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Abstract

We show that if ψ is an f-biharmonic map from a compact Riemannian manifold into
a Riemannian manifold with non-positive curvature satisfying a condition, then ψ is an
f-harmonic map. We prove that if the f-tension field τf (ψ) of a map ψ of Riemannian
manifolds is a Jacobi field and φ is a totally geodesic map of Riemannian manifolds, then
τf(φ ◦ψ) is a Jacobi field. We finally investigate the stress f-bienergy tensor, and relate the
divergence of the stress f-bienergy of a map ψ of Riemannian manifolds with the Jacobi
field of the τf (ψ) of the map.
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1 Introduction

Harmonic maps between Riemannian manifolds were first established by Eells and Sampson in
1964. Chiang, Ratto, Sun and Wolak also studied harmonic and biharmonic maps in [4]-[9].
f -harmonic maps which generalize harmonic maps, were first introduced by Lichnerowicz [25] in
1970, and were studied by Course [12, 13] recently. f -harmonic maps relate to the equations of
the motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction
in mathematical physics. Moreover, F -harmonic maps between Riemannian manifolds were first
introduced by Ara [1, 2] in 1999, which could be considered as the special cases of f -harmonic
maps.

Let f : (M1, g) → (0,∞) be a smooth function. f -biharmonic maps between Riemannian
manifolds are the critical points of f -bienergy

Ef
2 (ψ) =

1
2

∫
M1

f |τf (ψ|2dv,

where dv the volume form determined by the metric g. f -biharmonic maps between Rieman-
nian manifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized
biharmonic maps by Jiang [20, 21] in 1986.
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In section two, we describe the motivation, and review f -harmonic maps and their relation-
ship with F -harmonic maps. In Theorem 3.1, we show that if ψ is an f -biharmonic map from a
compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfy-
ing a condition, then ψ is an f -harmonic map. It is well-known from [18] that if ψ is a harmonic
map of Riemannian manifolds and φ is a totally geodesic map of Riemannian manifolds, then
φ ◦ ψ is harmonic. However, if ψ is f -biharmonic and φ is totally geodesic, then φ ◦ ψ is not
necessarily f -biharmonic. Instead, we prove in Theorem 3.3 that if the f -tension field τf(ψ)
of a smooth map ψ of Riemannian manifolds is a Jacobi field and φ is totally geodesic, then
τf (φ ◦ ψ) is a Jacobi field. It implies Corollary 3.4 [8] that if ψ is a biharmonic map between
Riemannian manifolds and φ is totally geodesic, then φ ◦ ψ is a biharmonic map. We finally
investigate the stress f -bienergy tensors. If ψ is an f -biharmonic of Riemannian manifolds,
then it usually does not satisfy the conservation law for the stress f -bienergy tensor Sf2 (ψ).
However, we obtain in Theorem 4.2 that if ψ : (M1, g) → (M2, h) be a smooth map between
two Riemannian manifolds, then the divergence of the stress f -bienergy tensor Sf2 (ψ) can be
related with the Jacobi field of the f -tension field τf(ψ) of the map ψ. It implies Corollary
4.4 [22] that if ψ is a biharmonic map between Riemannian manifolds, then ψ satisfies the
conservation law for the stress bi-energy tensorS2(ψ). We also discuss a few results concerning
the vanishing of the stress f -bienergy tensors.

