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Abstract

We show that if ¢ is an f-biharmonic map from a compact Riemannian manifold into
a Riemannian manifold with non-positive curvature satisfying a condition, then % is an
f-harmonic map. We prove that if the f-tension field 7¢(¢) of a map ¢ of Riemannian
manifolds is a Jacobi field and ¢ is a totally geodesic map of Riemannian manifolds, then
Tr(¢ o) is a Jacobi field. We finally investigate the stress f-bienergy tensor, and relate the
divergence of the stress f-bienergy of a map ¢ of Riemannian manifolds with the Jacobi
field of the 7,(%) of the map.
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1 Introduction

Harmonic maps between Riemannian manifolds were first established by Eells and Sampson in
1964. Chiang, Ratto, Sun and Wolak also studied harmonic and biharmonic maps in [4]-]9].
f-harmonic maps which generalize harmonic maps, were first introduced by Lichnerowicz [25] in
1970, and were studied by Course [12, 13] recently. f-harmonic maps relate to the equations of
the motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction
in mathematical physics. Moreover, F-harmonic maps between Riemannian manifolds were first
introduced by Ara [1, 2] in 1999, which could be considered as the special cases of f-harmonic
maps.

Let f: (My,g) — (0,00) be a smooth function. f-biharmonic maps between Riemannian

manifolds are the critical points of f-bienergy
1
)= [ Ao,
My

where dv the volume form determined by the metric g. f-biharmonic maps between Rieman-
nian manifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized
biharmonic maps by Jiang [20, 21] in 1986.



In section two, we describe the motivation, and review f-harmonic maps and their relation-
ship with F-harmonic maps. In Theorem 3.1, we show that if ¢ is an f-biharmonic map from a
compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfy-
ing a condition, then # is an f-harmonic map. It is well-known from [18] that if ¢/ is a harmonic
map of Riemannian manifolds and ¢ is a totally geodesic map of Riemannian manifolds, then
¢ o 1 is harmonic. However, if ¢ is f-biharmonic and ¢ is totally geodesic, then ¢ o % is not
necessarily f-biharmonic. Instead, we prove in Theorem 3.3 that if the f-tension field 74(7))
of a smooth map v of Riemannian manifolds is a Jacobi field and ¢ is totally geodesic, then
Tr(¢p o)) is a Jacobi field. It implies Corollary 3.4 [8] that if ¢ is a biharmonic map between
Riemannian manifolds and ¢ is totally geodesic, then ¢ o ¢ is a biharmonic map. We finally
investigate the stress f-bienergy tensors. If ¢ is an f-biharmonic of Riemannian manifolds,
then it usually does not satisfy the conservation law for the stress f-bienergy tensor Sg ().
However, we obtain in Theorem 4.2 that if ¢ : (My, g) — (Mas, h) be a smooth map between
two Riemannian manifolds, then the divergence of the stress f-bienergy tensor Sg (1)) can be
related with the Jacobi field of the f-tension field 7¢(¢) of the map . It implies Corollary
4.4 [22] that if ¢ is a biharmonic map between Riemannian manifolds, then 1 satisfies the
conservation law for the stress bi-energy tensorSs (). We also discuss a few results concerning

the vanishing of the stress f-bienergy tensors.

2 Preliminaries

2.1 Motivation

In mathematical physics, the equation of the motion of a continuous system of spins with

inhomogeneous neighborhood Heisenberg interaction is

%_f = f(@) (@ x D) + Vf - (1 x V), (2.1)

where 2 C R™ is a smooth domain in the Euclidean space, f is a real-valued function defined
on Q, ¢ (x,t) € S?, x is the cross product in R? and A is the Laplace operator in R™. Such a
model is called the inhomogeneous Heisenberg ferromagnet [10, 11, 14]. Physically, the function
f is called the coupling function, and is the continuum of the coupling constant between the
neighboring spins. It is known [18] that the tension field of a map 1 into S? is 7(3)) = A +
|V1)|?1h. We can easily see that the right hand side of (2.1) can be expressed as

Y x (fr(¥) +Vf- Vi) =0. (2:2)
It implies that 1 is a smooth stationary solution of (2.1) if and only if
fr(W)+Vf- Vi =0, (2.3)

i.e., ¥ is an f-harmonic map. Consequently, there is a one-to-one correspondence between the

set of the stationary solutions of the inhomogeneous Heisenberg spin system (2.1) on the domain



Q) and the set of f-harmonic maps from Q into S?. The inhomogeneous Heisenberg spin system
(2.1) is also called inhomogeneous Landau-Lifshitz system (cf. [23, 24, 19]).

