The Non-Uniqueness Problem of the Covariant Dirac Theory: "Conservative" vs. "Radical" Solutions

Mayeul Arminjon^{1,2}

¹ CNRS (Section of Theoretical Physics)

² Lab. "Soils, Solids, Structures, Risks", 3SR

(CNRS & Grenoble Universities), Grenoble, France.

Geometry, Integrability & Quantization XIV, Varna (Bulgaria), June 8-13, 2012.

Experimental context

- Quantum effects in the classical gravitational field are observed on Earth for neutrons (spin $\frac{1}{2}$ particles) & atoms:
 - COW effect: gravity-induced phase shift measured by neutron (1975) and atom (1991a) interferometry;
 - Sagnac effect: Earth-rotation-induced phase shift measured by neutron (1979) and atom (1991b) interferometry;
 - Granit effect: Quantization of the energy levels proved by threshold in neutron transmission through a thin horizontal slit (2002).
- These are the only observed effects of the gravity-quantum coupling! Motivates work on curved-spacetime Dirac equation (thus first-quantized theory).

State of the art

Generally-)covariant rewriting of the Dirac eqn:

$$\gamma^{\mu}D_{\mu}\Psi = -iM\Psi$$
 ($M \equiv mc/\hbar$). (1)

3

 γ^{μ} : Dirac 4×4 matrices. Verify anticommutation relation: $\underline{\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu} \mathbf{1}_{4}, \ \mu, \nu \in \{0, ..., 3\}, \ \mathbf{1}_{4} \equiv \operatorname{diag}(1, 1, 1, 1).$ Here $(g^{\mu\nu}) \equiv (g_{\mu\nu})^{-1}$, with $g_{\mu\nu}$ the components of the Lorentzian metric g on the SpaceTime manifold V in a local chart $\chi : V \supset U \rightarrow R^{4}$. Thus γ^{μ} depend on $X \in V$.

Wave function ψ is a section of a vector bundle E ("spinor bundle") with base V. $\Psi : U \to C^4$: local expression of ψ in a local frame field $(e_a)_{a=0,...,3}$ on E over U.

 $D_{\mu} \equiv \partial_{\mu} + \Gamma_{\mu}$, covariant derivatives. Γ_{μ} : 4 × 4 matrices.

State of the art (continued)

- For standard version (Dirac-Fock-Weyl, DFW): the field of the anticommuting Dirac matrices γ^μ is determined by an (orthonormal) tetrad field (u_α), i.e., V ∋ X ↦ u_α(X) ∈ TV_X (α = 0, ..., 3).
- ► The tetrad field (u_{α}) may be changed by a "local Lorentz transformation" $L: V \rightarrow SO(1,3)$, $\tilde{u}_{\beta} = L^{\alpha}_{\ \beta}u_{\alpha}$. Lifted to a "spin transformation" $S: V \rightarrow Spin(1,3)$. S is smooth if V is topologically simple. Then the DFW eqn is covariant under changes of the tetrad field, thus the DFW eqn is unique.
- That covariance is got with the "spin connection" D on the spinor bundle E. This connection *depends on the field of the Dirac matrices* γ^{μ} , thus it depends on the tetrad field.

State of the art (end)

DFW has been investigated in physical situations, notably

- in a uniformly rotating frame in Minkowski SpaceTime
- in a uniformly accelerating frame in Minkowski ST
- in a static, or stationary, weak gravitational field.
- Differences with non-relativistic Schrödinger eqn with Newtonian potential: not currently measurable.
- First expected new effect with respect to non-relativistic Schrödinger eqn with Newtonian potential: "Spin-rotation coupling" in a rotating frame (Mashhoon 1988, Hehl-Ni 1990). Would affect the energy levels of a Dirac particle.

