f-biharmonic Maps between Riemannian Manifolds

Yuan-Jen Chiang
Department of Mathematics, University of Mary Washington
Fredericksburg, VA 22401, USA, ychiang@umw.edu

March 21, 2012

Abstract

We show that if ψ is an f-biharmonic map from a compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfying a condition, then ψ is an f-harmonic map. We prove that if the f-tension field $\tau_{f}(\psi)$ of a map ψ of Riemannian manifolds is a Jacobi field and ϕ is a totally geodesic map of Riemannian manifolds, then $\tau_{f}(\phi \circ \psi)$ is a Jacobi field. We finally investigate the stress f-bienergy tensor, and relate the divergence of the stress f-bienergy of a map ψ of Riemannian manifolds with the Jacobi field of the $\tau_{f}(\psi)$ of the map.

2010 Mathematics Subject Classification. 58E20, 58 G11, 35K05. Key words and phrases. f-bienergy, f-biharmonic map, stress f-bienergy tensor.

1 Introduction

Harmonic maps between Riemannian manifolds were first established by Eells and Sampson in 1964. Chiang, Ratto, Sun and Wolak also studied harmonic and biharmonic maps in [4]-[9]. f-harmonic maps which generalize harmonic maps, were first introduced by Lichnerowicz [25] in 1970, and were studied by Course $[12,13]$ recently. f-harmonic maps relate to the equations of the motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction in mathematical physics. Moreover, F-harmonic maps between Riemannian manifolds were first introduced by Ara [1, 2] in 1999, which could be considered as the special cases of f-harmonic maps.

Let $f:\left(M_{1}, g\right) \rightarrow(0, \infty)$ be a smooth function. f-biharmonic maps between Riemannian manifolds are the critical points of f-bienergy

$$
\left.E_{2}^{f}(\psi)=\frac{1}{2} \int_{M_{1}} f \right\rvert\, \tau_{f}\left(\left.\psi\right|^{2} d v\right.
$$

where $d v$ the volume form determined by the metric $g . f$-biharmonic maps between Riemannian manifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized biharmonic maps by Jiang [20, 21] in 1986.

In section two, we describe the motivation, and review f-harmonic maps and their relationship with F-harmonic maps. In Theorem 3.1, we show that if ψ is an f-biharmonic map from a compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfying a condition, then ψ is an f-harmonic map. It is well-known from [18] that if ψ is a harmonic map of Riemannian manifolds and ϕ is a totally geodesic map of Riemannian manifolds, then $\phi \circ \psi$ is harmonic. However, if ψ is f-biharmonic and ϕ is totally geodesic, then $\phi \circ \psi$ is not necessarily f-biharmonic. Instead, we prove in Theorem 3.3 that if the f-tension field $\tau_{f}(\psi)$ of a smooth map ψ of Riemannian manifolds is a Jacobi field and ϕ is totally geodesic, then $\tau_{f}(\phi \circ \psi)$ is a Jacobi field. It implies Corollary 3.4 [8] that if ψ is a biharmonic map between Riemannian manifolds and ϕ is totally geodesic, then $\phi \circ \psi$ is a biharmonic map. We finally investigate the stress f-bienergy tensors. If ψ is an f-biharmonic of Riemannian manifolds, then it usually does not satisfy the conservation law for the stress f-bienergy tensor $S_{2}^{f}(\psi)$. However, we obtain in Theorem 4.2 that if $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ be a smooth map between two Riemannian manifolds, then the divergence of the stress f-bienergy tensor $S_{2}^{f}(\psi)$ can be related with the Jacobi field of the f-tension field $\tau_{f}(\psi)$ of the map ψ. It implies Corollary 4.4 [22] that if ψ is a biharmonic map between Riemannian manifolds, then ψ satisfies the conservation law for the stress bi-energy tensor $S_{2}(\psi)$. We also discuss a few results concerning the vanishing of the stress f-bienergy tensors.