2.2 f-harmonic maps

Let f: (My,g) — (0,00) be a smooth function. f-harmonic maps which generalize harmonic
maps, were introduced in [25], and were studied in [12, 13, 19, 24] recently. Let ¢ : (M1, g) —
(Ms, h) be a smooth map from an m-dimensional Riemannian manifold (M, ¢g) into an n-
dimensional Riemannian manifold (Mas, h). A map ¢ : (My,g) — (Ms, h) is f — harmonic if
and only if 1 is a critical point of the f-energy

1
Byw)=5 [ fldvPdo.
M,
In terms of the Euler-Lagrange equation, v is f — harmonic if and only if the f —tension field

T (¥) = fr(¢) + dip(grad f) = 0, (2.4)

where 7(1) = TraceyDdi) is the tension field of ¢. In particular, when f =1, 77(¢) = 7(¢).
Let F : [0,00) — [0,00) be a C? function such that F' > 0 on (0,00). F-harmonic maps
between Riemannian manifolds were introduced in [1, 2]. For a smooth map ¢ : (M, g) —

(Ms, h) of Riemannian manifolds, the F-energy of 1 is defined by

d 2
me() = [ P (2.5)
My
When F(t) = t, M(p > 4), (1+2t)%(a > 1, dim M=2), and ef, they are the energy, the

P
p-energy, the a-energy of Sacks-Uhlenbeck [27], and the exponential energy, respectively. A

map v is F-harmonic iff ¢ is a critical point of the F-energy functional. In terms of the

Fuler-Lagrange equation, ¢ : My — My is an F' — harmonic map iff the F-tension field

|dy[?
2

2
() = P07+ 0. fgraar 0y b 0 (26)

Prposition2.1. If ¢ : (My, g) — (Mas, h) an F-harmonic map without critical points (i.e.,
|dipz| # O for all x € M), then it is an f-harmonic map with f = F’(%). In particular, a
p-harmonic map without critical points is an f-harmonic map with f = |di|P~2.

Proof. It follows from (2.4) and (2.6) immediately.
Prposition 2.2 [15, 25]. A map ¢ : (M]", g) — (MZ, h) is f — harmonic if and only if
P (M fﬁg) — (M3, h) is a harmonic map.

3 f-biharmonic maps

Let f: (M, g) — (0,00) be a smooth function. f-biharmonic maps between Riemannian man-
ifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized biharmonic



maps by Jiang [20, 21]. An f-biharmonic map ¢ : (My,g9) — (Ma, h) between Riemannian

manifolds is the critical point of the f-bienergy functional

1

(Ba)s(0) =5 [ it (3.1)

where the f-tension field 7;(¢) = f7(¢) +di(grad f). In terms of Euler-Lagrange equation, 1
is f-biharmonic if and only if the f — bitension field of v

(72) () = (=) D475 (W) (=) fR (75 (), dip)dep = 0, (32)

where

Arp() = DYfD¥ri() — fDY pri(dh)

m

= D> (DY f D7) = fDp . 7r ().

=1

Here, {e;}1<i<m is an orthonormal frame at a point in M;, and R’ is the Riemannian curvature
of My. There is a + or - sign convention in (3.2), and we take + sign in the context for simplicity.
In particular, if f =1, then (72)¢(v)) = 72(1)), the bitension field of .

Theorem 3.1. If ¢ : (My, g) — (Ma, h) is a f-biharmonic map (f # 1) from a compact

Riemannian manifold M into a Riemannian manifold Mo with non-positive curvature satisfying

fDe;De,75(1p) — D fD7s(3) = 0, (3.3)

then 1 is f-harmonic.

Proof. Since ¢ : My — My is f-biharmonic, it follows from (3.2) that

(12) () = DY fDV74() — fDpre(¥) + FR (14(0), di)dip = 0. (3.4)
Suppose that the compact supports of % and Vei% ({e} € C>°(M; x [0,1], M>) is a one

parameter family of maps with ¢y = 1) are contained in the interior of M. We compute

%J‘Allﬂf(w)ll2 = [ < De;75(¥), Detp(¥0) > +f < D*D1s(9), 74(¥) >
= [ < Dem(¥), De,m(¥) > +f < De;De,7¢ () — Dp, .. Tr(¥)), T¢(¥0) >
= [ < De,7(4), De,7p(1) > + < fDe, De;75(1))
— DfD1s(¥) + DfD7s(4) — fDp,,. (), T (1) >
= [ < De;7(¥), De,7() > + < fDe,De,74(¥)
— DfDrs(y) — f(R/(dw, d)7 (1), 7()) > > 0, (3.5)

(D*D = DD — Dp [20]) by (3.3), (3.4), f >0 and R’ <0. It implies that
1
LAl @) 0.
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By applying the Bochner’s technique, we know that ||77(¢)||? is constant and have

De,m(¢) = 0,¥i = 1,2, ...m.

