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Hopf Algebras

A bialgebra with an antipode (coinverse):

a vector space H over a field k

structures µ : H ⊗ H → H and η : k→ H.

costructures ∆ : H → H ⊗ H and ε : H → k

antipode S : H → H which is the inverse of the identity map
with respect to the convolution operation
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Hopf Algebras

subject to the commutativity of the diagram

H ⊗ H
S⊗id // H ⊗ H

µ
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η // H.

H ⊗ H
id⊗S // H ⊗ H

µ
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Drinfel’d Twist

Let H be cocommutative and take an element F ∈ H ⊗ H which is
invertible and is a 2-cocycle, i.e.,

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id ⊗∆)F .

Notation: F = f α ⊗ fα and F−1 = f̄ α ⊗ f̄α, with α a multi-index.

F is called a twist.
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Drinfel’d Twist

Defining (with χ = f αS(fα) ∈ H)

∆F (a) = F∆(a)F−1

SF (a) = χS(a)χ−1,

(H, µ, η,∆F , ε,SF ) is a triangular Hopf algebra with universal R-matrix
given by R = F21F−1. Call it HF .
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Universal Enveloping Algebra

Take a Lie algebra g (with generators τi ). Its universal enveloping algebra

U(g) = T (g)/I ,

with T (g) =
⊕

n≥0 g
⊗n the tensor algebra of g and I the ideal generated

by elements of the form (x ⊗ y − y ⊗ x − [x , y ]), is a Hopf algebra with

∆(τi ) = τi ⊗ 1 + 1⊗ τi
ε(τi ) = 0

S(τi ) = −τi .
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Drinfel’d Twist of the Universal Enveloping Algebra

U(g) can be deformed into UF (g).

One can ask which is the linear subspace gF ⊂ UF (g), analogous to
g ⊂ U(g).

Conditions on the generators of gF :

{τFi } generates gF

minimal deformation of the Leibniz rule: ∆F (τFi ) = τFi ⊗ 1+ f ji ⊗ τFj
under deformed adjoint action [τFi , τ

F
j ]F = (τFi )1τ

F
j SF ((τFi )2),

the structure constants of g are reproduced.1

1Sweedler indexless notation
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Drinfel’d Twist of the Universal Enveloping Algebra

Take as deformed generators

τi
F = f̄ α(τi )f̄α,

with coproduct

∆F (τi
F ) = τi

F ⊗ 1 + R̄α ⊗ R̄α(τi
F ).
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The dynamical Lie algebra

Start with the Heisenberg algebra hd = {xi , pi , ~} satisfying

[xi , pj ] = i~δij , [~, xi ] = [~, pi ] = 0

and introduce the elements

H =
1

2~
(pipi ) ,

K =
1

2~
(xixi ) ,

D =
1

4~
(xipi + pixi ) ,

Li1i2···id−2
=

1

~
εi1i2···id−1id xid−1

pid .
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Primitive vs. Composite Elements

Two-particle states |ψ1〉 ⊗ |ψ2〉:

∆(~P2) = ~P2 ⊗ 1 + 1⊗ ~P2, (~P2
tot = ~P2

1 + ~P2
2 )

∆(~L2) = ~L2 ⊗ 1 + 2~L⊗ ~L + 1⊗ ~L2, (~L2
tot = ~L2

1 + 2~L1 · ~L2 + ~L2
2)

Primitiveness may be required on physical grounds.
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The dynamical Lie algebra

The elements H, K , D and Li1...id−2
are now declared to be primitive

elements of the enlarged Lie algebra

Gd = {~, xi , pi ,H,K ,D, Li1i2···id−2
}, i = 1, ..., d .
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The dynamical Lie algebra

For d = 2, the nonvanishing commutation relations read

[xi , pj ] = i~δij ,
[D,H] = iH,

[D,K ] = −iK ,
[K ,H] = 2iD,

[xi ,H] = ipi ,

[xi ,D] =
i

2
xi ,

[pi ,K ] = −ixi ,

[pi ,D] = − i

2
pi ,

[L, xi ] = iεijxj ,

[L, pi ] = iεijpj .
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The dynamical Lie algebra