2 Preliminaries

2.1 Motivation

In mathematical physics, the equation of the motion of a continuous system of spins with inhomogeneous neighborhood Heisenberg interaction is

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=f(x)(\psi \times \triangle \psi)+\nabla f \cdot(\psi \times \nabla \psi) \tag{2.1}
\end{equation*}
$$

where $\Omega \subset R^{m}$ is a smooth domain in the Euclidean space, f is a real-valued function defined on $\Omega, \psi(x, t) \in S^{2}, \times$ is the cross product in R^{3} and \triangle is the Laplace operator in R^{m}. Such a model is called the inhomogeneous Heisenberg ferromagnet [10, 11, 14]. Physically, the function f is called the coupling function, and is the continuum of the coupling constant between the neighboring spins. It is known [18] that the tension field of a map ψ into S^{2} is $\tau(\psi)=\Delta \psi+$ $|\nabla \psi|^{2} \psi$. We can easily see that the right hand side of (2.1) can be expressed as

$$
\begin{equation*}
\psi \times(f \tau(\psi)+\nabla f \cdot \nabla \psi)=0 \tag{2.2}
\end{equation*}
$$

It implies that ψ is a smooth stationary solution of (2.1) if and only if

$$
\begin{equation*}
f \tau(\psi)+\nabla f \cdot \nabla \psi=0 \tag{2.3}
\end{equation*}
$$

i.e., ψ is an f-harmonic map. Consequently, there is a one-to-one correspondence between the set of the stationary solutions of the inhomogeneous Heisenberg spin system (2.1) on the domain
Ω and the set of f-harmonic maps from Ω into S^{2}. The inhomogeneous Heisenberg spin system (2.1) is also called inhomogeneous Landau-Lifshitz system (cf. [23, 24, 19]).

$2.2 f$-harmonic maps

Let $f:\left(M_{1}, g\right) \rightarrow(0, \infty)$ be a smooth function. f-harmonic maps which generalize harmonic maps, were introduced in [25], and were studied in [12, 13, 19, 24] recently. Let $\psi:\left(M_{1}, g\right) \rightarrow$ $\left(M_{2}, h\right)$ be a smooth map from an m-dimensional Riemannian manifold $\left(M_{1}, g\right)$ into an ndimensional Riemannian manifold $\left(M_{2}, h\right)$. A map $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is f-harmonic if and only if ψ is a critical point of the f-energy

$$
E_{f}(\psi)=\frac{1}{2} \int_{M_{1}} f|d \psi|^{2} d v
$$

In terms of the Euler-Lagrange equation, ψ is f-harmonic if and only if the f-tension field

$$
\begin{equation*}
\tau_{f}(\psi)=f \tau(\psi)+d \psi(\operatorname{grad} f)=0, \tag{2.4}
\end{equation*}
$$

where $\tau(\psi)=$ Trace $_{g} D d \psi$ is the tension field of ψ. In particular, when $f=1, \tau_{f}(\psi)=\tau(\psi)$.
Let $F:[0, \infty) \rightarrow[0, \infty)$ be a C^{2} function such that $F^{\prime}>0$ on $(0, \infty)$. F-harmonic maps between Riemannian manifolds were introduced in [1, 2]. For a smooth map $\psi:\left(M_{1}, g\right) \rightarrow$ (M_{2}, h) of Riemannian manifolds, the F-energy of ψ is defined by

$$
\begin{equation*}
E_{F}(\psi)=\int_{M_{1}} F\left(\frac{|d \psi|^{2}}{2}\right) d v . \tag{2.5}
\end{equation*}
$$

When $F(t)=t, \frac{(2 t)^{p / 2}}{p}(p \geq 4),(1+2 t)^{\alpha}(\alpha>1$, $\operatorname{dim} \mathrm{M}=2)$, and e^{t}, they are the energy, the p-energy, the α-energy of Sacks-Uhlenbeck [27], and the exponential energy, respectively. A map ψ is F-harmonic iff ψ is a critical point of the F-energy functional. In terms of the Euler-Lagrange equation, $\psi: M_{1} \rightarrow M_{2}$ is an F - harmonic map iff the F-tension field

$$
\begin{equation*}
\tau_{F}(\psi)=F^{\prime}\left(\frac{|d \psi|^{2}}{2}\right) \tau(\psi)+\psi_{*}\left\{\operatorname{grad}\left(F^{\prime}\left(\frac{|d \psi|^{2}}{2}\right)\right)\right\}=0 . \tag{2.6}
\end{equation*}
$$

Prposition 2.1. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ an F-harmonic map without critical points (i.e., $\left|d \psi_{x}\right| \neq 0$ for all $\left.x \in M_{1}\right)$, then it is an f-harmonic map with $f=F^{\prime}\left(\frac{|d \psi|^{2}}{2}\right)$. In particular, a p-harmonic map without critical points is an f-harmonic map with $f=|d \psi|^{p-2}$.

