Noncommutative quantum mechanics from a Drinfel'd Twist

P. G. Castro
UFJF - Brazil

Varna, June 6, 2011

Based on joint work with

- Biswajit Chakraborty
- Ricardo Kullock
- Francesco Toppan
J. Math. Phys. 52, 032102 (2011), arXiv:1012.5158 [hep-th]

Hopf Algebras

A bialgebra with an antipode (coinverse):

- a vector space H over a field \mathbf{k}
- structures $\mu: H \otimes H \rightarrow H$ and $\eta: \mathbf{k} \rightarrow H$.
- costructures $\Delta: H \rightarrow H \otimes H$ and $\varepsilon: H \rightarrow \mathbf{k}$
- antipode $S: H \rightarrow H$ which is the inverse of the identity map with respect to the convolution operation

Hopf Algebras

subject to the commutativity of the diagram

Drinfel'd Twist

Let H be cocommutative and take an element $\mathcal{F} \in H \otimes H$ which is invertible and is a 2-cocycle, i.e.,

$$
(\mathcal{F} \otimes \mathbf{1})(\Delta \otimes i d) \mathcal{F}=(\mathbf{1} \otimes \mathcal{F})(i d \otimes \Delta) \mathcal{F}
$$

Notation: $\mathcal{F}=f^{\alpha} \otimes f_{\alpha}$ and $\mathcal{F}^{-1}=\bar{f}^{\alpha} \otimes \bar{f}_{\alpha}$, with α a multi-index.
\mathcal{F} is called a twist.

Drinfel'd Twist

Defining (with $\chi=f^{\alpha} S\left(f_{\alpha}\right) \in H$)

$$
\begin{aligned}
\Delta^{\mathcal{F}}(a) & =\mathcal{F} \Delta(a) \mathcal{F}^{-1} \\
S^{\mathcal{F}}(a) & =\chi S(a) \chi^{-1}
\end{aligned}
$$

$\left(H, \mu, \eta, \Delta^{\mathcal{F}}, \varepsilon, S^{\mathcal{F}}\right)$ is a triangular Hopf algebra with universal R-matrix given by $\mathcal{R}=\mathcal{F}_{21} \mathcal{F}^{-1}$. Call it $H^{\mathcal{F}}$.

Universal Enveloping Algebra

Take a Lie algebra \mathfrak{g} (with generators τ_{i}). Its universal enveloping algebra

$$
\mathcal{U}(\mathfrak{g})=T(\mathfrak{g}) / I
$$

with $T(\mathfrak{g})=\bigoplus_{n \geq 0} \mathfrak{g}^{\otimes n}$ the tensor algebra of \mathfrak{g} and I the ideal generated by elements of the form $(x \otimes y-y \otimes x-[x, y])$, is a Hopf algebra with

$$
\begin{aligned}
\Delta\left(\tau_{i}\right) & =\tau_{i} \otimes \mathbf{1}+\mathbf{1} \otimes \tau_{i} \\
\varepsilon\left(\tau_{i}\right) & =0 \\
S\left(\tau_{i}\right) & =-\tau_{i}
\end{aligned}
$$

Drinfel'd Twist of the Universal Enveloping Algebra

$\mathcal{U}(\mathfrak{g})$ can be deformed into $\mathcal{U}^{\mathcal{F}}(\mathfrak{g})$.

One can ask which is the linear subspace $\mathfrak{g}^{\mathcal{F}} \subset \mathcal{U}^{\mathcal{F}}(\mathfrak{g})$, analogous to $\mathfrak{g} \subset \mathcal{U}(\mathfrak{g})$.

Conditions on the generators of $\mathfrak{g}^{\mathcal{F}}$:

- $\left\{\tau_{i}^{\mathcal{F}}\right\}$ generates $\mathfrak{g}^{\mathcal{F}}$
- minimal deformation of the Leibniz rule: $\Delta^{\mathcal{F}}\left(\tau_{i}^{\mathcal{F}}\right)=\tau_{i}^{\mathcal{F}} \otimes \mathbf{1}+f_{i}^{j} \otimes \tau_{j}^{\mathcal{F}}$
- under deformed adjoint action $\left[\tau_{i}^{\mathcal{F}}, \tau_{j}^{\mathcal{F}}\right]_{\mathcal{F}}=\left(\tau_{i}^{\mathcal{F}}\right)_{1} \tau_{j}^{\mathcal{F}} S^{\mathcal{F}}\left(\left(\tau_{i}^{\mathcal{F}}\right)_{2}\right)$, the structure constants of \mathfrak{g} are reproduced. ${ }^{1}$