For d = 3, the nonvanishing commutation relations read

[xi , pj ] = i~δij ,
[D,H] = iH,

[D,K ] = −iK ,
[K ,H] = 2iD,

[xi ,H] = ipi ,

[xi ,D] =
i

2
xi ,

[pi ,K ] = −ixi ,

[pi ,D] = − i

2
pi ,

[Li , xj ] = iεijkxk ,

[Li , pj ] = iεijkpk ,

[Li , Lj ] = iεijkLk .
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The dynamical Lie algebra

U(Gd) can be deformed into UF (Gd) by the Abelian twist

F = exp (iαijpi ⊗ pj) , αij = −αji .

The deformed generators are

xFi = xi − αijpj~,

KF = K − αijxipj +
αjkαjl

2!
pkpl~,

LFi1i2···id−2
= Li1i2···id−2

− εi1i2···id−2jkαjlpkpl .
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The dynamical Lie algebra

This deformation yields the constant noncommutativity

[xFi , x
F
j ] = iΘij ,

where

Θij = 2αij~2.

Remark: The Jordanian twist e iD⊗ln(1+ξH) yields the Snyder
noncommutativity.
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The 2D harmonic oscillator

Consider the harmonic oscillator with Hamiltonian

H = H + K .

The deformed Hamiltonian HF ∈ UF (G2) is

HF = HF + KF = H + K − αxpy + αypx +
α2

2
~(p2

x + p2
y ),

where αij = εijα.
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The 2D harmonic oscillator

As usual, we introduce

ai =
xi − ipi√

2
,

a†i =
xi + ipi√

2
,

so that

[ai , a
†
j ] = ~δij .
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The 2D harmonic oscillator

A change of basis will prove to be convenient:

b± =
ax ∓ iay√

2
,

b†± =
a†x ± ia†y√

2
.

They are creation and annihilation operators, because

[b±, b
†
±] = ~

and

[H, b±] = −b±,
[H, b†±] = b†±.
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The 2D harmonic oscillator

To calculate the single-particle spectrum, we set ~ = 1.
The Hamiltonian can be written as

H =
1

2

∑
i=±
{bi , b†i },

and the number operator and the angular momentum operator as

N = b†+b+ + b†−b− = N+ + N−,

L = b†+b+ − b†−b− = N+ − N−.
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The 2D harmonic oscillator

Since [H, L] = 0, the |n+n−〉 basis simultaneously diagonalizes both
operators:

H|n+n−〉 = (n+ + n− + 1)|n+n−〉,
L|n+n−〉 = (n+ − n−)|n+n−〉.

Changing labels to n = n+ + n− and m = n+ − n−, we have

H|nm〉 = (n + 1)|nm〉,
L|nm〉 = m|nm〉.
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The 2D harmonic oscillator

At the one-particle level only, the deformed Hamiltonian

HF = HF + KF = H + K − αxpy + αypx +
α2

2
(p2

x + p2
y )

can be reproduced by the linear combination

HF = H̃− αL,

where
H̃ = (1 + α2)H + K

is just the undeformed Hamiltonian of an oscillator with frequency
ω̃ =
√

1 + α2.
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The 2D harmonic oscillator

The spectrum of HF can now be easily computed:

HF |nm〉 = (H̃− αL)|nm〉 =
[
(
√

1 + α2)(n + 1)− αm
]
|nm〉,

where m = −n,−n + 2, . . . , n − 2, n and n is a non-negative integer.
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The 2D harmonic oscillator

The energy of the first few states:

|0, 0〉 :
√

1 + α2,

|1, 1〉 : 2
√

1 + α2 − α,
|1,−1〉 : 2

√
1 + α2 + α,

|2, 2〉 : 3
√

1 + α2 − 2α,

|2, 0〉 : 3
√

1 + α2,

|2,−2〉 : 3
√

1 + α2 + 2α.
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The 2D harmonic oscillator

Since

∆F (HF ) = F ·∆(HF ) · F−1,

as operators acting on H⊗H, the undeformed and the deformed
coproducts of the deformed Hamiltonian are unitarily equivalent:

∆̂F (HF ) = F · ∆̂(HF ) · F−1.