Proof. It follows from (2.4) and (2.6) immediately.
Prposition 2.2 [15, 25]. A map $\psi:\left(M_{1}^{m}, g\right) \rightarrow\left(M_{2}^{n}, h\right)$ is f harmonic if and only if $\psi:\left(M_{1}^{m}, f^{\frac{2}{m-2}} g\right) \rightarrow\left(M_{2}^{n}, h\right)$ is a harmonic map.

3 -biharmonic maps

Let $f:\left(M_{1}, g\right) \rightarrow(0, \infty)$ be a smooth function. f-biharmonic maps between Riemannian manifolds were first studied by Ouakkas, Nasri and Djaa [26] in 2010, which generalized biharmonic
maps by Jiang [20, 21]. An f-biharmonic map $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ between Riemannian manifolds is the critical point of the f-bienergy functional

$$
\begin{equation*}
\left(E_{2}\right)_{f}(\psi)=\frac{1}{2} \int_{M_{1}}\left\|\tau_{f}(\psi)\right\|^{2} d v \tag{3.1}
\end{equation*}
$$

where the f-tension field $\tau_{f}(\psi)=f \tau(\psi)+d \psi(\operatorname{grad} f)$. In terms of Euler-Lagrange equation, ψ is f-biharmonic if and only if the f-bitension field of ψ

$$
\begin{equation*}
\left(\tau_{2}\right)_{f}(\psi)=(-) \triangle_{2}^{f} \tau_{f}(\psi)(-) f R^{\prime}\left(\tau_{f}(\psi), d \psi\right) d \psi=0 \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\triangle_{2}^{f} \tau_{f}(\psi) & =D^{\psi} f D^{\psi} \tau_{f}(\psi)-f D^{\psi}{ }_{D} \tau_{f}(\psi) \\
& =\sum_{i=1}^{m}\left(D^{\psi}{ }_{e_{i}} f D \psi_{e_{i}} \tau_{f}(\psi)-f D_{D_{e_{i}} e_{i}}^{\psi} \tau_{f}(\psi)\right)
\end{aligned}
$$

Here, $\left\{e_{i}\right\}_{1 \leq i \leq m}$ is an orthonormal frame at a point in M_{1}, and R^{\prime} is the Riemannian curvature of M_{2}. There is a + or - sign convention in (3.2), and we take + sign in the context for simplicity. In particular, if $f=1$, then $\left(\tau_{2}\right)_{f}(\psi)=\tau_{2}(\psi)$, the bitension field of ψ.
Theorem 3.1. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a f-biharmonic map $(f \neq 1)$ from a compact Riemannian manifold M_{1} into a Riemannian manifold M_{2} with non-positive curvature satisfying

$$
\begin{equation*}
f D_{e_{i}} D_{e_{i}} \tau_{f}(\psi)-D f D \tau_{f}(\psi) \geq 0 \tag{3.3}
\end{equation*}
$$

then ψ is f-harmonic.
Proof. Since $\psi: M_{1} \rightarrow M_{2}$ is f-biharmonic, it follows from (3.2) that

$$
\begin{equation*}
\left(\tau_{2}\right)_{f}(\psi)=D^{\psi} f D^{\psi} \tau_{f}(\psi)-f D_{D}^{\psi} \tau_{f}(\psi)+f R^{\prime}\left(\tau_{f}(\psi), d \psi\right) d \psi=0 \tag{3.4}
\end{equation*}
$$