Covariant Dirac eqn: Alternative Versions

Alternative versions of the covariant Dirac eqn (1) can be proposed (M.A., Found. Phys. 2008, M.A. & F. Reifler, Int. J. Geom. Meth. Mod. Phys. 2012), based on assuming any *fixed connection* on the spinor bundle E (in contrast with DFW). Price: Covariance under changes of the γ^μ field expressed by a system of quasilinear PDE's. (M.A. & F. Reifler, Braz. J. Phys. 2010)

NB. For a physically relevant spacetime ${\rm V}$, there are two explicit realizations of a spinor bundle E :

- $E = V \times C^4$ (wave function is a complex four-scalar)
- $E = T_C V$ (wave function is a complex *four-vector*).

(M.A. & F. Reifler, Int. J. Geom. Meth. Mod. Phys. 2012)

Surprising recent results

7

Ryder (Gen. Rel. Grav. 2008) considered uniform rotation w.r.t. inertial frame in Minkowski ST. Found in this particular case:

Mashhoon's term in the DFW Hamiltonian operator H is there for one tetrad field (u_{α}) , is not for another one (\tilde{u}_{α}) .

Independently we identified in the most general case the relevant scalar product for the covariant Dirac eqn (M.A. & F. Reifler, arXiv:0807.0570 (gr-qc)/ Braz. J. Phys. 2010). And:

Hermiticity of H w.r.t. that scalar product depends on the choice of the admissible field γ^{μ} .

Surprising recent results (continued)

- ► This fact (instability of the hermiticity of H under admissible changes of the γ^{μ} field) led us to a general study of the non-uniqueness problem of the covariant Dirac theory.
- As for this fact, we did that study for DFW, and for alternative versions of the covariant Dirac eqn.
- Found that, for any of these versions (standard, alternative), in any given reference frame:
 - The Hamiltonian operator H is non-unique.
 - So is also the energy operator E (Hermitian part of H)
 - The Dirac energy spectrum (= of E) is non-unique.

Local similarity (or gauge) transformations

Recall: in a curved spacetime (V, \boldsymbol{g}) , the Dirac matrices γ^{μ} depend on $X \in V$.

If one changes from one admissible field (γ^{μ}) to another one $(\tilde{\gamma}^{\mu})$, the new field obtains by a *local similarity transformation* (or local gauge transformation) :

 $\exists S = S(X) \in \mathsf{GL}(4,\mathsf{C}): \qquad \tilde{\gamma}^{\mu}(X) = S^{-1}\gamma^{\mu}(X)S, \quad \mu = 0, ..., 3.$ (2)

For the standard Dirac eq (DFW), the gauge transformations are restricted to the spin group Spin(1,3), because they are got by lifting a local Lorentz transformation L(X) applied to a tetrad field. For the alternative eqs, they are general: $S(X) \in GL(4, C)$.

The general Dirac Hamiltonian

Rewriting the covariant Dirac eqn in the "Schrödinger" form:

$$i\frac{\partial\Psi}{\partial t} = \mathrm{H}\Psi, \qquad (t \equiv x^0),$$
 (3)

gives the general explicit expression of the Hamiltonian operator H. (M.A., Phys. Rev. D 2006; M.A. & F. Reifler, Ann. der Phys. 2011)

• H depends on the coordinate system, or more exactly on the reference frame — an equivalence class of charts defined on a given open set $U \subset V$ and exchanging by

$$x'^{0} = x^{0}, \quad x'^{j} = f^{j}((x^{k})) \qquad (j, k = 1, 2, 3).$$
 (4)

(M.A.& F. Reifler, Braz. J. Phys. 2010, Int. J. Geom. Meth. Mod. Phys. 2011. Thus a chart χ defines a reference frame: the equivalence class of χ .)

Invariance condition of the Hamiltonian under a local gauge transformation

When does a gauge transfo. S(X), applied to the field of Dirac matrices γ^{μ} , leave H invariant? I.e., when do we have

$$\widetilde{\mathbf{H}} = S^{-1} \, \mathbf{H} \, S? \tag{5}$$

11

E.g. if the Dirac eqn is covariant under the local gauge transformation S (case of DFW), it is easy to see that we have (5) iff S(X) is time-independent, $\underline{\partial_0 S} = 0$, independently of the explicit form of H. (Other conditions for alternative eqs.)

