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Abstract

In noncommutative (NC) field theory space can be rendered discrete
in a natural way. Noncommutativity is then traded for nonlocality. A
discussion of local and nonlocal oscillations and wave propagation is
presented, including the exact solution of the relevant difference
equations. The fields remain finite even at the location of the
sources; the commutative limit can be taken without problems. The
issue of causality is discussed in the continuous representation.



Equation of motion

Consider one (2+1)-dimensional scalar field Φ, depending on space
coordinates forming a Heisenberg algebra (time is commutative and
remains continuous):

Φ(t, x̂1, x̂2), [x̂1, x̂2] = iθ. (1)

The scalar field Φ is a time-dependent operator acting on the Hilbert
space H on which the algebra is represented.
Since [x̂1, φ(x̂1, x̂2)] = iθ ∂φ

∂x̂2
, [x̂2, φ(x̂1, x̂2)] = −iθ ∂φ

∂x̂1
, the field action,

written in operatorial form, is

S =

∫

dt TrH

(

1

2
Φ̇2 +

1

2θ2
[xi ,Φ]

2 + V (Φ)

)

, i = 1, 2. (2)

Take V (Φ) = 0. The equation of motion for the field Φ is

Φ̈ +
1

θ2
[xi , [xi ,Φ]] = 0. (3)

In Cartesian coordinates, have plane waves

Φ ∼ e i(k1x1+k2x2)−iωt , k2
1 + k2

2 = ω2 (4)

formally identical to the commutative one; in fact (4) has bilocal
character [CSA Phys. Rev. D67 (2003) 045020].



Radial symmetry

If require polar coordinates (a source emiting radiation, a circular
membrane oscillating), then the oscillator basis {|n〉}

N |n〉 = n |n〉 , N = āa, a =
1√
2θ

(x1 + ix2), (5)

is the natural one and the equation of motion becomes

Φ̈ +
2

θ
[a, [ā,Φ]] = 0. (6)

N = 1
2 (

x21+x22
θ − 1) is basically the radius square operator, in units of θ.

If Φ = Φ(N) - radial symmetry - Φ is diagonal in the |n〉 basis and
〈n|Φ(t) |n〉 ≡ Φn(t) obeys

Φ̈n −
2

θ
(n∆2Φn−1 +∆Φn) = 0, n = 0, 1, 2, . . . (7)

The discrete derivative operator ∆ is defined by

∆Φn = Φn+1 − Φn. (8)

If assume Φn(t) ∼ e iωt, obtain the difference equation

n∆2Φn−1 +∆Φn + λΦn = 0, n = 0, 1, 2, . . . (9)

with 2λ/θ = ω2 −m2 (mass term reinserted).



Solution of the equation of motion

The difference equation (9) has two linearly independent solutions
describing travelling or stationary waves on the semi-infinite discrete
space of points n = 0, 1, 2, . . .
Obtain the solutions (up to a multiplicative dimensionfull constant)

Φ1(n) =

n
∑

k=0

(−λ)k

k!
C k
n , Φ1(0) = 1, Φ1(1) = 1− λ , (10)

Φ2(n) =

n−1
∑

k=0

(−λ)k

k!

n−k
∑

j=1

C k
n−j

k + j
, Φ2(0) = 0, Φ2(1) = 1 . (11)

They are finite sums. Φ2(n) = e−λ
(

Φ̃2(n) − Φ1(n) ·∑∞

k=1
λk

k!k

)

, where

Φ̃2(n) =

n
∑

k=0

(−λ)k

k!
C k
n (Hn−k − 2Hk) +

(−λ)n

n!

∞
∑

s=1

λs(s − 1)!

[(n + s)!/n!]2
. (12)

Hk is a discrete version of the logarithmic function,

Hk = 1 +
1

2
+

1

3
+ · · ·+ 1

k
, k = 1, 2, 3 . . . ; H0 = 0. (13)



Linear independence

The two solutions are linearly independent, since

W (n) ≡ Φ1(n+1)Φ2(n)−Φ1(n)Φ2(n+1) =
1

n + 1
6= 0, ∀n ≥ 0. (14)

The general solution is thus a linear combination of Φ1(n) and Φ2(n),

Φ(n) = c1Φ1(n) + c2Φ2(n), (15)

with the coefficients c1,2 fixed by some physical boundary conditions.