Suppose that the compact supports of $\frac{\partial \psi_{t}}{\partial t}$ and $\nabla_{e_{i}} \frac{\partial \psi_{t}}{\partial t}\left(\left\{\psi_{t}\right\} \in C^{\infty}\left(M_{1} \times[0,1], M_{2}\right)\right.$ is a one parameter family of maps with $\psi_{0}=\psi$) are contained in the interior of M. We compute

$$
\begin{align*}
\frac{1}{2} f \triangle\left\|\tau_{f}(\psi)\right\|^{2} & =f<D_{e_{i}} \tau_{f}(\psi), D_{e_{i}} \tau_{f}(\psi)>+f<D^{*} D \tau_{f}(\psi), \tau_{f}(\psi)> \\
& \left.=f<D_{e_{i}} \tau(\psi), D_{e_{i}} \tau(\psi)>+f<D_{e_{i}} D_{e_{i}} \tau_{f}(\psi)-D_{D_{e_{i} e_{i}}} \tau_{f}(\psi)\right), \tau_{f}(\psi)> \\
& =f<D_{e_{i}} \tau(\psi), D_{e_{i}} \tau_{f}(\psi)>+<f D_{e_{i}} D_{e_{i}} \tau_{f}(\psi) \\
& -D f D \tau_{f}(\psi)+D f D \tau_{f}(\psi)-f D_{D_{e_{i} e_{i}}} \tau_{f}(\psi), \tau_{f}(\psi)> \\
& =f<D_{e_{i}} \tau(\psi), D_{e_{i}} \tau(\psi)>+<f D_{e_{i}} D_{e_{i}} \tau_{f}(\psi) \\
& -D f D \tau_{f}(\psi)-f\left(R^{\prime}(d \psi, d \psi) \tau(\psi), \tau(\psi)>\geq 0\right. \tag{3.5}
\end{align*}
$$

$\left(D^{*} D=D D-D_{D}[20]\right)$ by (3.3), (3.4), $f>0$ and $R^{\prime} \leq 0$. It implies that

$$
\frac{1}{2} \Delta\left\|\tau_{f}(\psi)\right\|^{2} \geq 0
$$

By applying the Bochner's technique, we know that $\left\|\tau_{f}(\psi)\right\|^{2}$ is constant and have

$$
D_{e_{i}} \tau_{f}(\psi)=0, \forall i=1,2, \ldots m
$$

It follows from Eells-Lemaire [15] that $\tau_{f}(\psi)=0$, i.e., ψ is f-harmonic on M_{1}.
In particular, if $f=1$ and $\psi: M_{1} \rightarrow M_{2}$ is a biharmonic map from a compact Riemannian M_{1} manifold into a Riemannian manifold M_{2} with non-positive curvature, then the condition (3.3) is not required and we arrive at the following corollary.

Corollary 3.2 [20]. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a biharmonic map from a compact Riemannian M_{1} manifold into a Riemannian manifold M_{2} with non-positive curvature, then ψ is harmonic.

Proof. When $f=1$ and $\psi: M_{1} \rightarrow M_{2}$ is a biharmonic map from a compact Riemannian M_{1} manifold into a Riemannian manifold M_{2} with non-positive curvature, (3.2) becomes

$$
\tau_{2}(\psi)=D^{*} D \tau(\psi)+R^{\prime}(\tau(\psi), d \psi) d \psi=0
$$

The first identity of (3.5) implies that

$$
\begin{aligned}
\frac{1}{2} \triangle\|\tau(\psi)\|^{2} & =<D_{e_{i}} \tau(\psi), D_{e_{i}} \tau(\psi)>+<D^{*} D \tau(\psi), \tau(\psi)> \\
& =<D_{e_{i}} \tau(\psi), D_{e_{i}} \tau(\psi)>-<R^{\prime}(d \psi, d \psi) \tau(\psi), \tau(\psi)>\geq 0
\end{aligned}
$$

($D^{*} D=D D-D_{D}$), since ψ is biharmonic, and M_{2} is a Riemannian manifold with non-positive curvature R^{\prime}. It follows from the similar arguments as Theorem 3.1 that ψ is harmonic.