In the general case $g_{\mu\nu,0} \neq 0$, any possible field γ^{μ} depends on t, and so does S. Thus the Dirac Hamiltonian is not unique and one also proves that the energy operator and its spectrum are not unique. (M.A. & F. Reifler, Ann. der Phys. 2011)

Basic reason for the non-uniqueness

- ► Thus, in a given general reference frame or even in a given coordinate system, the Hamiltonian and energy operators associated with the *generally-covariant* Dirac eqn depend on the choice of the *field* of Dirac matrices $X \mapsto \gamma^{\mu}(X)$.
- In contrast, in a given inertial reference frame or in a given Cartesian coordinate system, the Hamiltonian operator associated with the *original* Dirac eqn of special relativity is Hermitian and does *not* depend on the choice of the *constant* set of Dirac matrices γ^{‡α}.
 (M.A. & F. Reifler, Braz. J. Phys. 2008)
- Clearly, the non-uniqueness means there is too much choice for the field γ^{μ} too much gauge freedom.

Tetrad fields adapted to a reference frame

• The data of a reference frame F fixes a unique four-velocity field $v_{\rm F}$: the unit tangent vector to the world lines

 $X \in \mathcal{U}, \quad x^0(X) \text{ variable}, \qquad x^j(X) = \text{constant for } j = 1, 2, 3.$ (6)

These world lines (invariant under an internal change (4)) are the trajectories of the particles constituting the reference frame \Rightarrow a chart *has* physical content after all!

- Natural to impose on the tetrad field (u_{α}) the condition: time-like vector of the tetrad = four-velocity of the reference frame: $u_0 = v_F$.
- Then the spatial triad (u_p) (p = 1, 2, 3) can only be *rotating* w.r.t. the reference frame. (Outline follows.)

Space manifold and spatial tensor fields

- Let F be a reference frame, with its domain $U \subset V$. The set M of the world lines (6) is endowed with a natural structure of differential manifold: for any chart $\chi \in F$, its spatial part $\tilde{\chi} : M \ni x \mapsto (x^j)_{j=1,2,3}$ is a chart on M.
- Space manifold M is frame-dependent and is not a 3-D submanifold of the spacetime manifold V ! (M.A. & F. Reifler, Int. J. Geom. Meth. Mod. Phys. 2011)
- One then defines spatial tensor fields depending on the spacetime position, e.g. a spatial vector field: $U \ni X \mapsto \mathbf{u}(X) \in TM_{x(X)}$, where, for $X \in U$, x(X) = unique world line $x \in M$, s.t. $X \in x$. (See Eq. (6).)

Rotation rate tensor field of the spatial triad

Again a reference frame F is given. $\forall X \in U$, there is a canonical isomorphism between four-vectors $\perp v_{\rm F}$ and spatial vectors:

 $\mathbf{H}_X \equiv \{ u_X \in \mathrm{TV}_X ; \ \boldsymbol{g}(u_X, v_{\mathrm{F}}(X)) = 0 \} \rightleftharpoons \mathrm{TM}_{x(X)}, \quad (7)$

u (with components u^{μ} , $\mu = 0, ..., 3$ in some $\chi \in F$) $\mapsto \mathbf{u}$ (with components $u^{j}, j = 1, 2, 3$ in $\widetilde{\chi}$). (Independent of $\chi \in F$.)

Then, ∃ one natural time-derivative for spatial vector fields. This allows one to geometrically define the rotation rate field Ξ of the spatial triad field (u_p) (p = 1, 2, 3) associated with a tetrad field (u_α) (α = 0, ..., 3). MA, Ann. der Phys. 2011

Tetrad fields adapted to a reference frame (end)

- Two tetrad fields (u_α) and (ũ_α) s.t. u₀ = ũ₀ = v_F, and with the same rotation rate Ξ = Ξ, exchange by a time-independent Lorentz transformation. Hence they give rise in F to equivalent Hamiltonian operators and to equivalent energy operators.
- Two natural ways to fix the tensor field Ξ are: i) $\Xi = \Omega$, where Ω is the unique *rotation rate field of the given reference frame* F, and ii) $\Xi = 0$.
- Either choice, i) or ii), thus provides a solution to the non-uniqueness problem. These two solutions are not equivalent, so that experiments would be required to decide between the two. Moreover, each solution is valid only in a given reference frame.