Drinfel'd Twist of the Universal Enveloping Algebra

Take as deformed generators

$$
\tau_{i}{ }^{\mathcal{F}}=\bar{f}^{\alpha}\left(\tau_{i}\right) \bar{f}_{\alpha}
$$

with coproduct

$$
\Delta^{\mathcal{F}}\left(\tau_{i}^{\mathcal{F}}\right)=\tau_{i}^{\mathcal{F}} \otimes \mathbf{1}+\bar{R}^{\alpha} \otimes \bar{R}_{\alpha}\left(\tau_{i}^{\mathcal{F}}\right)
$$

The dynamical Lie algebra

Start with the Heisenberg algebra $\mathfrak{h}_{d}=\left\{x_{i}, p_{i}, \hbar\right\}$ satisfying

$$
\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j}, \quad\left[\hbar, x_{i}\right]=\left[\hbar, p_{i}\right]=0
$$

and introduce the elements

$$
\begin{aligned}
H & =\frac{1}{2 \hbar}\left(p_{i} p_{i}\right) \\
K & =\frac{1}{2 \hbar}\left(x_{i} x_{i}\right), \\
D & =\frac{1}{4 \hbar}\left(x_{i} p_{i}+p_{i} x_{i}\right), \\
L_{i_{1} i_{2} \cdots i_{d-2}} & =\frac{1}{\hbar} \epsilon_{i_{1} i_{2} \cdots i_{d-1} i_{d}} x_{i_{d-1}} p_{i_{d}} .
\end{aligned}
$$

Primitive vs. Composite Elements

Two-particle states $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$:

- $\Delta\left(\vec{P}^{2}\right)=\vec{P}^{2} \otimes \mathbf{1}+\mathbf{1} \otimes \vec{P}^{2},\left(\vec{P}_{\text {tot }}^{2}=\vec{P}_{1}^{2}+\vec{P}_{2}^{2}\right)$
- $\Delta\left(\vec{L}^{2}\right)=\vec{L}^{2} \otimes \mathbf{1}+2 \vec{L} \otimes \vec{L}+\mathbf{1} \otimes \vec{L}^{2},\left(\vec{L}_{\text {tot }}^{2}=\vec{L}_{1}^{2}+2 \vec{L}_{1} \cdot \vec{L}_{2}+\vec{L}_{2}^{2}\right)$

Primitiveness may be required on physical grounds.

The dynamical Lie algebra

The elements H, K, D and $L_{i_{1} \ldots i_{d-2}}$ are now declared to be primitive elements of the enlarged Lie algebra

$$
\mathcal{G}_{d}=\left\{\hbar, x_{i}, p_{i}, H, K, D, L_{i_{1} i_{2} \cdots i_{d-2}}\right\}, i=1, \ldots, d
$$

The dynamical Lie algebra

For $d=2$, the nonvanishing commutation relations read

$$
\begin{array}{rlrl}
{\left[x_{i}, p_{j}\right]} & =i \hbar \delta_{i j}, & & \\
{[D, H]} & =i H, & {\left[p_{i}, K\right]=-i x_{i},} \\
{[D, K]} & =-i K, & {\left[p_{i}, D\right]=-\frac{i}{2} p_{i},} \\
{[K, H]} & =2 i D, & {\left[L, x_{i}\right]=i \epsilon_{i j} x_{j},} \\
{\left[x_{i}, H\right]} & =i p_{i}, & {\left[L, p_{i}\right]=i \epsilon_{i j} p_{j} .} \\
{\left[x_{i}, D\right]} & =\frac{i}{2} x_{i}, &
\end{array}
$$

The dynamical Lie algebra

For $d=3$, the nonvanishing commutation relations read

$$
\begin{aligned}
{\left[x_{i}, p_{j}\right] } & =i \hbar \delta_{i j}, & {\left[p_{i}, K\right] } & =-i x_{i}, \\
{[D, H] } & =i H, & {\left[p_{i}, D\right] } & =-\frac{i}{2} p_{i}, \\
{[D, K] } & =-i K, & {\left[L_{i}, x_{j}\right] } & =i \epsilon_{i j k} x_{k}, \\
{[K, H] } & =2 i D, & {\left[L_{i}, p_{j}\right] } & =i \epsilon_{i j k} p_{k}, \\
{\left[x_{i}, H\right] } & =i p_{i}, & {\left[L_{i}, L_{j}\right] } & =i \epsilon_{i j k} L_{k} .
\end{aligned}
$$