2 Preliminaries

2.1 Motivation

In mathematical physics, the equation of the motion of a continuous system of spins with
inhomogeneous neighborhood Heisenberg interaction is

∂ψ

∂t
= f(x)(ψ ×�ψ) + ∇f · (ψ ×∇ψ), (2.1)

where Ω ⊂ Rm is a smooth domain in the Euclidean space, f is a real-valued function defined
on Ω, ψ(x, t) ∈ S2, × is the cross product in R3 and � is the Laplace operator in Rm. Such a
model is called the inhomogeneous Heisenberg ferromagnet [10, 11, 14]. Physically, the function
f is called the coupling function, and is the continuum of the coupling constant between the
neighboring spins. It is known [18] that the tension field of a map ψ into S2 is τ(ψ) = �ψ +
|∇ψ|2ψ. We can easily see that the right hand side of (2.1) can be expressed as

ψ × (fτ(ψ) + ∇f · ∇ψ) = 0. (2.2)

It implies that ψ is a smooth stationary solution of (2.1) if and only if

fτ(ψ) + ∇f · ∇ψ = 0, (2.3)

i.e., ψ is an f -harmonic map. Consequently, there is a one-to-one correspondence between the
set of the stationary solutions of the inhomogeneous Heisenberg spin system (2.1) on the domain
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Ω and the set of f -harmonic maps from Ω into S2. The inhomogeneous Heisenberg spin system
(2.1) is also called inhomogeneous Landau-Lifshitz system (cf. [23, 24, 19]).

2.2 f-harmonic maps

Let f : (M1, g) → (0,∞) be a smooth function. f -harmonic maps which generalize harmonic
maps, were introduced in [25], and were studied in [12, 13, 19, 24] recently. Let ψ : (M1, g) →
(M2, h) be a smooth map from an m-dimensional Riemannian manifold (M1, g) into an n-
dimensional Riemannian manifold (M2, h). A map ψ : (M1, g) → (M2, h) is f − harmonic if
and only if ψ is a critical point of the f -energy

Ef(ψ) =
1
2

∫
M1

f |dψ|2dv.

In terms of the Euler-Lagrange equation, ψ is f −harmonic if and only if the f − tension field

τf (ψ) = fτ(ψ) + dψ(grad f) = 0, (2.4)

where τ(ψ) = TracegDdψ is the tension field of ψ. In particular, when f = 1, τf(ψ) = τ(ψ).
Let F : [0,∞) → [0,∞) be a C2 function such that F ′ > 0 on (0,∞). F -harmonic maps

between Riemannian manifolds were introduced in [1, 2]. For a smooth map ψ : (M1, g) →
(M2, h) of Riemannian manifolds, the F -energy of ψ is defined by

EF (ψ) =
∫
M1

F (
|dψ|2

2
)dv. (2.5)

When F (t) = t, (2t)p/2

p (p ≥ 4), (1 + 2t)α (α > 1, dim M=2), and et, they are the energy, the
p-energy, the α-energy of Sacks-Uhlenbeck [27], and the exponential energy, respectively. A
map ψ is F -harmonic iff ψ is a critical point of the F -energy functional. In terms of the
Euler-Lagrange equation, ψ : M1 → M2 is an F − harmonic map iff the F -tension field

τF (ψ) = F ′(
|dψ|2

2
)τ(ψ) + ψ∗

{
grad(F ′(

|dψ|2
2

))
}

= 0. (2.6)

Prposition 2.1. If ψ : (M1, g) → (M2, h) an F-harmonic map without critical points (i.e.,
|dψx| 
= 0 for all x ∈ M1), then it is an f-harmonic map with f = F ′( |dψ|

2

2 ). In particular, a
p-harmonic map without critical points is an f-harmonic map with f = |dψ|p−2.

Proof. It follows from (2.4) and (2.6) immediately.

Prposition 2.2 [15, 25]. A map ψ : (Mm
1 , g) → (Mn

2 , h) is f − harmonic if and only if
ψ : (Mm

1 , f
2

m−2 g) → (Mn
2 , h) is a harmonic map.