Getting unique Hamiltonian & energy operators in any reference frame at once?

- The invariance condition of the Hamiltonian H after a gauge transfo. for DFW: ∂₀S = 0, is coordinate-dependent. This condition implies also the invariance of the energy operator E for DFW.
- ► ⇒ The stronger condition $\partial_{\mu}S = 0$ ($\mu = 0, ..., 3$) implies the invariance of both H and E simultaneously in any chart (hence in any reference frame), for DFW.

Getting unique Hamiltonian & energy operators in any reference frame at once? (continued)

Alternative versions of covariant Dirac eqn: the invariance conditions of H and E contain $D_{\mu}S$. But, for the "QRD–0" version, we define the connection matrices to be

 $\Gamma_{\mu} = 0$ in the canonical frame field (E_a) of V × C⁴, (8)

so we have by construction $\partial_{\mu}S = D_{\mu}S$ for QRD-0.

Thus, if we succeed in restricting the choice of the γ^μ field so that any two choices exchange by a **constant** gauge transfo. (∂_μS = 0), we solve the non-uniqueness problem simultaneously in any reference frame — for both DFW and QRD-0, and only for them.

Fixing one tetrad field in each chart

In a chart, a tetrad (u_{α}) is defined by a matrix $a \equiv (a^{\mu}_{\alpha})$, s.t. $u_{\alpha} = a^{\mu}_{\ \alpha}\partial_{\mu}$. Orthonormality of the tetrad in the metric with matrix $G \equiv (g_{\mu\nu}) = G(X)$ ($X \in V$):

$$b^T \eta b = G$$
 $[b \equiv a^{-1}, \eta \equiv \text{diag}(1, -1, -1, -1)].$ (9)

Generalized Cholesky decomposition (Reifler 2008): $\exists ! \ b = C$: lower triangular solution of (9) with $C^{\mu}_{\ \mu} > 0, \ \mu = 0, ..., 3$.

 \rightarrow a unique tetrad in a given chart: "Cholesky prescription". One other known prescription (Kibble 1963) has this property. Both coincide for a "diagonal metric": $G = \operatorname{diag}(d_{\mu}) \Rightarrow u_{\alpha} \equiv \delta^{\mu}_{\alpha} \partial_{\mu} / \sqrt{|d_{\mu}|}$, "diagonal tetrad".

The reference frame, not the chart, is physically given

What is physically given is the reference frame: a three-dimensional congruence of time-like world lines.

Given a reference frame F, there remains a whole functional space of different choices for a chart $\chi \in F$.

Fixing one tetrad field in each chart is not enough

• Consider a prescription (e.g. "Cholesky"): $\chi \mapsto a \mapsto (u_{\alpha})$. For two different charts $\chi, \chi' \in F$, we get two tetrad fields $(u_{\alpha}), (u'_{\alpha})$ with matrices a, a'. We have $u'_{\beta} = L^{\alpha}_{\ \beta}u_{\alpha}$, with

$$L = b P a', \quad b \equiv a^{-1}, \qquad P^{\mu}_{\ \nu} \equiv \frac{\partial x^{\mu}}{\partial x'^{\nu}}.$$
 (10)

- ▶ b and a' depend on $t \equiv x^0 = x'^0$ as do G and G'. Since $\chi, \chi' \in F$, the matrix P doesn't depend on t, Eq. (4). In general, the dependences on t of b and a' don't cancel each other in Eq. (10).
- ► Thus in general the Lorentz transformation L depends on t. ⇒ L is lifted to a gauge transformation S depending on t. ⇒ H and H' not equivalent: The non-uniqueness still there.