The dynamical Lie algebra

$\mathcal{U}\left(\mathcal{G}_{d}\right)$ can be deformed into $\mathcal{U}^{\mathcal{F}}\left(\mathcal{G}_{d}\right)$ by the Abelian twist

$$
\mathcal{F}=\exp \left(i \alpha_{i j} p_{i} \otimes p_{j}\right), \quad \alpha_{i j}=-\alpha_{j i}
$$

The deformed generators are

$$
\begin{aligned}
x_{i}^{\mathcal{F}} & =x_{i}-\alpha_{i j} p_{j} \hbar, \\
K^{\mathcal{F}} & =K-\alpha_{i j} x_{i} p_{j}+\frac{\alpha_{j k} \alpha_{j l}}{2!} p_{k} p_{l} \hbar, \\
L_{i_{1} i_{2} \cdots i_{d-2}}^{\mathcal{F}} & =L_{i_{1} i_{2} \cdots i_{d-2}}-\epsilon_{i_{1} i_{2} \cdots i_{d-2} j k} \alpha_{j l} p_{k} p_{l} .
\end{aligned}
$$

The dynamical Lie algebra

This deformation yields the constant noncommutativity

$$
\left[x_{i}^{\mathcal{F}}, x_{j}^{\mathcal{F}}\right]=i \Theta_{i j},
$$

where

$$
\Theta_{i j}=2 \alpha_{i j} \hbar^{2}
$$

Remark: The Jordanian twist $e^{i D \otimes \ln (1+\xi H)}$ yields the Snyder noncommutativity.

The 2D harmonic oscillator

Consider the harmonic oscillator with Hamiltonian

$$
\mathbf{H}=H+K .
$$

The deformed Hamiltonian $\mathbf{H}^{\mathcal{F}} \in \mathcal{U}^{\mathcal{F}}\left(\mathcal{G}_{2}\right)$ is

$$
\mathbf{H}^{\mathcal{F}}=H^{\mathcal{F}}+K^{\mathcal{F}}=H+K-\alpha x p_{y}+\alpha y p_{x}+\frac{\alpha^{2}}{2} \hbar\left(p_{x}^{2}+p_{y}^{2}\right),
$$

where $\alpha_{i j}=\epsilon_{i j} \alpha$.

The 2D harmonic oscillator

As usual, we introduce

$$
\begin{aligned}
a_{i} & =\frac{x_{i}-i p_{i}}{\sqrt{2}} \\
a_{i}^{\dagger} & =\frac{x_{i}+i p_{i}}{\sqrt{2}}
\end{aligned}
$$

so that

$$
\left[a_{i}, a_{j}^{\dagger}\right]=\hbar \delta_{i j}
$$

The 2D harmonic oscillator

A change of basis will prove to be convenient:

$$
\begin{aligned}
b_{ \pm} & =\frac{a_{x} \mp i a_{y}}{\sqrt{2}} \\
b_{ \pm}^{\dagger} & =\frac{a_{x}^{\dagger} \pm i a_{y}^{\dagger}}{\sqrt{2}}
\end{aligned}
$$

They are creation and annihilation operators, because

$$
\left[b_{ \pm}, b_{ \pm}^{\dagger}\right]=\hbar
$$

and

$$
\begin{aligned}
& {\left[\mathbf{H}, b_{ \pm}\right]=-b_{ \pm},} \\
& {\left[\mathbf{H}, b_{ \pm}^{\dagger}\right]=b_{ \pm}^{\dagger} .}
\end{aligned}
$$

The 2D harmonic oscillator

To calculate the single-particle spectrum, we set $\hbar=1$.
The Hamiltonian can be written as

$$
\mathbf{H}=\frac{1}{2} \sum_{i= \pm}\left\{b_{i}, b_{i}^{\dagger}\right\}
$$

and the number operator and the angular momentum operator as

$$
\begin{aligned}
N & =b_{+}^{\dagger} b_{+}+b_{-}^{\dagger} b_{-}=N_{+}+N_{-}, \\
L & =b_{+}^{\dagger} b_{+}-b_{-}^{\dagger} b_{-}=N_{+}-N_{-} .
\end{aligned}
$$