3 f-biharmonic maps

Let f : (M1, g) → (0,∞) be a smooth function. f -biharmonic maps between Riemannian man-
ifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized biharmonic
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maps by Jiang [20, 21]. An f -biharmonic map ψ : (M1, g) → (M2, h) between Riemannian
manifolds is the critical point of the f -bienergy functional

(E2)f(ψ) =
1
2

∫
M1

||τf(ψ)||2dv, (3.1)

where the f -tension field τf(ψ) = fτ(ψ)+ dψ(grad f). In terms of Euler-Lagrange equation, ψ
is f -biharmonic if and only if the f − bitension field of ψ

(τ2)f (ψ) = (−)�f
2τf(ψ)(−)fR′(τf(ψ), dψ)dψ = 0, (3.2)

where

�f
2τf(ψ) = DψfDψτf (ψ)− fDψ

Dτf (ψ)

=
m∑
i=1

(Dψ
eifDψeiτf(ψ)− fDψ

Deiei
τf(ψ)).

Here, {ei}1≤i≤m is an orthonormal frame at a point in M1, and R′ is the Riemannian curvature
ofM2. There is a + or - sign convention in (3.2), and we take + sign in the context for simplicity.
In particular, if f = 1, then (τ2)f(ψ) = τ2(ψ), the bitension field of ψ.

Theorem3.1. If ψ : (M1, g) → (M2, h) is a f-biharmonic map (f 
= 1) from a compact
Riemannian manifoldM1 into a Riemannian manifoldM2 with non-positive curvature satisfying

fDeiDeiτf (ψ)−DfDτf (ψ) ≥ 0, (3.3)

then ψ is f-harmonic.

Proof. Since ψ : M1 →M2 is f -biharmonic, it follows from (3.2) that

(τ2)f(ψ) = DψfDψτf (ψ)− fDψ
Dτf(ψ) + fR′(τf(ψ), dψ)dψ = 0. (3.4)

Suppose that the compact supports of ∂ψt

∂t and ∇ei
∂ψt

∂t ({ψt} ∈ C∞(M1 × [0, 1],M2) is a one
parameter family of maps with ψ0 = ψ) are contained in the interior of M . We compute

1
2
f�||τf (ψ)||2 = f < Deiτf(ψ), Deiτf (ψ) > +f < D∗Dτf(ψ), τf(ψ) >

= f < Deiτ(ψ), Deiτ(ψ) > +f < DeiDeiτf (ψ)−DDeiei
τf(ψ)), τf(ψ) >

= f < Deiτ(ψ), Deiτf(ψ) > + < fDeiDeiτf (ψ)

− DfDτf(ψ) +DfDτf (ψ)− fDDeiei
τf (ψ), τf (ψ) >

= f < Deiτ(ψ), Deiτ(ψ) > + < fDeiDeiτf (ψ)

− DfDτf(ψ)− f(R′(dψ, dψ)τ(ψ), τ(ψ)> ≥ 0, (3.5)

(D∗D = DD −DD [20]) by (3.3), (3.4), f > 0 and R′ ≤ 0. It implies that

1
2
�||τf (ψ)||2 ≥ 0.
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By applying the Bochner’s technique, we know that ||τf(ψ)||2 is constant and have

Deiτf (ψ) = 0, ∀i = 1, 2, ...m.

It follows from Eells-Lemaire [15] that τf(ψ)=0, i.e., ψ is f -harmonic on M1. �
In particular, if f = 1 and ψ : M1 →M2 is a biharmonic map from a compact Riemannian

M1 manifold into a Riemannian manifold M2 with non-positive curvature, then the condition
(3.3) is not required and we arrive at the following corollary.

Corollary3.2 [20]. If ψ : (M1, g) → (M2, h) is a biharmonic map from a compact Riemannian
M1 manifold into a Riemannian manifold M2 with non-positive curvature, then ψ is harmonic.

Proof. When f = 1 and ψ : M1 → M2 is a biharmonic map from a compact Riemannian
M1 manifold into a Riemannian manifold M2 with non-positive curvature, (3.2) becomes

τ2(ψ) = D∗Dτ(ψ) +R′(τ(ψ), dψ)dψ = 0.