It is well-known from [18] that if $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a harmonic map of two Riemannian manifolds and $\phi:\left(M_{2}, h\right) \rightarrow\left(M_{3}, k\right)$ is totally geodesic of two Riemannian manifolds, then $\phi \circ \psi:\left(M_{1}, g\right) \rightarrow\left(M_{3}, k\right)$ is harmonic. However, if $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is an f-biharmonic map, and $\phi:\left(M_{2}, h\right) \rightarrow\left(M_{3}, k\right)$ is totally geodesic, then $\phi \circ \psi:\left(M_{1}, g\right) \rightarrow\left(M_{3}, k\right)$ is not necessarily an f-biharmonic map. We obtain the following theorem instead.
Theorem 3.3. If $\tau_{f}(\psi)$ is a Jacobi field for a smooth map $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ of two Riemannian manifolds, and $\phi:\left(M_{2}, h\right) \rightarrow\left(M_{3}, k\right)$ is a totally geodesic map of two Riemannian manifolds, then $\tau_{f}(\phi \circ \psi)$ is a Jacobi field.

Proof. Let $D, D^{\prime}, \bar{D}, \bar{D}^{\prime}, \bar{D}^{\prime \prime}, \hat{D}, \hat{D}^{\prime}, \hat{D}^{\prime \prime}$ be the connections on $T M_{1}, T M_{2}, \psi^{-1} T M_{2}, \phi^{-1} T M_{3}$, $(\phi \circ \psi)^{-1} T M_{3}, T^{*} M_{1} \otimes \psi^{-1} T M_{2}, T^{*} M_{2} \otimes \phi^{-1} T M_{3}, T^{*} M_{1} \otimes(\phi \circ \psi)^{-1} T M_{3}$, respectively. We first have

$$
\begin{equation*}
\bar{D}_{X}^{\prime \prime} d(\phi \circ \psi)(Y)=\left(\hat{D}_{d \psi(X)}^{\prime} d \phi\right) d \psi(Y)+d \phi \circ \bar{D}_{X} d \psi(Y), \tag{3.6}
\end{equation*}
$$

$\forall X, Y \in \Gamma\left(T M_{1}\right)$. We also have

$$
\begin{equation*}
R^{M_{3}}\left(d \phi\left(X^{\prime}\right), d \phi\left(Y^{\prime}\right)\right) d \phi\left(Z^{\prime}\right)=R^{\phi^{-1} T M_{3}}\left(X^{\prime}, Y^{\prime}\right) d \phi\left(Z^{\prime}\right) \tag{3.7}
\end{equation*}
$$

$\forall X^{\prime}, Y^{\prime}, Z^{\prime} \in \Gamma\left(T M_{2}\right)$.

It is well-known from [18] that the tension field of the composition $\phi \circ \psi$ is given by

$$
\tau(\phi \circ \psi)=d \phi(\tau(\psi))+\operatorname{Tr}_{g} D d \phi(d \psi, d \psi)=d \phi(\tau(\psi))
$$

since ϕ is totally geodesic. Then the f-tension field of the composition of $\phi \circ \psi$ is

$$
\tau_{f}(\psi \circ \phi)=d \phi\left(\tau_{f}(\psi)\right)+f \operatorname{Tr}_{g} D d \phi(d \psi, d \psi)=d \psi\left(\tau_{f}(\psi)\right)
$$

since ϕ is totally geodesic. Note that $\left\{e_{i}\right\}_{i=1}^{m}$ is an orthonormal frame at a point in M_{1}, and let $\bar{D}^{*} \bar{D}=\bar{D}_{e_{k}} \bar{D}_{e_{k}}-\bar{D}_{D_{e_{k}} e_{k}}$ and $\bar{D}^{\prime * *} \bar{D}^{\prime \prime}=\bar{D}_{e_{k}}^{\prime \prime} \bar{D}_{e_{k}}^{\prime \prime}-\bar{D}_{D_{e_{k}} e_{k}}^{\prime \prime}$. Thus we arrive at

$$
\begin{align*}
\bar{D}^{\prime \prime *} \bar{D}^{\prime \prime} \tau_{f}(\phi \circ \psi) & =\bar{D}^{\prime \prime *} \bar{D}^{\prime \prime}\left(d \phi \circ \tau_{f}(\psi)\right) \\
& =\bar{D}_{e_{k}}^{\prime \prime} \bar{D}_{e_{k}}^{\prime \prime}\left(d \phi \circ \tau_{f}(\psi)\right)-\bar{D}_{D_{e_{k}} e_{k}}^{\prime \prime}\left(d \phi \circ \tau_{f}(\psi)\right) \tag{3.8}
\end{align*}
$$