The 2D harmonic oscillator

Since $[\mathbf{H}, L]=0$, the $\left|n_{+} n_{-}\right\rangle$basis simultaneously diagonalizes both operators:

$$
\begin{aligned}
\mathbf{H}\left|n_{+} n_{-}\right\rangle & =\left(n_{+}+n_{-}+1\right)\left|n_{+} n_{-}\right\rangle, \\
L\left|n_{+} n_{-}\right\rangle & =\left(n_{+}-n_{-}\right)\left|n_{+} n_{-}\right\rangle .
\end{aligned}
$$

Changing labels to $n=n_{+}+n_{-}$and $m=n_{+}-n_{-}$, we have

$$
\begin{aligned}
\mathbf{H}|n m\rangle & =(n+1)|n m\rangle \\
L|n m\rangle & =m|n m\rangle
\end{aligned}
$$

The 2D harmonic oscillator

At the one-particle level only, the deformed Hamiltonian

$$
\mathbf{H}^{\mathcal{F}}=H^{\mathcal{F}}+K^{\mathcal{F}}=H+K-\alpha x p_{y}+\alpha y p_{x}+\frac{\alpha^{2}}{2}\left(p_{x}^{2}+p_{y}^{2}\right)
$$

can be reproduced by the linear combination

$$
\mathbf{H}^{\mathcal{F}}=\widetilde{\mathbf{H}}-\alpha L,
$$

where

$$
\widetilde{\mathbf{H}}=\left(1+\alpha^{2}\right) H+K
$$

is just the undeformed Hamiltonian of an oscillator with frequency
$\tilde{\omega}=\sqrt{1+\alpha^{2}}$.

The 2D harmonic oscillator

The spectrum of $\mathbf{H}^{\mathcal{F}}$ can now be easily computed:

$$
\mathbf{H}^{\mathcal{F}}|n m\rangle=(\widetilde{\mathbf{H}}-\alpha L)|n m\rangle=\left[\left(\sqrt{1+\alpha^{2}}\right)(n+1)-\alpha m\right]|n m\rangle,
$$

where $m=-n,-n+2, \ldots, n-2, n$ and n is a non-negative integer.

The 2D harmonic oscillator

The energy of the first few states:

$$
\begin{aligned}
|0,0\rangle & : \sqrt{1+\alpha^{2}}, \\
|1,1\rangle & : 2 \sqrt{1+\alpha^{2}}-\alpha, \\
|1,-1\rangle & : 2 \sqrt{1+\alpha^{2}}+\alpha, \\
|2,2\rangle & : 3 \sqrt{1+\alpha^{2}}-2 \alpha, \\
|2,0\rangle & : 3 \sqrt{1+\alpha^{2}}, \\
|2,-2\rangle & : 3 \sqrt{1+\alpha^{2}}+2 \alpha .
\end{aligned}
$$

The 2D harmonic oscillator

Since

$$
\Delta^{\mathcal{F}}\left(\mathbf{H}^{\mathcal{F}}\right)=\mathcal{F} \cdot \Delta\left(\mathbf{H}^{\mathcal{F}}\right) \cdot \mathcal{F}^{-1}
$$

as operators acting on $\mathcal{H} \otimes \mathcal{H}$, the undeformed and the deformed coproducts of the deformed Hamiltonian are unitarily equivalent:

$$
\widehat{\Delta^{\mathcal{F}}}\left(\mathbf{H}^{\mathcal{F}}\right)=F \cdot \widehat{\Delta}\left(\mathbf{H}^{\mathcal{F}}\right) \cdot F^{-1}
$$

The same is true for the multi-particle operators of three or more particles:

$$
\widehat{\Delta_{(n)}^{\mathcal{F}}}\left(\mathbf{H}^{\mathcal{F}}\right)=U_{(n)} \cdot \widehat{\Delta}\left(\mathbf{H}^{\mathcal{F}}\right) \cdot U_{(n)}^{-1}, \quad n \geq 2
$$

The 2D harmonic oscillator

We are therefore entitled to use the undeformed coproduct, which is manifestly symmetric under particle exchange.