The first identity of (3.5) implies that

1
2
�||τ(ψ)||2 = < Deiτ(ψ), Deiτ(ψ) > + < D∗Dτ(ψ), τ(ψ)>

= < Deiτ(ψ), Deiτ(ψ) > − < R′(dψ, dψ)τ(ψ), τ(ψ)> ≥ 0

(D∗D = DD−DD), since ψ is biharmonic, and M2 is a Riemannian manifold with non-positive
curvature R′. It follows from the similar arguments as Theorem 3.1 that ψ is harmonic. �

It is well-known from [18] that if ψ : (M1, g) → (M2, h) is a harmonic map of two Rieman-
nian manifolds and φ : (M2, h) → (M3, k) is totally geodesic of two Riemannian manifolds, then
φ ◦ ψ : (M1, g) → (M3, k) is harmonic. However, if ψ : (M1, g) → (M2, h) is an f -biharmonic
map, and φ : (M2, h) → (M3, k) is totally geodesic, then φ ◦ ψ : (M1, g) → (M3, k) is not
necessarily an f -biharmonic map. We obtain the following theorem instead.

Theorem3.3. If τf(ψ) is a Jacobi field for a smooth map ψ : (M1, g) → (M2, h) of two
Riemannian manifolds, and φ : (M2, h) → (M3, k) is a totally geodesic map of two Riemannian
manifolds, then τf(φ ◦ ψ) is a Jacobi field.

Proof. Let D,D′, D̄, D̄′, D̄′′, D̂, D̂′, D̂′′ be the connections on TM1, TM2, ψ
−1TM2, φ

−1TM3,

(φ ◦ ψ)−1TM3, T
∗M1 ⊗ ψ−1TM2, T

∗M2 ⊗ φ−1TM3, T
∗M1 ⊗ (φ ◦ ψ)−1TM3, respectively. We

first have

D̄′′
Xd(φ ◦ ψ)(Y ) = (D̂′

dψ(X)dφ)dψ(Y ) + dφ ◦ D̄Xdψ(Y ), (3.6)

∀X, Y ∈ Γ(TM1). We also have

RM3(dφ(X ′), dφ(Y ′))dφ(Z ′) = Rφ
−1TM3(X ′, Y ′)dφ(Z ′), (3.7)

∀X ′, Y ′, Z ′ ∈ Γ(TM2).
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It is well-known from [18] that the tension field of the composition φ ◦ ψ is given by

τ(φ ◦ ψ) = dφ(τ(ψ)) + TrgDdφ(dψ, dψ) = dφ(τ(ψ)),

since φ is totally geodesic. Then the f -tension field of the composition of φ ◦ ψ is

τf(ψ ◦ φ) = dφ(τf(ψ)) + fTrgDdφ(dψ, dψ) = dψ(τf(ψ)),

since φ is totally geodesic. Note that {ei}mi=1 is an orthonormal frame at a point in M1, and let
D̄∗D̄ = D̄ekD̄ek − D̄Dek

ek and D̄′′∗D̄′′ = D̄′′
ek
D̄′′
ek

− D̄′′
Dek

ek
. Thus we arrive at

D̄′′∗D̄′′τf (φ ◦ ψ) = D̄′′∗D̄′′(dφ ◦ τf (ψ))

= D̄′′
ek
D̄′′
ek

(dφ ◦ τf (ψ))− D̄′′
Dek

ek
(dφ ◦ τf (ψ)). (3.8)

We derive from (3.6) that

D̄′′
ek

(dφ ◦ τf(ψ)) = (D̂′
D̂ejdψ(ek)

dφ)(τf(ψ)) + dφ ◦ D̄ek(τf(ψ))

= dφ ◦ D̄ekτf(ψ),

since φ is totally geodesic. Therefore, we have

D̄′′
ek
D̄′′
ek

(dφ ◦ τf(ψ)) = D̄′′
ek

(dφ ◦ D̄ekτf(ψ)) = dφ ◦ D̄ekD̄ekτf (ψ), (3.9)

and

D̄′′
Dek

ek
(dφ ◦ τ(ψ)) = dφ ◦ D̄Dek

ekτf (ψ). (3.10)

