− r, still define an

invariant foliation, but the leaves now have dimension r ≤ n and the Hamiltonian

vector fields Xa, associated with the first integrals fa, are not all tangent to the

leaves. However, the condition dimA+ rankA = dimM ensures, for each leaf l,

the existence of a subalgebra Al which commutes with A on l.
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To obtain a set of canonical coordinate, in a neighborhood of a point of l and
eventually of the whole of l, one needs to exploit further properties of this isotropic
foliation. At each point p of l consider the subspace Tpl ⊆ TpM and the resulting
distribution of symplectically orthogonal subspaces (Tpl)

⊥. Since
ω
(
Xi, Xa

)∣∣∣
l

= 0, this distribution is generated, for all leaves, by the vector fields
Xa, and, furthermore, since Xa satisfy the hypotheses of the Frobenius theorem,
we obtain a second coisotropic foliation F2 whose leaves are themselves foliated by
those of the first foliation F1. The regularity of this foliation follows from the
independence of the functions fa. One can now prove the existence of canonical
coordinates

(
λi, χ

i, pα, q
α
)
, such that the symplectic structure and the dynamical

vector field take the following form

ω = dλi ∧ dχi + dpα ∧ dqα, ∆ = ν
i

(λ)Xi

so that the equations of motion become

λ̇i = 0, χ̇
i

= ν
i
, ṗα = 0, q̇

α
= 0.
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The functions λi describe locally F2, and their associated Hamiltonian vector

fields Xi define coordinates χi on F1. The fields Xi are independent and, since

ω (Xi, Xa) = dλi (Xa) = 0, they are tangent to the leaves of F1, and thus

commute among themselves and with ∆. To understand better this canonical

coordinates, one can actually observe that the momentum map J :M→ A∗

defined by J : x→ ξx ∈ A∗ where ξx(f) ≡ f(x), f ∈ A, defines a fibration of a

neighborhood U of a leaf of F2 with fiber lx = J−1 (ξx), namely a leaf of F1. The

neighborhood U can then be represented as lx × S ×O, where O is the coadjoint

orbit through ξx of the Lie group corresponding to A and S is a linear manifold

transverse to O. The symplectic structure ω restricted to O coincides with the

Lie-Kirillov-Kostant-Souriau symplectic form; (pα, q
α) are canonical coordinates

on O and λi coordinates on S. It has been actually proved (Fasso and Ratiu, 98)

that all what is needed for the existence of such local canonical coordinates is the

double foliation, namely thatM has an isotropic foliation such that the

distribution of subspaces, symplectically orthogonal to the tangent spaces to its

leaves, is integrable.
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Noncommutative integrability and invariant tensor field

SV
Let ∆ be a dynamical vector field on a 2n-differential manifoldM
which admits a (1, 1) mixed tensor field T which

• is invariant
L∆T = 0,

• is diagonalizable with only simple and doubly degenerate
eigenvalues whose differentials are independent at each point
p ∈M.

• has the property
NT (α,X, Y ) = 0,

∀X : X (p) ∈ S (p), ∀Y ∈ D (M) and for all 1-forms α, S (p)
denoting the sum of eigenspaces associated to the doubly
eigenvalues of T (p).

Then, the vector field ∆ is separable, completely integrable and
Hamiltonian.
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Noncommutative integrability vs invariant tensor fields.

For a non commutative Mishenko-Fomenko integrable system, we have
ω = dλi ∧ dχi + dpα ∧ dqα and the equations of the motion

λ̇i = 0, χ̇
i

= νi, ṗα = 0, q̇
α

= 0, 1 ≤ i ≤ r, r + 1 ≤ α ≤ n,

or, calling µ the collection of the p’s and q’s, more simply

·
λi = 0,

·
χi = νi,

·
µα = 0.

It is easily verified that the following tensor field

T =
∑r
j=1 λj

(
∂
∂λi
⊗ dλi + ∂

∂χi
⊗ dχi

)
+ Cσρ (µ) ∂

∂µρ
⊗ dµσ.

is invariant and, for all diagonalizable matrix Cσρ (µ) = δσρµσ , has a vanishing
torsion, provided that the Hamiltonian function can be written in the form:

H = K1 (λ) +K2 (µ) ,

with a separable
K1 (λ) =

∑r
i=1 Hi (λi)

If K1 is not separable but det

(
∂2K1
∂λj∂λi

)
6= 0, the construction of the invariant

tensor field follows strictly follows the lines of commutative case.
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This shows that also in the noncommutative case an invariant
torsionless tensor field can be always found. Of course, such a
tensor field always generates, by repeated application, Abelian
algebras of symmetries. Regardless of the vanishing of the torsion
on the whole space, the noncommutative features are linked to the
non degenerate eigenvalues and, then, are still described by the
term Cσρ (µ) ∂

∂µρ
⊗ dµσ.
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Example
A Recursion operator for Kepler dynamics in the commutative case.
The vector field ∆ for the Kepler problem, in spherical-polar coordinates, for
<3 − {0}, is Hamiltonian with respect to the symplectic form:
ω =