The two-particle Hamiltonian is

$$
\begin{aligned}
\Delta\left(\mathbf{H}^{\mathcal{F}}\right)= & \mathbf{H}^{\mathcal{F}} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{H}^{\mathcal{F}} \\
& +\alpha\left(y \otimes p_{x}+p_{x} \otimes y-x \otimes p_{y}-p_{y} \otimes x\right) \\
& +\frac{\alpha^{2}}{2} \sum_{i=1}^{2}\left(2 p_{i} \hbar \otimes p_{i}+2 p_{i} \otimes p_{i} \hbar+p_{i}^{2} \otimes \hbar+\hbar \otimes p_{i}^{2}\right)
\end{aligned}
$$

Energy is no longer additive:

$$
E_{12}^{\mathcal{F}}=E_{1}^{\mathcal{F}}+E_{2}^{\mathcal{F}}+\Omega_{12}
$$

The 2D harmonic oscillator

The three-particle Hamiltonian is explicitly given by

$$
\begin{aligned}
\Delta_{(2)}\left(\mathbf{H}^{\mathcal{F}}\right)= & \mathbf{H}^{\mathcal{F}} \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{H}^{\mathcal{F}} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{H}^{\mathcal{F}} \\
& +\alpha\left(\mathbf{1} \otimes y \otimes p_{x}+y \otimes \mathbf{1} \otimes p_{x}+y \otimes p_{x} \otimes \mathbf{1}\right) \\
& +\alpha\left(\mathbf{1} \otimes p_{x} \otimes y+p_{x} \otimes \mathbf{1} \otimes y+p_{x} \otimes y \otimes \mathbf{1}\right) \\
& -\alpha\left(\mathbf{1} \otimes x \otimes p_{y}+x \otimes \mathbf{1} \otimes p_{y}+x \otimes p_{y} \otimes \mathbf{1}\right) \\
& -\alpha\left(\mathbf{1} \otimes p_{y} \otimes x+p_{y} \otimes \mathbf{1} \otimes x+p_{y} \otimes x \otimes \mathbf{1}\right) \\
& +\alpha^{2} \sum_{i=1}^{2}\left[\mathbf{1} \otimes p_{i} \hbar \otimes p_{i}+p_{i} \hbar \otimes p_{i} \otimes \mathbf{1}+p_{i} \hbar \otimes p_{i} \otimes \mathbf{1}\right. \\
& +\mathbf{1} \otimes p_{i} \otimes p_{i} \hbar+p_{i} \otimes p_{i} \hbar \otimes \mathbf{1}+p_{i} \otimes p_{i} \hbar \otimes \mathbf{1} \\
& +\hbar \otimes p_{i} \otimes p_{i}+p_{i} \otimes p_{i} \otimes \hbar+p_{i} \otimes p_{i} \otimes \hbar \\
& +\frac{1}{2}\left(\mathbf{1} \otimes \hbar \otimes p_{i}^{2}+\hbar \otimes p_{i}^{2} \otimes \mathbf{1}+\hbar \otimes p_{i}^{2} \otimes \mathbf{1}\right. \\
& \left.\left.+\mathbf{1} \otimes p_{i}^{2} \otimes \hbar+p_{i}^{2} \otimes \hbar \otimes \mathbf{1}+p_{i}^{2} \otimes \hbar \otimes \mathbf{1}\right)\right],
\end{aligned}
$$

The 2D harmonic oscillator

where the coassociativity of the coproduct

$$
(i d \otimes \Delta) \Delta\left(\mathbf{H}^{\mathcal{F}}\right)=(\Delta \otimes i d) \Delta\left(\mathbf{H}^{\mathcal{F}}\right) \equiv \Delta_{(2)}\left(\mathbf{H}^{\mathcal{F}}\right)
$$

guarantees the associativity of the energy

$$
E_{123}^{\mathcal{F}} \equiv E_{(12) 3}^{\mathcal{F}}=E_{1(23)}^{\mathcal{F}}=E_{1}^{\mathcal{F}}+E_{2}^{\mathcal{F}}+E_{3}^{\mathcal{F}}+\Omega_{12}+\Omega_{23}+\Omega_{31}+\Omega_{123}
$$