Substituting (3.9), (3.10) into (3.8), we deduce

D̄′′∗D̄′′τf(φ ◦ ψ) = dφ ◦ D̄∗D̄τf(ψ). (3.11)

It follows from (3.7) that

RM3 (d(φ ◦ ψ)(ei), τf(φ ◦ ψ))d(φ ◦ ψ)(ei)

= Rφ
−1TM3(dψ(ei), τf(ψ))dφ(dψ(ei))

= dφ ◦RM2(dψ(ei), τf(ψ))dψ(ei). (3.12)

By (3.11) and (3.12) we obtain

D̄′′∗D̄′′τf(φ ◦ ψ) + RM3(d(φ ◦ ψ)(ei), τf(φ ◦ ψ))d(φ ◦ ψ)(ei)

= dφ ◦ [D̄∗D̄τf (ψ) + RM2(dψ(ei), τf(ψ))dψ(ei)]. (3.13)

Consequently, if τf (ψ) is a Jacobi field, then τf(φ ◦ ψ) is a Jacobi field. �
Corollary3.4 [8]. If ψ : (M1, g) → (M2, h) is a biharmonic map between two Riemannian
manifolds and φ : (M2, h) → (M3, k) is totally geodesic, then φ ◦ ψ : (M1, g) → (M3, k) is a
biharmonic map.
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Proof. If f = 1 and ψ : (M1, g) → (M2, h) is a biharmonic map of two Riemannian
manifolds, then τf (ψ) = τ(ψ) is a Jacobi field and (3.13) becomes

D̄′′∗D̄′′τ(φ ◦ ψ) + RM3(d(φ ◦ ψ)(ei), τ(φ ◦ ψ))d(φ ◦ ψ)(ei)

= dφ ◦ [D̄∗D̄τ(ψ) +RM2(dψ(ei), τ(ψ))dψ(ei)],

i.e., τ2(φ ◦ ψ) = dφ ◦ (τ2(ψ)), where τ2(ψ) is the bi-tension field of ψ. Hence, the result follows
immediately.

4 Stress f-bienergy tensors

Let ψ : (M1, g) → (M2, h) be a smooth map between two Riemannian manifolds. The stress
energy tensor [3] is defined by

S(ψ) = e(ψ)g− ψ∗h,

where e(ψ) = |dψ|2
2 . Thus we have divS(ψ) = − < τ(ψ), dψ >. Hence, if ψ is harmonic, then

ψ satisfies the conservation law for S (i.e., div S(ψ) = 0). In [26], the stress f -energy tensor of
the smooth map ψ : M1 → M2 was similarly defined as

Sf (ψ) = fe(ψ)g− fψ∗h,

and they obtained

div Sf (ψ) = − < τf(ψ), dψ > +e(ψ)df.

In this case, an f -harmonic map usually does not satisfy the conservation law for Sf . In
particular, setting f = F ′(dψ|

2

2 ), then Sf(ψ) = F ′(dψ|
2

2 )e(ψ)g−F ′(dψ|
2

2 )ψ∗h. It is different than
following [3] to define SF (ψ) = F ( |dψ|

2

2 )g − F ′(dψ|
2

2 )ψ∗h, and we have

div SF (ψ) = − < τF (ψ), dψ > .

It implies that if ψ : M1 →M2 is an F -harmonic map between Riemannian manifolds, then it
satisfies the conservation law for SF (cf. [1]).

The stress bienergy tensors and the conservation laws of biharmonic maps between Rieman-
nian manifolds were first studied in [22] in 1987. Following Jiang’s notion, we define the stress
f -bienergy tensor of a smooth map as follows.