The case with a diagonal metric

► Consider the Cholesky prescription applied to a "diagonal metric": G = diag(dµ) (d₀ > 0, dj < 0, j = 1, 2, 3). Some algebra gives us

$$\frac{\partial}{\partial t} \left(L^{p}{}_{3} \right) \propto P^{p}{}_{3} (P^{j}{}_{3})^{2} \frac{\partial}{\partial t} \left(\frac{d_{j}}{d_{p}} \right) \quad \text{(no sum on } p = 1, 2, 3),$$
(11)

with a non-zero proportionality factor. Thus in general $\frac{\partial}{\partial t} (L_3^p) \neq 0$, non-uniqueness of H and E still there.

Exception: $d_j(X) = d_j^0 h(X)$ with d_j^0 constant ($d_0^j < 0$ with h > 0). Then after changing $x'^j = x^j \sqrt{-d_j^0}$, we get $d'_j = -h \ (j = 1, 2, 3)$, or

 $\overline{G \equiv (g_{\mu\nu}) = \text{diag}(f, -h, -h, -h)}, \qquad f > 0, \ h > 0.$ (12)

Space-isotropic diagonal metric

Theorem (M.A., arXiv:1205.3386). Let the metric have the space-isotropic diagonal form (12) in some chart χ . Let χ' belong to the same reference frame R.

(i) The metric has the **form** (12) also in χ' , iff $(x^j) \mapsto (x'^j)$ is a constant rotation, combined with a constant homothecy.

(ii) If one applies the "diagonal tetrad" prescription in each of the two charts, the two tetrads obtained thus are related together by a **constant** Lorentz transformation L, hence give rise, **in any reference frame** F, to equivalent Hamiltonian operators as well to equivalent energy operators — for the DFW and QRD–0 versions of the Dirac equation.

Uniformly rotating frame in flat spacetime

Let $\chi': X \mapsto (ct', x', y', z')$ be a Cartesian chart in the Minkowski spacetime, thus $g'_{\mu\nu} = \eta_{\mu\nu}$. Defines inertial frame F'.

Go from χ' to $\chi : X \mapsto (ct, x, y, z)$ defining uniformly rotating ref. frame F ($\omega = \text{constant}$):

 $t = t', \ x = x' \cos \omega t + y' \sin \omega t, \ y = -x' \sin \omega t + y' \cos \omega t, \ z = z'.$ (13)

With $ho\equiv\sqrt{x^2+y^2}$, the Minkowski metric writes in the chart χ :

$$g_{00} = 1 - \left(\frac{\omega\rho}{c}\right)^2, \quad g_{01} = -g_{02} = \frac{\omega}{c}, \quad g_{03} = 0, \quad g_{jk} = -\delta_{jk}.$$
(14)

4-velocity of F: $v = \partial_0 / \sqrt{g_{00}} \Rightarrow g(v, \partial_j) \neq 0$. Each of Ryder's (2008) two tetrads has $u_0 = v' \neq v$: Each is adapted to the inertial frame, *not* to the rotating frame.

A tetrad adapted to the rotating frame

Adopt the "rotating cylindrical" chart χ° , also belonging to the rotating frame F. Related to the "rotating Cartesian" chart (13):

 $\chi^{\circ}: X \mapsto (ct, \rho, \varphi, z) \text{ with } x = \rho \cos \varphi, \quad y = \rho \sin \varphi.$ (15)

Define $u_0 \equiv v$, $u_p \equiv \Pi \partial_p / \parallel \Pi \partial_p \parallel$, where $\Pi = \bot$ projection onto the hyperplane $\bot v$. This is an *orthonormal* tetrad adapted to F, because for the chart χ° we have $g(u_p, u_q) = 0$, $1 \leq p \neq q \leq 3$.