The 3D harmonic oscillator

We can express

$$
\alpha_{i j}=\epsilon_{i j k} \alpha_{k}
$$

and then choose a reference frame where

$$
\vec{\alpha}=(0,0, \alpha) .
$$

The deformed Hamiltonian is then

$$
\mathbf{H}^{\mathcal{F}}=H+K-\alpha\left(x p_{y}-y p_{x}\right)+\frac{\alpha^{2}}{2} \hbar\left(p_{x}^{2}+p_{y}^{2}\right) .
$$

The 3D harmonic oscillator

To calculate the single-particle spectrum we are entitled to set $\hbar=1$. We introduce the usual creation and annihilation operators and then perform the change of basis

$$
\begin{aligned}
b_{ \pm} & =\frac{a_{x} \mp i a_{y}}{\sqrt{2}} \\
b_{ \pm}^{\dagger} & =\frac{a_{x}^{\dagger} \pm i a_{y}^{\dagger}}{\sqrt{2}} \\
b_{z} & =a_{z} \\
b_{z}^{\dagger} & =a_{z}^{\dagger} .
\end{aligned}
$$

The 3D harmonic oscillator

We write the Hamiltonian as

$$
\mathbf{H}=\frac{1}{2} \sum_{i= \pm, z}\left\{b_{i}, b_{i}^{\dagger}\right\}
$$

and introduce the operators

$$
\begin{aligned}
N_{x y} & =b_{+}^{\dagger} b_{+}+b_{-}^{\dagger} b_{-}=N_{+}+N_{-} \\
N_{z} & =b_{z}^{\dagger} b_{z} \\
L_{z} & =b_{+}^{\dagger} b_{+}-b_{-}^{\dagger} b_{-}=N_{+}-N_{-}
\end{aligned}
$$

The 3D harmonic oscillator

We can use a basis labeled by the three non-negative integeres $n_{ \pm}, n_{z}$, where

$$
\begin{aligned}
\mathbf{H}\left|n_{+} n_{-} n_{z}\right\rangle & =\left(n_{+}+n_{-}+n_{z}+\frac{3}{2}\right)\left|n_{+} n_{-} n_{z}\right\rangle, \\
L_{z}\left|n_{+} n_{-} n_{z}\right\rangle & =\left(n_{+}-n_{-}\right)\left|n_{+} n_{-} n_{z}\right\rangle
\end{aligned}
$$

Changing to $n_{x y}=n_{+}+n_{-}$and $m=n_{+}-n_{-}$, we have

$$
\begin{aligned}
\mathbf{H}\left|n_{x y} n_{z} m\right\rangle & =\left(n_{x y}+n_{z}+\frac{3}{2}\right)\left|n_{x y} n_{z} m\right\rangle, \\
L_{z}|n m\rangle & =m\left|n_{x y} n_{z} m\right\rangle
\end{aligned}
$$

The 3D harmonic oscillator

We now split \mathbf{H} into its $x y$-part and its z-part:

$$
\mathbf{H}=\mathbf{H}_{x y}+\mathbf{H}_{z},
$$

where $\mathbf{H}_{x y}=\frac{1}{2}\left(x^{2}+p_{x}^{2}+y^{2}+p_{y}^{2}\right)$ and $\mathbf{H}_{z}=\frac{1}{2}\left(z^{2}+p_{z}^{2}\right)$.
This is feasible only at the one-particle level.

The deformation will only affect the $x y$-part.

The 3D harmonic oscillator

The deformed Hamiltonian

$$
\mathbf{H}^{\mathcal{F}}=H+K-\alpha\left(x p_{y}-y p_{x}\right)+\frac{\alpha^{2}}{2}\left(p_{x}^{2}+p_{y}^{2}\right)
$$

can be written as

$$
\mathbf{H}^{\mathcal{F}}=\widetilde{\mathbf{H}}_{x y}-\alpha L_{z}+\mathbf{H}_{z},
$$

where $\widetilde{\mathbf{H}}_{x y}$ a two-dimensional undeformed Hamiltonian with frequency $\tilde{\omega}=\sqrt{1+\alpha^{2}}$.

Isotropy is lost.

The 3D harmonic oscillator

The spectrum of $\mathbf{H}^{\mathcal{F}}$ is

$$
\mathbf{H}^{\mathcal{F}}\left|n_{x y} n_{z} m\right\rangle=\left[\sqrt{1+\alpha^{2}}\left(n_{x y}+1\right)-\alpha m+\left(n_{z}+\frac{1}{2}\right)\right]\left|n_{x y} n_{z} m\right\rangle,
$$

with $m=-n_{x y},-n_{x y}+2, \ldots, n_{x y}-2, n_{x y}$.