Definition 4.1. Let ψ : (M1, g) → (M2, h) be a smooth map between two Riemannian mani-
folds. The stress f -bienergy tensor of ψ is defined by

Sf2 (X, Y ) =
1
2
|τf(ψ)|2 < X, Y > + < dψ,D(τf(ψ) >< X, Y >

− < dψ(X), DY τf (ψ) > − < dψ(Y ), DXτf(ψ) >, (4.1)
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∀X, Y ∈ Γ(TM1).

Note that if ψ : (M1, g) → (M2, h) is an f -biharmonic map between two Riemannian
manifolds, then ψ does not necessarily satisfy the conservation law for the stress f -bienrgy
tensor Sf2 . Instead, we obtain the following theorem.

Theorem 4.2. If ψ : (M1, g) → (M2, h) be a smooth map between two Riemannian manifolds,
then we have

div Sf2 (Y ) = (−) < Jτf (ψ)(Y ), dψ(Y ) >, ∀Y ∈ Γ(TM1), (4.2)

where Jτf (ψ) is the Jacobi field of τf (ψ).

Proof. For the map ψ : M1 → M2 between two Riemannian manifolds, set Sf2 = K1 +K2,

where K1 and K2 are (0, 2)-tensors defined by

K1(X, Y ) =
1
2
|τf(ψ)|2 < X, Y > + < dψ,Dτf(ψ) >< X, Y >,

K2(X, Y ) = − < dψ(X), DY τf (ψ) > − < dψ, DXτf (ψ) > .

Let {ei} be the geodesic coordinates at a point a ∈M1, and write Y = Y iei at the point a. We
first compute

divK1(Y ) =
∑
i

(DeiK1)(ei, Y ) =
∑
i

(ei(K1(ei, Y )−K1(ei, DeiY ))

=
∑
i

(ei(
1
2
|τf(ψ)|2Y i +

∑
k

< dψ(ek), Dekτf (ψ) > Y i)

− 1
2
|τf(ψ)|2Y iei −

∑
k

< dψ(ek), Dekτf (ψ) > Y iei))

= < DY τf (ψ), τf(ψ) > +
∑
i

< dψ(Y, ei), Deiτf (ψ) >

+
∑
i

< dψ(ei), DYDeiτf(ψ) >

= < DY τf (ψ), τf(ψ) > +trace < Ddψ(Y, .), D.τf(ψ) >

+ trace < dψ(.), D2τf (ψ)(Y, .)> . (4.3)

We then compute

div K2(Y ) =
∑
i

(DeiK2)(ei, Y ) =
∑
i

(ei(K2(ei, Y ) −K2(ei, DeiY ))

= − < DY τf (ψ), τf (ψ) > −
∑
i

< Ddψ(Y, ei), Deiτf(ψ) >

−
∑
i

< dψ(ei), DeiDY τf (ψ)−DDeiY
τf(ψ) > + < dψ(Y ),�τf(ψ) >

= − < DY τf (ψ), τf(ψ) > −trace < Ddψ(Y, .), D.τf(ψ) >

− trace < dψ(.), D2τf(ψ)(., Y ) > + < dψ(Y ),�τf(ψ) > . (4.4)
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Adding (4.3) and (4.4), we arrive at

divSf2 (Y ) = (−) < dψ(Y ), �τf (ψ) +
∑
i

< dψ(ei), R′(Y, ei)τf (ψ) >

= (−) < Jτf (ψ)(Y ), dψ(Y ) >, (4.5)

where Jτf (ψ) is the Jacobi field of τf (ψ). �

Corollary 4.3. If τf (ψ) is a Jacobi field for a map ψ : M1 →M2, then it satisfies the conser-
vation law (i.e., div Sf2 = 0) for the stress f-bienergy tensor Sf2 .