Small distance: no classical divergences

It is worth noting that, in sharp contrast to the commutative case, in
which Hankel and Neumann functions are singular at the origin, the
functions Φ1,2 are nowhere singular (except when θ = 0). This suggests
that, although not finite in quantum perturbation theory, fields defined
over noncommutative spaces may not display classical divergences. This
happens simply because the sources are not localized (also, one has no
access to the origin: r/

√
θ =

√
2n+ 1 ≥ 1). In order to rigorously

support such a claim, one has to include sources in the calculation, by
solving the inhomogeneous version of equation (9).



Including sources

(n + 1)Φ(n + 1)− (2n + 1− λ)Φ(n) + nΦ(n − 1) = j(n). (16)

Consider first a nonzero source δn0,n. Adapt the method of variation of
constants to the discrete case

Φp(n) = c1(n)Φ1(n) + c2(n)Φ2(n). (17)

Assuming c1,2(n) constant except for a jump at n0,

ci (n + 1)− ci (n) = f1(n)δn0,n, i = 1, 2, (18)

obtain

f1(n) =
Φ2(n)

(n + 1)W (n)
, f2(n) = − Φ1(n)

(n + 1)W (n)
, ∀n ≥ 0. (19)

W (n) is the discrete Wronskian defined in Eq. (14), which is nonzero
due to the linear independence of Φ1 and Φ2. In the physically most
interesting case n0 = 0 the difference equation (16) becomes first-order.
The above method works the same, due to the simple Ansatz (18).
The solution for an arbitrary distribution of charges j(n), ∀n, is now
obtained by linear superposition of the above type of solutions. It does
not display singularities.



Large distance: commutative limit

Consider the n → ∞ limit (small θ limit). Using λ = θω2/2 and

n = r2

2θ → ∞, Φ1(n) becomes, as a function of r ,

Φ1(n)
n→∞→ f1(r) =

∞
∑

k=0

(−1)k(ωr)2k

(k!)222k
= J0(ωr)

r→∞∼
√

2

πωr
cos(ωr−π/4).

(20)
f1(r) is independent of θ. Similarly, Φ2 becomes

Φ2(n) → f2(r) =

∞
∑

k=0

(−1)k(ωr)2k

(k!)222k
[2ln(ωr)− 2Hk + γ − ln(2θω2)]. (21)

γ is the Euler-Mascheroni constant, γ = limk=∞(Hk − lnk) ≃ 0.5772.
f2(r) still depends on θ, via a logarithmic term; its θ → 0 limit is singular.
Using the series expansion of the Bessel function of first (J0) and second
kind (Neumann function, Y0), f2(r)/π = Y0(ωr) + (γ + ln(2θω2))J0(ωr).



Standing and travelling waves

The n → ∞ limits of Φ1(n) and Φ2(n) obey the Bessel equation, in

agreement with the n = r2

2θ → ∞ limit of the difference operator

2

θ
(n∆2Φn−1 +∆Φn)

n→∞→ 2

θ
(n

d2

dn2
+

d

dn
)Φ(n)

n= r2

2θ= (
d2

dr2
+

1

r

d

dr
)f (r).

(22)
Thus, at r >>

√
θ, NC radial waves behave like commutative ones.

Usual standing waves are described by J0(r), radially expanding ones by
the first Hankel function H1

0 (r) = J0(r) + iY0(r). The linear combination
of Φ1(n) and Φ2(n) which at n → ∞ tends to J0(r) will describe
standing noncommutative waves (oscillations). This is Φ1(n). On the
other hand, the function which tends to H1

0 (r) as r → ∞, namely

Φ3(n) = Φ1(n) +
i

π

(

Φ2(n) + [γ + ln(θω2/2)]Φ1(n)
)

, (23)

represents a travelling radial NC wave propagating outwards towards
n = ∞. Any solution Φ(n) of (9) can be written as a linear superposition
of Φ1(n) and either Φ2(n) or Φ3(n), with coefficients determined by the
boundary conditions one wishes to impose.