The same is true for the multi-particle operators of three or more particles:

∆̂F(n)(HF ) = U(n) · ∆̂(HF ) · U−1
(n) , n ≥ 2
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The 2D harmonic oscillator

We are therefore entitled to use the undeformed coproduct, which is
manifestly symmetric under particle exchange.

The two-particle Hamiltonian is

∆(HF ) = HF ⊗ 1 + 1⊗HF

+α(y ⊗ px + px ⊗ y − x ⊗ py − py ⊗ x)

+
α2

2

2∑
i=1

(2pi~⊗ pi + 2pi ⊗ pi~ + p2
i ⊗ ~ + ~⊗ p2

i ).

Energy is no longer additive:

EF12 = EF1 + EF2 + Ω12.
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The 2D harmonic oscillator

The three-particle Hamiltonian is explicitly given by

∆(2)(HF ) = HF ⊗ 1⊗ 1 + 1⊗HF ⊗ 1 + 1⊗ 1⊗HF

+α(1⊗ y ⊗ px + y ⊗ 1⊗ px + y ⊗ px ⊗ 1)

+α(1⊗ px ⊗ y + px ⊗ 1⊗ y + px ⊗ y ⊗ 1)

−α(1⊗ x ⊗ py + x ⊗ 1⊗ py + x ⊗ py ⊗ 1)

−α(1⊗ py ⊗ x + py ⊗ 1⊗ x + py ⊗ x ⊗ 1)

+α2
2∑

i=1

[1⊗ pi~⊗ pi + pi~⊗ pi ⊗ 1 + pi~⊗ pi ⊗ 1

+1⊗ pi ⊗ pi~ + pi ⊗ pi~⊗ 1 + pi ⊗ pi~⊗ 1

+~⊗ pi ⊗ pi + pi ⊗ pi ⊗ ~ + pi ⊗ pi ⊗ ~

+
1

2
(1⊗ ~⊗ p2

i + ~⊗ p2
i ⊗ 1 + ~⊗ p2

i ⊗ 1

+1⊗ p2
i ⊗ ~ + p2

i ⊗ ~⊗ 1 + p2
i ⊗ ~⊗ 1)],
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The 2D harmonic oscillator

where the coassociativity of the coproduct

(id ⊗∆)∆(HF ) = (∆⊗ id)∆(HF ) ≡ ∆(2)(HF )

guarantees the associativity of the energy

EF123 ≡ EF(12)3 = EF1(23) = EF1 + EF2 + EF3 + Ω12 + Ω23 + Ω31 + Ω123.
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The 3D harmonic oscillator

We can express
αij = εijkαk

and then choose a reference frame where

~α = (0, 0, α).

The deformed Hamiltonian is then

HF = H + K − α(xpy − ypx) +
α2

2
~(p2

x + p2
y ).
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The 3D harmonic oscillator

To calculate the single-particle spectrum we are entitled to set ~ = 1.
We introduce the usual creation and annihilation operators and then
perform the change of basis

b± =
ax ∓ iay√

2
,

b†± =
a†x ± ia†y√

2
,

bz = az ,

b†z = a†z .
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The 3D harmonic oscillator

We write the Hamiltonian as

H =
1

2

∑
i=±,z

{bi , b†i },

and introduce the operators

Nxy = b†+b+ + b†−b− = N+ + N−,

Nz = b†zbz ,

Lz = b†+b+ − b†−b− = N+ − N−.
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The 3D harmonic oscillator

We can use a basis labeled by the three non-negative integeres n±, nz ,
where

H|n+n−nz〉 =

(
n+ + n− + nz +

3

2

)
|n+n−nz〉,

Lz |n+n−nz〉 = (n+ − n−)|n+n−nz〉.