∑
i dpi ∧ dq

i (i = r, ϑ, ϕ),

H =
1

2m
(p

2
r +

p2
ϑ

r2
+

p2
ϕ

r2 sin2 ϑ
) + V (r), V (r) = −

k

r
(1)

In action-angle coordinates (J, ϕ), H, ω and ∆ become:

H = −mk2
(Jr + Jϑ + Jϕ)

−2
ω =

∑
h

dJh ∧ dϕh (2)

∆ =
2mk2

(Jr + Jϑ + Jϕ)3

(
∂

∂ϕ1
+

∂

∂ϕ2
+

∂

∂ϕ3

)
It is globally Hamiltonian also with respect to: ω1 =

∑
hk S

h
k dJh ∧ dϕk

S =
1

2

∥∥∥∥∥∥
J1 J2 J3

J2 − J3 J1 + J3 J3

J3 − J2 J2 J1 + J2

∥∥∥∥∥∥ , H1 = −
mk2

(Jr + Jϑ + Jϕ)

T =
∑
hk(Sh k dJh ⊗ ∂

∂Jk
+
(
S+
)
h

k
dϕh ⊗ ∂

∂ϕk
) (3)

has double degenerate eigenvalues and vanishing Nijenhuis torsion.
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Example
A Recursion operator for Kepler dynamics in the non commutative case.
The Kepler dynamics has five first integrals given by the components of the angular
momentum and the components of the orthogonal Laplace-Runge-Lenz vector.
In action-angle coordinates (J/ϕ) such first integrals are given by

J1, J2, J3, ϕ1 − ϕ2, ϕ2 − ϕ3.

By using the Delauney action-angle coordinates

I1 = J1 + J2 + J3 ≡ λ1

I2 = J2 + J3 ≡ µ3

I3 = J3 ≡ µ4

α1 = ϕ1 ≡ χ1

α2 = ϕ2 − ϕ1 ≡ µ5

α3 = ϕ3 − ϕ2 ≡ µ6,

T = λ1

(
∂

∂λ1

⊗ dλ1 +
∂

∂χ1

⊗ dχ1

)
+

6∑
α=3

µα
∂

∂µα
⊗ dµα.

WHAT ABOUT LAX REPRESENTATION?
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Example
Einstein metrics invariant for a Lie algebra of Killing vector fields generating a 2
dimensional distribution D can be classified according to properties of the
orthogonal distribution D⊥.
Let g be a metric on a manifold and H be a Killing algebra of g with 2-d orbits.
Then dim H = 2, or 3. If dim H = 3, H is isomorphic either to A2, or to G2.
Restrictions of the considered metric to the Killing leaves (orbits) are
nondegenerate iff the distribution orthogonal to them is transversal to them. so,
the geometrical structure to be studied first is a nonintegrable bidimensional
distribution on a 4− fold manifold M together with a bidimensional algebra of
vector fields of its symmetries whose orbits (leaves) are transversal to the
distribution. These structures have been completely described and this allows us
to construct a privileged local chart in which the equation Ric(g) = 0 is more
easily studied. All the possible situations, corresponding to a 2−dimensional Lie
algebra of isometries, are described by the following table

D⊥, r = 0 D⊥, r = 1 D⊥, r = 2
G2 integrable integrable integrable
G2 semi − integrable semi − integrable semi− integrable
G2 non − integrable non − integrable non− integrable
A2 integrable integrable integrable
A2 semi− integrable semi− integrable semi − integrable
A2 non− integrable non− integrable non− integrable ,

where a non integrable 2-dimensional distribution which is part of a 3-dimensional
integrable distribution has been called semi-integrable and in which the cases
indicated with bold letters have been essentially solved.
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The Ricci tensor field components in the Abelian case

• Components Rij = Sij + Tij :

Sii =
1

4
tr
[
H
−1
∂i (H)H

−1
∂i (H)

]
+ ∂

2
i (lnα)− ∂i (lnα) ∂i (ln f)

S12 =
1

4
tr
[
H
−1
∂1 (H)H

−1
∂2 (H)

]
+ ∂1∂2 (lnαf)

Tii = 0

T12 = −
s2h11

2f
φ

2
,p = −

s2h11

4f

(
ψ

2
,1 + ψ

2
,2 − 2ψ,1ψ,2

)

• Components Rab = Sab + Tab:

(Sab) =
H

2fα

[
∂2

(
αH
−1
∂1 (H)

)
+ ∂1

(
αH
−1
∂2 (H)

)]
Tab =

s2h1a−2h1b−2

2f2
φ

2
,p =

s2h1a−2h1b−2

4f2

(
ψ

2
,1 + ψ

2
,2 − 2ψ,1ψ,2

)
• Components Raj = Sai + Tai:

Sai = 0

Tai = −
s

2
√

2f
h1a−2 (ψ,1 − ψ,2) ∂i

(
ln

∣∣∣∣ f

αs (ψ,1 − ψ,2)h3a

∣∣∣∣)
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The Abelian integrable case

In the Abelian integrable case main equations

∂2

(
αH−1∂1 (H)

)
+ ∂1

(
αH−1∂2 (H)

)
= 0

have a generalized Lax form and have been integrated by Belinski
and Zakharov by using the Inverse Scattering Method.