We derive from (3.6) that

$$
\begin{aligned}
\bar{D}_{e_{k}}^{\prime \prime}\left(d \phi \circ \tau_{f}(\psi)\right) & =\left(\hat{D}_{\hat{D}_{e_{j}} d \psi\left(e_{k}\right)}^{\prime} d \phi\right)\left(\tau_{f}(\psi)\right)+d \phi \circ \bar{D}_{e_{k}}\left(\tau_{f}(\psi)\right) \\
& =d \phi \circ \bar{D}_{e_{k}} \tau_{f}(\psi)
\end{aligned}
$$

since ϕ is totally geodesic. Therefore, we have

$$
\begin{equation*}
\bar{D}_{e_{k}}^{\prime \prime} \bar{D}_{e_{k}}^{\prime \prime}\left(d \phi \circ \tau_{f}(\psi)\right)=\bar{D}_{e_{k}}^{\prime \prime}\left(d \phi \circ \bar{D}_{e_{k}} \tau_{f}(\psi)\right)=d \phi \circ \bar{D}_{e_{k}} \bar{D}_{e_{k}} \tau_{f}(\psi) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{D}_{D_{e_{k}} e_{k}}^{\prime \prime}(d \phi \circ \tau(\psi))=d \phi \circ \bar{D}_{D_{e_{k}} e_{k}} \tau_{f}(\psi) \tag{3.10}
\end{equation*}
$$

Substituting (3.9), (3.10) into (3.8), we deduce

$$
\begin{equation*}
\bar{D}^{\prime \prime *} \bar{D}^{\prime \prime} \tau_{f}(\phi \circ \psi)=d \phi \circ \bar{D}^{*} \bar{D} \tau_{f}(\psi) \tag{3.11}
\end{equation*}
$$

It follows from (3.7) that

$$
\begin{align*}
R^{M_{3}} & \left(d(\phi \circ \psi)\left(e_{i}\right), \tau_{f}(\phi \circ \psi)\right) d(\phi \circ \psi)\left(e_{i}\right) \\
= & R^{\phi^{-1} T M_{3}}\left(d \psi\left(e_{i}\right), \tau_{f}(\psi)\right) d \phi\left(d \psi\left(e_{i}\right)\right) \\
= & d \phi \circ R^{M_{2}}\left(d \psi\left(e_{i}\right), \tau_{f}(\psi)\right) d \psi\left(e_{i}\right) . \tag{3.12}
\end{align*}
$$

By (3.11) and (3.12) we obtain

$$
\begin{align*}
\bar{D}^{\prime * *} \bar{D}^{\prime \prime} \tau_{f}(\phi \circ \psi) & +R^{M_{3}}\left(d(\phi \circ \psi)\left(e_{i}\right), \tau_{f}(\phi \circ \psi)\right) d(\phi \circ \psi)\left(e_{i}\right) \\
& =d \phi \circ\left[\bar{D}^{*} \bar{D} \tau_{f}(\psi)+R^{M_{2}}\left(d \psi\left(e_{i}\right), \tau_{f}(\psi)\right) d \psi\left(e_{i}\right)\right] \tag{3.13}
\end{align*}
$$

Consequently, if $\tau_{f}(\psi)$ is a Jacobi field, then $\tau_{f}(\phi \circ \psi)$ is a Jacobi field.
Corollary $3.4[8]$. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a biharmonic map between two Riemannian manifolds and $\phi:\left(M_{2}, h\right) \rightarrow\left(M_{3}, k\right)$ is totally geodesic, then $\phi \circ \psi:\left(M_{1}, g\right) \rightarrow\left(M_{3}, k\right)$ is a biharmonic map.