It follows from Eells-Lemaire [15] that 77(¢)=0, i.e., ¢ is f-harmonic on M;. O

In particular, if f =1 and ¢ : M; — My is a biharmonic map from a compact Riemannian
M7 manifold into a Riemannian manifold My with non-positive curvature, then the condition

(3.3) is not required and we arrive at the following corollary.

Corollary 3.2 [20]. Ifv : (M, g) — (Ma, h) is a biharmonic map from a compact Riemannian

M7 manifold into a Riemannian manifold My with non-positive curvature, then v is harmonic.

Proof. When f =1 and ¢ : My — My is a biharmonic map from a compact Riemannian

M; manifold into a Riemannian manifold Ms with non-positive curvature, (3.2) becomes

T2(¢) = D*D7(¢) + R (7(¢), dy)dyp = 0.

The first identity of (3.5) implies that

%AHT(WHQ = < De7(¥), De;7(¢) > + < D*D7(¢), 7(¢) >
= < De7(¥), De,7(¢) > — < R'(dyy, dip)r(),7(¢p) > > 0

(D*D = DD — Dp), since 1) is biharmonic, and Ms is a Riemannian manifold with non-positive

curvature R’. Tt follows from the similar arguments as Theorem 3.1 that ¢ is harmonic. [J

It is well-known from [18] that if ¢ : (M7, g) — (Mo, h) is a harmonic map of two Rieman-
nian manifolds and ¢ : (Ma, h) — (Ms, k) is totally geodesic of two Riemannian manifolds, then
po: (M, g) — (Ms, k) is harmonic. However, if ¢ : (M7, g) — (Ma, h) is an f-biharmonic
map, and ¢ : (My, h) — (Ms, k) is totally geodesic, then ¢ o ¢ : (My, g) — (Ms, k) is not
necessarily an f-biharmonic map. We obtain the following theorem instead.

Theorem 3.3. If 74() is a Jacobi field for a smooth map ¢ : (My,g) — (Ma, h) of two
Riemannian manifolds, and ¢ : (Ma, h) — (Ms, k) is a totally geodesic map of two Riemannian
manifolds, then T¢(¢p o)) is a Jacobi field.

Proof. Let D, D', D, D', D", D, D', D" be the connections on TMy, T Mo, )T My, ¢~ 1T Ms,
(o) " T Ms, T*M; @ T My, T*My @ ¢~ T Ms, T* M, @ (¢ o) T Ms, respectively. We

first have

Dd(¢oy)(Y) = (D x)de)dis(Y) + dgp o Dxdip(Y), (3.6)
VX,Y €T(TM). We also have

RM3(dp(X'), dp(Y"))dg(2') = R® T (X, ") dp(Z), (3.7)

VXY Z' e T(TMy).



It is well-known from [18] that the tension field of the composition ¢ o v is given by

T(¢ o) = do(r(v)) + TryDde(dy, dip) = de(T(1))),

since ¢ is totally geodesic. Then the f-tension field of the composition of ¢ o1 is

(Y 0 @) = dp(7y()) + fTrgDde(dip, dip) = di)(4(¢))),
since ¢ is totally geodesic. Note that {e;}", is an orthonormal frame at a point in M;, and let
D*D = D, D., — DDekek and D"*D" = D’e’kD’e’k — D%ekek' Thus we arrive at
D" D"rp(¢poy) = D"D"(dpoTs(sh))

= D D[ (dpo7p(h)) — Dp, ¢, (dpo 7y (¥))). (3.8)

We derive from (3.6) that
D¢ (dpoTr(v)) = (Dlﬁejd¢(ek)d¢)(7f(¢)) +dd o De, (17 (1))
= d$o De,74(1),

since ¢ is totally geodesic. Therefore, we have

D¢, D¢, (d¢ o 7¢(4)) = D, (d 0 D, 74(1)) = d¢p 0 De De, 74 (), (3.9)
and
DY, e, (dpo T()) = d o Dp,, e, Tr(¥). (3.10)
Substituting (3.9), (3.10) into (3.8), we deduce
D"*D"1(porp) =dpo D*Drs(ah). (3.11)
It follows from (3.7) that
RMs (d(¢o)(ei), y(d o ))d(do ) (es)