Corollary 4.4. [22]. If ψ : (M1, g) → (M2, h) is biharmonic between two Riemannian mani-
folds, then it satisfies the conservation law for stress bienergy tensor S2

Proof. If f = 1 and ψ : (M1, g) → (M2, h) is biharmonic, then (4.5) yields to

div S2(Y ) = (−) < dψ, �τ(ψ) +
∑
i

(dψ(ei), R′(Y,Xi)τ(ψ)>

= (−) < Jτ (ψ)(Y ), dψ(Y ) >

= (−) < τ2(ψ), dψ(Y ) >,

where τ2(ψ) is the bi-tension field of ψ (i.e., τ(ψ) is a Jacobi field). Hence, we can conclude the
result. �
Proposition 4.5. Let ψ : (M1, g) → (M2, h) be a submersion such that τf (ψ) is basic, i.e.,
τf (ψ) = W ◦ ψ for W ∈ Γ(TM2). Suppose that W is Killing and |W |2 = c2 is non-zero
constant. If M1 is non-compact, then τf (ψ) is a non-trivial Jacobi field.

Proof. Since τf (ψ) is basic,

Sf2 (X, Y ) = [
c2

2
+ < dψ,Dτf(ψ) >](X, Y )− < dψ(X), DY τf(ψ) >

− < dψ(Y ), DXτf(ψ) >, (4.6)

where X, Y ∈ Γ(TM1). Let a be a point in M1 with the orthonormal frame {ei}mi=1 such that
{ej}nj=1 are in THa M1 = (T Va M1)⊥ and {ek}mk=n+1 are in T Va M1 = ker dψ(a). Because W is
Killing, we have

< dψ, Dτf (ψ) > (a) =
∑
j

< dψa(ej), Dejτf(ψ) > +
∑
k

< dψa(ek), Dekτf(ψ) >

=
∑
j

< dψa(ej), D
M2

dψa(ej )W >= 0. (4.7)

Therefore,

Sf2 (a)(X, Y ) =
c2

2
(X, Y )+ < dψa(X), DM2

dψa(Y )W >

− < dψa(Y ), DM2

dψa(X)
W >=

c2

2
(X, Y ).

9



If M1 is not compact, Sf2 = c2

2 g is divergence free and τf(ψ) is a non-trivial Jacobi field due to
c 
= 0. �
Proposition 4.6. If ψ : (M2

1 , g) → (M2, h) is a map from a surface with S
f
2 = 0, then ψ is

f -harmonic.

Proof. Since Sf2 = 0, it implies

0 = traceSf2 = |τf(ψ)|2 + 2 < Dτf (ψ), dψ > −2 < Dτf (ψ), dψ >

= |τf(ψ)|2.

Proposition 4.7. If ψ : (Mm
1 , g) → (M2, h) (m 
= 2) with Sf2 = 0, then

1
m−2 |τf(ψ)|2(X, Y )+ < DXτf(ψ), dψ(Y ) >

+ < DY τf(ψ), dψ(X)>= 0, (4.8)

∀X, Y ∈ ΓT (M1).

Proof. Suppose that Sf2 = 0, it implies trace Sf2 = 0. Therefore,

< Dτf(ψ), dψ >= − m

2(m− 2)
|τf(ψ)|2(m 
= 2). (4.9)

Substituting it into the definition of Sf2 , we arrive at

0 = Sf2 (X, Y ) = − 1
m− 2

|τf (ψ)|2(X, Y )

− < DXτf(ψ >, dψ(Y ))− < DY τf(ψ), dψ(X)> . (4.10)

Corollary 4.8. If ψ : (M1, g) → (M2, h) (m > 2) with Sf1 = 0 and rank ψ ≤ m − 1, then ψ is
f-harmonic.

Proof. Since rank ψ(a) ≤ m−1, for a point a ∈M1 there exists a unit vectorXa ∈ Ker dψa.
Letting X = Y = Xa, (4.8) gives to τf (ψ) = 0.

Corollary 4.9. If ψ : (M1, g) → (M2, h) is a submersion (m > n) with S
f
2 = 0, then ψ is

f-harmonic.
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