But, what about the Recursion Operator?
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Burgers hierarchy splits into two sub hierarchies

• Dissipative hierarchy

T∆0, T
3
∆0, . . . , T

2n+1
∆0, . . .

• Hamiltonian hierarchy

∆0, T
2
∆0, . . . , T

2n
∆0, . . .

which are, respectively, a sequence of dissipative and Hamiltonian vector fields.
The foregoing statement can be understood by examining the spectral properties
of T , whose block diagonal form is

T =

∫
dk
(
e(k) ⊗ ϑ

′k − e′k ⊗ ϑ
k
)
k ,

The vector fields

e(k)[u] =
∫∞
−∞ dx(−u cos kx− k sin kx)exp

[
−
∫ x
−∞ u dy

]
δ

δu(x)

e′(k)[u] =
∫∞
−∞ dx(−u sin kx+ k cos kx)exp

[
−
∫ x
−∞ u dy

]
δ

δu(x)
,

are a basis of a generic invariant subspace:

Te(k) = −ke′(k), Te′(k) = ke(k),〈
ϑ′(k), e′(k)

〉
=
〈
ϑ(k), e(k)

〉
= δ(h− k),

〈
ϑ′(k), e(h)

〉
=
〈
ϑ(k), e′(h)

〉
= 0.
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The conditions
[e(k), e(h)] = [e

′
(k), e

′
(h)] = [e

′
(k), e(h)] = 0

imply the holonomicity of the frame, i.e., the existence of coordinates (q(k), p(k))
such that:

e(k) =
δ

δq(k)
, e

′
(k) =

δ

δp(k)
.

In the bidimensional integral manifold of {e(k), e
′
(k)}, the operator T can be

projected to:

δϕ
(k) ⊗

δ

δJ(k)
− δJ(k) δ

δϕ(k)
no sum over k ,

where

J
(k)

=
1

2

(
q
(k)2

+ p
(k)2

)
; ϕ

(k)
= arctan

q(k)

p(k)

are action-angle type variables. Then, T̂ transforms a dissipative integrable field of
the type

X
(k)
D = ∆(J

(k)
)

∂

∂J(k)

in a Hamiltonian one
X

(k)
H = ∆(J

(k)
)

∂

∂ϕ(k)

and vice versa
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This alternating character of T is responsible for the splitting of hierarchy into two
subhierarchies. Furthermore, we observe that

• T̂ has a 2d invariant spaces, but is not diagonalizable without
complexification.

• T̂ 2, which characterizes the Hamiltonian subhierarchy, is diagonalizable with
doubly degenerate constant eigenvalues.

Thus, for none of the subhierarchies one can use the integrability criterion to

establish their integrability. However, we observe that the projections of

dissipative dynamics on the bidimensional invariant spaces simply are one degree

of freedom dynamics, while for the Hamiltonian ones, the existence of a functional

J(k)[u], which is not trivially conserved on each bidimensional space, ensures its

integrability. It is worthwhile remarking that this same functional J(k)[u]

obviously plays the role of a Ljapunov functional for the projection of the

dissipative dynamics on the bidimensional invariant submanifold, thus ensuring the

asymptotic stability of the solution J(k)[u] = 0.
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The Hamiltonian subhierarchy

We discuss in more details the Hamiltonian character of subhierarchy . In order to
do that, some care is needed for the appropriate choice of the functional spaceM
on which dynamics is defined. The most natural one would be to takeM as the
functional space whose elements u go to a constant as x→ ±∞, as it is the space
on which there lies the typical solitary wave of Burgers’ hierarchy. However, with
such a choice it would not be possible to introduce a Hamiltonian structure onM.

This can be understood easily by going back to the linear hierarchy for whichM

becomes, via the transformation , the space of functions which as x→ ±∞ behave

like exp[kx] and the Hamiltonian becomes meaningless. One is then tempted to

restrictM in such a way, that both symplectic structures and Hamiltonian one be

well defined. This can be accomplished by considering only function v(x) tending

to some nonvanishing fixed constants as x→ ±∞ or, equivalently, functions u(x)

vanishing as x→ ±∞, whose integral has fixed value. More precisely, as for what

refers to tangent spaces, the derivative of Hopf-Cole map is a bijection δv → δu

between S(<), i.e., the space of all fast decreasing test functions, and the space

of functions which are derivatives of elements of S(<), this ensuring the existence

of a symplectic structure with respect to which the subhierarchy is Hamiltonian.
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Liouville Theorem
++

		

S Hamilton Jacobikk

T Recursion Operator

HH

L Lax Operator
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