Changing to nxy = n+ + n− and m = n+ − n−, we have

H|nxynzm〉 =

(
nxy + nz +

3

2

)
|nxynzm〉,

Lz |nm〉 = m|nxynzm〉.
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The 3D harmonic oscillator

We now split H into its xy -part and its z-part:

H = Hxy + Hz ,

where Hxy = 1
2 (x2 + p2

x + y2 + p2
y ) and Hz = 1

2 (z2 + p2
z ).

This is feasible only at the one-particle level.

The deformation will only affect the xy -part.
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The 3D harmonic oscillator

The deformed Hamiltonian

HF = H + K − α(xpy − ypx) +
α2

2
(p2

x + p2
y )

can be written as
HF = H̃xy − αLz + Hz ,

where H̃xy a two-dimensional undeformed Hamiltonian with frequency
ω̃ =
√

1 + α2.

Isotropy is lost.
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The 3D harmonic oscillator

The spectrum of HF is

HF |nxynzm〉 =

[√
1 + α2(nxy + 1)− αm +

(
nz +

1

2

)]
|nxynzm〉,

with m = −nxy ,−nxy + 2, . . . , nxy − 2, nxy .

The z-part of the Hamiltonian remains additive, so the multi-particle
Hamiltonians are basically the same as in two-dimensonal case.
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The 3D harmonic oscillator

First few states:

|0, 0, 0〉 :
1

2
+
√

1 + α2

|0, 1, 0〉 :
3

2
+
√

1 + α2

|1, 0,−1〉 :
1

2
+ 2
√

1 + α2 + α

|1, 0, 1〉 :
1

2
+ 2
√

1 + α2 − α
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The 3D harmonic oscillator

|0, 2, 0〉 :
5

2
+
√

1 + α2

|1, 1,−1〉 :
3

2
+ 2
√

1 + α2 + α

|1, 1, 1〉 :
3

2
+ 2
√

1 + α2 − α

|2, 0,−2〉 :
1

2
+ 3
√

1 + α2 + 2α

|2, 0, 0〉 :
1

2
+ 3
√

1 + α2

|2, 0, 2〉 :
1

2
+ 3
√

1 + α2 − 2α

1
2 is the zero-point energy along the z-axis.
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Rotational invariance in 2D

The undeformed generator of rotations on the plane satisfies

[L, xi
F ] = iεijx

F
j

and

[L,HF ] = 0.

The deformed oscillator retains its so(2) invariance, even for multiparticle
states: [

∆(HF ),∆(L)
]

= 0.
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Rotational invariance in 3D

If we perform the same calculation for the Li ’s in three dimensions, we
obtain

[Li , x
F
j ] = iεijkx

F
k − i~(δijαpz − piαj).

The second term on the right hand side vanishes only for i = 3.

Also [HF , Li ] only vanishes for i = 3.

So, Lz is a generator of rotational symmetry, while Lx and Ly are not, and
thus the so(3) invariance is broken down to an so(2) invariance around the
z-axis.
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Rotational invariance in 3D

The same holds for multiparticle states, because

[∆(HF ),∆(Li )] = iε3ij

(
αLj − 2α2pjpz

)
⊗ 1

+1⊗ iε3ij

(
αLj − 2α2pjpz

)
−iα(xi ⊗ pz + pz ⊗ xi − z ⊗ pi − pi ⊗ z)

is zero only for i = 3.
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Conclusions

The single-particle spectrum of the quantum harmonic oscillator in
the presence of a constant noncommutativity can be calculated in the
framework of a Drinfel’d twist

The costructures are required to unambiguously fix the multi-particle
states

Measuring multi-particle states is required to detect deformation

The unitary equivalence between deformed and undeformed coproduct
guarantees the symmetry under particle exchange

In two dimensions, so(2) invariance is retained

In three dimensions, the so(3) invariance is broken down to an so(2)
invariance
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