Proof. If $f=1$ and $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a biharmonic map of two Riemannian manifolds, then $\tau_{f}(\psi)=\tau(\psi)$ is a Jacobi field and (3.13) becomes

$$
\begin{aligned}
\bar{D}^{\prime \prime *} \bar{D}^{\prime \prime} \tau(\phi \circ \psi) & +R^{M_{3}}\left(d(\phi \circ \psi)\left(e_{i}\right), \tau(\phi \circ \psi)\right) d(\phi \circ \psi)\left(e_{i}\right) \\
& =d \phi \circ\left[\bar{D}^{*} \bar{D} \tau(\psi)+R^{M_{2}}\left(d \psi\left(e_{i}\right), \tau(\psi)\right) d \psi\left(e_{i}\right)\right],
\end{aligned}
$$

i.e., $\tau_{2}(\phi \circ \psi)=d \phi \circ\left(\tau_{2}(\psi)\right)$, where $\tau_{2}(\psi)$ is the bi-tension field of ψ. Hence, the result follows immediately.

4 Stress f-bienergy tensors

Let $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ be a smooth map between two Riemannian manifolds. The stress energy tensor [3] is defined by

$$
S(\psi)=e(\psi) g-\psi^{*} h,
$$

where $e(\psi)=\frac{|d \psi|^{2}}{2}$. Thus we have $\operatorname{div} S(\psi)=-\langle\tau(\psi), d \psi\rangle$. Hence, if ψ is harmonic, then ψ satisfies the conservation law for S (i.e., $\operatorname{div} S(\psi)=0$). In [26], the stress f-energy tensor of the smooth map $\psi: M_{1} \rightarrow M_{2}$ was similarly defined as

$$
S^{f}(\psi)=f e(\psi) g-f \psi^{*} h,
$$

and they obtained

$$
\operatorname{div} S^{f}(\psi)=-<\tau_{f}(\psi), d \psi>+e(\psi) d f
$$

In this case, an f-harmonic map usually does not satisfy the conservation law for S^{f}. In particular, setting $f=F^{\prime}\left(\frac{\left.d \psi\right|^{2}}{2}\right)$, then $S^{f}(\psi)=F^{\prime}\left(\frac{\left.d \psi\right|^{2}}{2}\right) e(\psi) g-F^{\prime}\left(\frac{\left.d \psi\right|^{2}}{2}\right) \psi^{*} h$. It is different than following [3] to define $S^{F}(\psi)=F\left(\frac{|d \psi|^{2}}{2}\right) g-F^{\prime}\left(\frac{\left.d \psi\right|^{2}}{2}\right) \psi^{*} h$, and we have

$$
\operatorname{div} S^{F}(\psi)=-<\tau_{F}(\psi), d \psi>
$$

It implies that if $\psi: M_{1} \rightarrow M_{2}$ is an F-harmonic map between Riemannian manifolds, then it satisfies the conservation law for S^{F} (cf. [1]).

The stress bienergy tensors and the conservation laws of biharmonic maps between Riemannian manifolds were first studied in [22] in 1987. Following Jiang's notion, we define the stress f-bienergy tensor of a smooth map as follows.
Definition 4.1. Let $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ be a smooth map between two Riemannian manifolds. The stress f-bienergy tensor of ψ is defined by

$$
\begin{align*}
S_{2}^{f}(X, Y) & =\frac{1}{2}\left|\tau_{f}(\psi)\right|^{2}<X, Y>+<d \psi, D\left(\tau_{f}(\psi)><X, Y>\right. \\
& -<d \psi(X), D_{Y} \tau_{f}(\psi)>-<d \psi(Y), D_{X} \tau_{f}(\psi)> \tag{4.1}
\end{align*}
$$