No radial symmetry - Bilocal waves

We encountered only Bessel functions of zero order since the angular
dependence of Φ is lost if it depends only on the ”radius squared” N ,
Φ(N), and not on the angle θ. If Φ(x̂ , ŷ) = Φ(N̂ , ”θ̂”) however,
〈n′|Φ |n〉 ≡ Φ(n, n′) 6= 0 even for n′ 6= n. Φ becomes bilocal. Define

Φ
(m)
n ≡ Φ(n′, n), m = n′ − n > 0; its classical equation of motion is

√
n +m + 1

√
n + 1Φ

(m)
n+1 +

√
n +m

√
nΦ

(m)
n−1 + (λ− 2n−m− 1)Φ(m)

n = 0.
(24)

In the n → ∞ limit, m << n, n+n′

2 ∼ r2

2θ , Φ
(m)
n → f (m)(r) obeying

d2f (m)

dr2
+

1

r

df (m)

dr
+ (λ− m2

r2
)f (m)(r) = 0 (25)

precisely the equation of the mth order Bessel function Jm(r)! In fact,
the solutions are consistent with that, for instance the first one

Φ1(m)
n =

n
∑

k=0

(−1)kλk+m
2

√

(n +m)(k+m)n(k)

k!(m+ k)!
→ Jm(r). (26)

Φ
2(m)
n involves also the higher order Neumann function Y m(r).



Non-local solutions

More explicitely, the difference equation

√
n +m + 1

√
n + 1Φ

(m)
n+1 +

√
n +m

√
nΦ

(m)
n−1 + (λ− 2n−m− 1)Φ(m)

n = 0

is solved by

Φ1(m)
n =

√

(n +m)!

n!
λm

n
∑

k=0

(−λ)k

(k +m)!
C k
n ,

Φ2(m)
n =

√

(n +m)!

n!
λm

n−1
∑

L=0

(−λ)L

{

n−L
∑

s=1

(−)s−1(m + s − 1)!

(m + s + L)!
C s+L
n−L+L

}

.

Finding the second solution through the series expansion method was
quite involved. However, no ’smarter’ method (generating function,
reduction of order, etc.) worked satisfactorily, until now.



For m 6= 0 one can rewrite the second solution as

Φ2(m)
n =

√

(n +m)!

n!
λm

n−1
∑

L=0

(−λ)L







n−L−1
∑

j=0

CL−1
L−1+j

(

1− (m+L)!(n−j)!
L!(n−j+m)!

)

m(m + 1) · · · (m + L)







.

For m = 0 the second solution becomes

Φ2(0)
n =

n−1
∑

L=0

(−λ)L







n−L
∑

s=1

(−)s−1C s +L
n−L+L

s(s + 1) · · · (s + L)
=

n−L
∑

j=1

CL
L+n−L−j

L+ j







!≡ Φ2(n) .

At this point, one has all that is needed for

◮ including sources (easy)

◮ performing the commutative limit (requires some care)

◮ solving decay through radiation of field configurations possessing
angular momentum (in project)



Continuous representation

Consider again Φ(t, x̂ , ŷ); [x̂ , ŷ ] = iθÎ ; x̂ , ŷ : H → H. Choose the basis
{|x >} of eigenstates of x̂ : x̂|x >= x |x >, ŷ |x >= −iθ ∂

∂x |x >.
To quantize Φ, promote normal modes expansion coefficients a and a∗.
to annihilation/creation operators a, a† on a standard Fock space F .
To introduce NC space, apply Weyl (not Weyl-Moyal!) quantization to
the exponentials e i(kxx+ky y) (the normal modes). The result is

Φ =

∫ ∫

dkxdky

2π
√

2ω~k

[

âkxky e
i(ω~k

t−kx x̂−ky ŷ) + â
†
kxky

e−i(ω~k
t−kx x̂−ky ŷ)

]

. (27)

Φ acts on a direct product of two Hilbert spaces, Φ : F ⊗H → F ⊗H.
Saturate the action of Φ on H by working with expectation values
< x ′|Φ|x >: F → F . Bilocality appears explicitely due to

< x ′|e i(kx x̂+ky ŷ |x >= e ikx(x+ky θ/2)δ(x ′−x−kyθ) = e ikx
x+x′

2 δ(x ′−x−kyθ).
(28)

The span along the x axis is (x ′ − x) = θky ; the energy is

ω~k =

√

k2
x +

∆x2

θ2
+m2. (29)

Notice the intrinsic IR/UV-dual character of the dipoles: both big
momentum (UV) and big extension (IR) give big energy.