—  RYTMs(dyp(es), (1)) db(dib(er))
= dpo R (dy(e;), 7y (v))dip(es). (3.12)

By (3.11) and (3.12) we obtain
D" D"rp(pov) + RMi(d(pov)(e:), r(dov))d(dow)(e;)
= d¢ o [D*Dry(eh) + RM(dep(e;), Tp())deb (es). (3.13)

Consequently, if 7¢(¢) is a Jacobi field, then 7¢(¢ 0 9) is a Jacobi field. O

Corollary 3.4 [8]. If v : (M1, g) — (Ma, h) is a biharmonic map between two Riemannian
manifolds and ¢ : (Ma, h) — (Ms, k) is totally geodesic, then ¢ o : (My, g) — (Ms, k) is a

btharmonic map.



Proof. If f = 1 and ¢ : (My, g) — (Ma, h) is a biharmonic map of two Riemannian
manifolds, then 7¢(1) = 7(¢) is a Jacobi field and (3.13) becomes

D"*D"r(¢povp) + RM:(d(gpov)(e),T(¢pov))d(do)(e;)
= d¢o [D*Dr(1h) + RM (di(e;), 7(¥))dip(es)],

ie., o(p o) =dpo (m2(1))), where m5(1)) is the bi-tension field of ¥. Hence, the result follows

immediately.

4 Stress f-bienergy tensors

Let ¢ : (My, g) — (M2, h) be a smooth map between two Riemannian manifolds. The stress
energy tensor [3] is defined by

S() = e()g —*h,

where e(y)) = |d1§|2. Thus we have divS(y) = — < 7(¢), dyp >. Hence, if ¢ is harmonic, then
1 satisfies the conservation law for S (i.e., div S(1)) = 0). In [26], the stress f-energy tensor of

the smooth map ¢ : Mj — M was similarly defined as

ST () = fe(¥)g — fi*h,

and they obtained

div ST () = — < 75(¢), dyp > +e(y)df.

In this case, an f-harmonic map usually does not satisfy the conservation law for Sf. In
particular, setting f = F’(%'Q), then Sf(v) = F’(%)e(zﬁ)g— F’(%)w*h. It is different than
following [3] to define S¥'(v) = F(%)g - F’(%)w*h, and we have

div SF () = — < 7p(), dip > .

It implies that if ¢ : M7 — My is an F-harmonic map between Riemannian manifolds, then it
satisfies the conservation law for S¥ (cf. [1]).

The stress bienergy tensors and the conservation laws of biharmonic maps between Rieman-
nian manifolds were first studied in [22] in 1987. Following Jiang’s notion, we define the stress

f-bienergy tensor of a smooth map as follows.

Definition 4.1. Let ¢ : (M1, g) — (Ms, h) be a smooth map between two Riemannian mani-
folds. The stress f-bienergy tensor of ¢ is defined by

SIXY) = Lr)P <X, Y > + <dv, Dirg() >< X, ¥ >
— <dy(X), Dy1p(¢) > — <d(Y), Dx7s(h) >, (4.1)



VX, Y € I(TMy).
Note that if ¢ : (My, g) — (Ma, h) is an f-biharmonic map between two Riemannian

manifolds, then 1 does not necessarily satisfy the conservation law for the stress f-bienrgy

tensor Sg . Instead, we obtain the following theorem.

Theorem 4.2. If ) : (My, g) — (Mas, h) be a smooth map between two Riemannian manifolds,

then we have
div SJ(Y) = (=) < Jo, () (Y), d(Y) >, VY € T(TMy), (4.2)

where Jr .y is the Jacobi field of Tr(1).

Proof. For the map v : My — My between two Riemannian manifolds, set Sg = K + Ko,
where K7 and K5 are (0, 2)-tensors defined by

Ki(X,Y) = %|¢f(¢)|2 < XY >+ < dib, Dr(v) >< X,Y >,
Ky(X,Y) = —<dy(X), Dyts(v) > — < dp, Dx7s(¢p) > .