Rotation rate tensor of (\mathbf{u}_p) : $\Xi_{pq} = -c \frac{\mathrm{d}\tau}{\mathrm{d}t} \gamma_{pq0}$. Here $\Xi_{pq} = 0$ except for

$$\Xi_{21} = -\Xi_{12} = \frac{\omega}{\sqrt{1 - (\omega\rho)^2/c^2}}.$$
 (16)

Differs from rotation rate tensor Ω of the *rotating frame* F only by $O(V^2/c^2)$ terms ($V \equiv \omega \rho \ll c$).

Explicit expression of the Dirac Hamiltonian operator

Hamiltonian operator for the generally-covariant Dirac eqn (1):

$$\mathbf{H} = mc^2 \alpha^0 - i\hbar c \alpha^j D_j - i\hbar c \Gamma_0, \qquad (17)$$

where

$$\alpha^0 \equiv \gamma^0/g^{00}, \qquad \alpha^j \equiv \gamma^0 \gamma^j/g^{00}.$$
 (18)

Spin connection matrices with an orthonormal tetrad field (u_{α}) :

$$\Gamma_{\epsilon}^{\sharp} = \frac{1}{8} \gamma_{\alpha\beta\epsilon} \left[\gamma^{\sharp\alpha}, \gamma^{\sharp\beta} \right]. \qquad (\gamma^{\sharp\alpha} = \text{``flat'' Dirac matrices}) \qquad (19)$$

Spin connection matrices with the natural basis ($\partial_{\mu} = b^{lpha}_{\ \mu} u_{lpha}$):

$$\Gamma_{\mu} = b^{\alpha}_{\ \mu} \Gamma^{\sharp}_{\alpha}. \tag{20}$$

Hamiltonian for adapted rotating tetrad

Using the foregoing expressions, it is straightforward to compute H in the rotating frame F with the adapted rotating tetrad. We find that the spin connection matrices Γ_{μ} do involve spin operators made with the Pauli matrices σ^{j} . In particular, we have for $V \equiv \omega \rho \ll c$:

$$\Gamma_0 = -\frac{i}{2} \frac{\omega}{c} \Sigma^3 \left[1 + O\left(\frac{V}{c}\right) \right], \qquad \Sigma^j \equiv \begin{pmatrix} \sigma^j & 0\\ 0 & \sigma^j \end{pmatrix}, \qquad (21)$$

for which $-i\hbar c\Gamma_0$ is the usual "spin-rotation coupling" term in H.

Also the Γ_j matrices (j = 1, 2, 3) contain spin operators. Likely to come from the fact that the adapted rotating tetrad involves projecting the natural tetrad of the rotating coordinates.

H for rotating frame with γ^{μ} matrices from Minkowski tetrad ("gauge freedom restricted" solⁿ)

Defining the γ^{μ} matrices from the "diagonal tetrad" prescription in the Cartesian chart χ' , and transforming them to the rotating chart χ , gives after a simple calculation:

$$\mathbf{H} = \mathbf{H}' - i\hbar\omega(y\partial_x - x\partial_y) = \mathbf{H}' - \boldsymbol{\omega}.\mathbf{L},$$
(22)

with $H' \equiv$ special-relativistic Dirac Hamiltonian in the inertial frame F', and $L \equiv r \wedge (-i\hbar \nabla)$: angular momentum operator.

NB. The same H applies, whether DFW or QRD–0 is chosen. (The spin connection matrices are zero.)

Thus, there is no spin-rotation coupling with the "gauge freedom restriction" solution of the non-uniqueness problem.

Conclusion

• Non-unique Hamiltonian and energy operators in covariant Dirac theory: due to gauge freedom in choice of γ^{μ} matrices. (Yet standard covariant Dirac *eqn* is unique by construction.)

• "Conservative" way of restricting the gauge freedom: fix vector u_0 , then fix rotation rate of triad (u_p) . Applies to a given reference frame. Uneasy to implement. Spin-rotation coupling.

• "Radical" way: arrange that same gauge freedom applies as in special relativity — constant gauge transformations. Needs diagonal space-isotropic metric. (Always valid in "scalar ether theory". Other metrics?) Applies independently of reference frame. Easy to implement. No spin-rotation coupling.