Symmetries

Reintroduce the commutative z direction and use the notation

< x ′|φ|x >≡ φ(x ′, x) ≡ φ(x̄ ,∆x), x̄ ≡ x + x ′

2
, ∆x ≡ (x ′ − x)

The free equation of motion for φ(t, x̂ , ŷ , z) follows from the action

S = TrH

∫

dt

∫

dz

(

(φ̇)2 +
1

θ2
[x̂ , φ]2 +

1

θ2
[ŷ , φ]2 − (∂zφ)

2 +m2φ2

)

,

and reads (∂2
t − ∂2

z +m2)φ+ 1
θ2 [ŷ , [ŷ , φ]] +

1
θ2 [x̂ , [x̂ , φ]] = 0. Sandwiching

it between |x > states, one gets rid of NC and obtains the wave equation
(

∂2
t − ∂2

x̄ − ∂2
z +

(x ′ − x)2

θ2
+m2

)

φ(x , x ′) = 0

for a dipole living in (2+1) commutative dimensions at t, x̄, z and having
extension ∆x . Notice the full agreement with the dispersion relation (29).
In the interacting case, the relevant Lagrangian is thus

2L = (∂tφ)
2 − (∂x̄φ)

2 + [(θ−1∆x)2 +m2]φ2 − 2V (φ)

and is invariant under Lorentz boosts along the x̄-axis, and along the
z-axis, independently (recall the tensorial character of θ = θxy ∼ xy and
∆x ∼ x). These bilocal representation symmetries are at variance with
the Moyal approach claim O(2)x−y ⊗ O(1, 1)t−z .



Causality

Free NC fields behave like lower-dimensional commutative fields with a
modified dispersion relation ω2 = k2

x + (x−x′)2)
θ2 , hence they are causal.

For interacting fields, assume the vanishing of the following commutator

[φ(t1, x̄1), φ(t2, x̄2)] = 0, (30)

with x̄1 =
x1+x′1

2 , x̄2 =
x2+x′2

2 the average positions of the two dipoles
considered. We want (30) to be true for a space-like interval

(t1 − t2)
2 − (x̄1 − x̄2)

2 ≤ 0. (31)

Since one can apply a boost along x to render equal the two times
appearing in Eq. (30), Eqs. (30, 31) are generically equivalent to

[φ(t, x̄), φ(t, ȳ )] = 0, ~x 6= ~y . (32)

In consequence, Eqs. (30, 31) are tantamount, via a boost, to

e iH
′t [φ(0, x̄), φ(0, ȳ )]e−iH′t = 0 (33)

which is true at t = 0, (by definition) the time at which the fields behave
like free fields (H ′ ≡ VI .P.). Adding now the (passive) commutative
coordinate z , we conclude that the correct causality criterion for NCFT is

[φ(t1, x̄1, z1), φ(t2, x̄2, z2)] = 0, (t1− t2)
2− (x̄1− x̄2)

2− (z1−z2)
2 ≤ 0.



Summary

◮ On the NC plane defined by [x1, x2] = iθ, local and non-local waves
propagate on a discrete space, given by the eigenvalues
r =

√
2n+ 1, n = 0, 1, 2, . . . of the radius square operator. At finite

distance, the amplitude of the waves is given by a finite series.

◮ In the large radius limit, r >>
√
θ, or n → ∞, the amplitudes

become Bessel-type functions, consequently the waves behave like
commutative ones.

◮ At small radius, if θ 6= 0, there are no signs of singularities
appearing, even at the location of the sources.

◮ The degree of non-locality is proportional to the angular momentum
of the field configuration.

◮ ’Residual’ Lorentz symmetry persists, involving also one of the NC
coordinates. Using this symmetry, a satisfactory causality criterion
can be formulated.
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