Let {e;} be the geodesic coordinates at a point a € M;, and write Y = Y'e; at the point a. We

first compute

divKi(Y) = Y (De,K1)(e,Y) =) (ei(Ki(e:,Y) — Ki(ei, De,Y))

= (@l @)PY + Y < dbler), Deyrs() > ¥)
i k

— ST PY e 3T < db(er), Doty () > Vie)
k

= < Dyrp(),m5(¥) > + D < dp(Y, ), Deyrs () >

7

+ Y <dy(e;), DyDe,7y(h) >

7

= < Dy7s(¢), 75(¢0) > +trace < Ddy(Y,.), D.1¢(¢p) >
+ trace < dy(.), D*rp(¥)(Y,.) > . (4.3)

We then compute

divKy(Y) = Y (De,Ka)(ei,Y) = (ei(Ka(e:i,Y) — Kaei, De,Y))

i i

= — < Dy7p(9), 74(¢) > =Y < Ddp(Y, e), De,75(v) >

7

— Y <dy(e), D, Dy7p(¢) — Dp, y7(¥) > + < d(Y), Arp(eh) >

7

= — < Dy7s(¢), 74(¥) > —trace < Ddy(Y,.), D () >
— trace < di(.), D*14(¥)(.,Y) > + < dp(Y), Ary() > . (4.4)

8



Adding (4.3) and (4.4), we arrive at
divS{(Y) = (=) <dp(Y), Arp()+3_ < d(er) B (Y, ey (9) >
= () < (V) d(Y) >, (4.5)

where J. () is the Jacobi field of 7¢(¢). O

Corollary 4.3. If 74(v) is a Jacobi field for a map 1 : My — My, then it satisfies the conser-
vation law (i.e., div Sg = 0) for the stress f-bienergy tensor Sg.

Corollary 4.4. [22]. If ¢ : (M1, g) — (Ma, h) is biharmonic between two Riemannian mani-
folds, then it satisfies the conservation law for stress bienergy tensor S

Proof. If f =1 and ¢ : (My, g) — (Ma, h) is biharmonic, then (4.5) yields to
divSo(Y) = (=) <dp, AT(y) + Y (dip(es), R(Y, Xi)7 () >

= (_) < JT(w)(Y)v d¢(Y) >

= (5) <m(¥), dp(Y) >
where 75(1)) is the bi-tension field of ¢ (i.e., 7(¢)) is a Jacobi field). Hence, we can conclude the
result. O

Proposition 4.5. Let ¢ : (My, g) — (Ma, h) be a submersion such that 7¢(¢) is basic, i.e.,
() = W o for W € T(T'Mz). Suppose that W is Killing and |W|*> = ¢? is non-zero

constant. If My is non-compact, then T7¢(1)) is a non-trivial Jacobi field.
Proof. Since 7¢ (1)) is basic,

2
SI(XY) =[G+ <dib, Dry(®) (X, ¥)= < d(X), Dyry() >

— < dy(Y), Dx7s(¢) >, (4.6)

where X,Y € I'(T'M;). Let a be a point in M; with the orthonormal frame {e;}”, such that
{ej}}—; are in THEM, = (TY My)* and {ex}",, ., are in T)'M; = ker dip(a). Because W is

Killing, we have

<WﬂWW>@::Z<wmnmﬁww+2<wmmmmww

k
- Z<dwae] D2 (o)W >=0. (4.7)
Therefore,
; c? M,
Sy (a)(X,Y) = (X, V)4 < da(X), Dy2 y W >

2
— < dpa(Y), DY W = —(X, Y).



If M; is not compact, S. S = % g is divergence free and 7¢(¢) is a non-trivial Jacobi field due to
c#0.0

Proposition 4.6. If ¢ : (M2, g) — (My, h) is a map from a surface with Sg = 0, then ¢ is

f-harmonic.
Proof. Since Sg = 0, it implies
0 =traceS] = |rp(¥)]>+2 < Drp(), dpp > =2 < D7p(4h), dip >
= |rr().

Proposition 4.7. If ¢ : (M[", g) — (Ma, h) (m # 2) with S =0, then

—= (W)X, Y)+ < Dx7p(h), dip(Y) >
+ < Dny(w), d¢(X) >=0, (4.8)

VX,Y eTTT(M).
Proof. Suppose that Sg = 0, it implies trace Sg = 0. Therefore,

< Drp(h), dip >= — [7r(¥)[2(m # 2). (4.9)

m
2(m — 2)
Substituting it into the definition of Sg , We arrive at

0 = SIXY) = -l )R Y)

— < Dx7p(¢ >, dip(Y))= < Dy7(¥), dyp(X) > . (4.10)

Corollary 4.8. If ¢ : (M1, g) — (Ma, h) (m > 2) with S{ =0 and rankyp < m — 1, then 1 is

f-harmonic.

Proof. Since rank 1y (a) < m—1, for a point a € M; there exists a unit vector X, € Ker di),.
Letting X =Y = X, (4.8) gives to 7¢(¢)) = 0.

Corollary 4.9. If ¢ : (My,g) — (M, h) is a submersion (m > n) with Sg = 0, then ¢ is
f-harmonic.
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