The z-part of the Hamiltonian remains additive, so the multi-particle Hamiltonians are basically the same as in two-dimensonal case.

The 3D harmonic oscillator

First few states:

$$
\begin{aligned}
|0,0,0\rangle & : \frac{1}{2}+\sqrt{1+\alpha^{2}} \\
|0,1,0\rangle & : \frac{3}{2}+\sqrt{1+\alpha^{2}} \\
|1,0,-1\rangle & : \frac{1}{2}+2 \sqrt{1+\alpha^{2}}+\alpha \\
|1,0,1\rangle & : \frac{1}{2}+2 \sqrt{1+\alpha^{2}}-\alpha
\end{aligned}
$$

The 3D harmonic oscillator

$$
\begin{aligned}
|0,2,0\rangle & : \frac{5}{2}+\sqrt{1+\alpha^{2}} \\
|1,1,-1\rangle & : \frac{3}{2}+2 \sqrt{1+\alpha^{2}}+\alpha \\
|1,1,1\rangle & : \frac{3}{2}+2 \sqrt{1+\alpha^{2}}-\alpha \\
|2,0,-2\rangle & : \frac{1}{2}+3 \sqrt{1+\alpha^{2}}+2 \alpha \\
|2,0,0\rangle & : \frac{1}{2}+3 \sqrt{1+\alpha^{2}} \\
|2,0,2\rangle & : \frac{1}{2}+3 \sqrt{1+\alpha^{2}}-2 \alpha
\end{aligned}
$$

$\frac{1}{2}$ is the zero-point energy along the z-axis.

Rotational invariance in 2D

The undeformed generator of rotations on the plane satisfies

$$
\left[L, x_{i}^{\mathcal{F}}\right]=i \epsilon_{i j} x_{j}^{\mathcal{F}}
$$

and

$$
\left[L, \mathbf{H}^{\mathcal{F}}\right]=0
$$

The deformed oscillator retains its so(2) invariance, even for multiparticle states:

$$
\left[\Delta\left(\mathbf{H}^{\mathcal{F}}\right), \Delta(L)\right]=0 .
$$

Rotational invariance in 3D

If we perform the same calculation for the L_{i} 's in three dimensions, we obtain

$$
\left[L_{i}, x_{j}^{\mathcal{F}}\right]=i \epsilon_{i j k} x_{k}^{\mathcal{F}}-i \hbar\left(\delta_{i j} \alpha p_{z}-p_{i} \alpha_{j}\right)
$$

The second term on the right hand side vanishes only for $i=3$.

Also $\left[\mathbf{H}^{\mathcal{F}}, L_{i}\right]$ only vanishes for $i=3$.
So, L_{z} is a generator of rotational symmetry, while L_{x} and L_{y} are not, and thus the so(3) invariance is broken down to an so(2) invariance around the z-axis.

Rotational invariance in 3D

The same holds for multiparticle states, because

$$
\begin{aligned}
{\left[\Delta\left(\mathbf{H}^{\mathcal{F}}\right), \Delta\left(L_{i}\right)\right]=} & i \epsilon_{3 i j}\left(\alpha L_{j}-2 \alpha^{2} p_{j} p_{z}\right) \otimes \mathbf{1} \\
& +\mathbf{1} \otimes i \epsilon_{3 i j}\left(\alpha L_{j}-2 \alpha^{2} p_{j} p_{z}\right) \\
& -i \alpha\left(x_{i} \otimes p_{z}+p_{z} \otimes x_{i}-z \otimes p_{i}-p_{i} \otimes z\right)
\end{aligned}
$$

is zero only for $i=3$.

Conclusions

- The single-particle spectrum of the quantum harmonic oscillator in the presence of a constant noncommutativity can be calculated in the framework of a Drinfel'd twist
- The costructures are required to unambiguously fix the multi-particle states
- Measuring multi-particle states is required to detect deformation
- The unitary equivalence between deformed and undeformed coproduct guarantees the symmetry under particle exchange
- In two dimensions, so(2) invariance is retained
- In three dimensions, the so(3) invariance is broken down to an so(2) invariance