$\forall X, Y \in \Gamma\left(T M_{1}\right)$.
Note that if $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is an f-biharmonic map between two Riemannian manifolds, then ψ does not necessarily satisfy the conservation law for the stress f-bienrgy tensor S_{2}^{f}. Instead, we obtain the following theorem.
Theorem 4.2. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ be a smooth map between two Riemannian manifolds, then we have

$$
\begin{equation*}
\operatorname{div} S_{2}^{f}(Y)=(-)<J_{\tau_{f}(\psi)}(Y), d \psi(Y)>, \forall Y \in \Gamma\left(T M_{1}\right) \tag{4.2}
\end{equation*}
$$

where $J_{\tau_{f}(\psi)}$ is the Jacobi field of $\tau_{f}(\psi)$.
Proof. For the map $\psi: M_{1} \rightarrow M_{2}$ between two Riemannian manifolds, set $S_{2}^{f}=K_{1}+K_{2}$, where K_{1} and K_{2} are (0,2)-tensors defined by

$$
\begin{aligned}
& K_{1}(X, Y)=\frac{1}{2}\left|\tau_{f}(\psi)\right|^{2}<X, Y>+<d \psi, D \tau_{f}(\psi)><X, Y> \\
& K_{2}(X, Y)=-<d \psi(X), D_{Y} \tau_{f}(\psi)>-<d \psi, D_{X} \tau_{f}(\psi)>
\end{aligned}
$$

Let $\left\{e_{i}\right\}$ be the geodesic coordinates at a point $a \in M_{1}$, and write $Y=Y^{i} e_{i}$ at the point a. We first compute

$$
\begin{align*}
\operatorname{div} K_{1}(Y) & =\sum_{i}\left(D_{e_{i}} K_{1}\right)\left(e_{i}, Y\right)=\sum_{i}\left(e_{i}\left(K_{1}\left(e_{i}, Y\right)-K_{1}\left(e_{i}, D_{e_{i}} Y\right)\right)\right. \\
& =\sum_{i}\left(e_{i}\left(\frac{1}{2}\left|\tau_{f}(\psi)\right|^{2} Y^{i}+\sum_{k}<d \psi\left(e_{k}\right), D_{e_{k}} \tau_{f}(\psi)>Y^{i}\right)\right. \\
& \left.\left.-\frac{1}{2}\left|\tau_{f}(\psi)\right|^{2} Y^{i} e_{i}-\sum_{k}<d \psi\left(e_{k}\right), D_{e_{k}} \tau_{f}(\psi)>Y^{i} e_{i}\right)\right) \\
& =<D_{Y} \tau_{f}(\psi), \tau_{f}(\psi)>+\sum_{i}<d \psi\left(Y, e_{i}\right), D_{e_{i}} \tau_{f}(\psi)> \\
& +\sum_{i}<d \psi\left(e_{i}\right), D_{Y} D_{e_{i}} \tau_{f}(\psi)> \\
& =<D_{Y} \tau_{f}(\psi), \tau_{f}(\psi)>+\operatorname{trace}<D d \psi(Y, .), D . \tau_{f}(\psi)> \\
& +\operatorname{trace}<d \psi(.), D^{2} \tau_{f}(\psi)(Y, .)> \tag{4.3}
\end{align*}
$$

We then compute

$$
\begin{align*}
\operatorname{div} K_{2}(Y) & =\sum_{i}\left(D_{e_{i}} K_{2}\right)\left(e_{i}, Y\right)=\sum_{i}\left(e_{i}\left(K_{2}\left(e_{i}, Y\right)-K_{2}\left(e_{i}, D_{e_{i}} Y\right)\right)\right. \\
& =-<D_{Y} \tau_{f}(\psi), \tau_{f}(\psi)>-\sum_{i}<D d \psi\left(Y, e_{i}\right), D_{e_{i}} \tau_{f}(\psi)> \\
& -\sum_{i}<d \psi\left(e_{i}\right), D_{e_{i}} D_{Y} \tau_{f}(\psi)-D_{D_{e_{i}} Y} \tau_{f}(\psi)>+<d \psi(Y), \triangle \tau_{f}(\psi)> \\
& =-<D_{Y} \tau_{f}(\psi), \tau_{f}(\psi)>-\operatorname{trace}<D d \psi(Y, .), D . \tau_{f}(\psi)> \\
& -\operatorname{trace}<d \psi(.), D^{2} \tau_{f}(\psi)(., Y)>+<d \psi(Y), \triangle \tau_{f}(\psi)> \tag{4.4}
\end{align*}
$$

Adding (4.3) and (4.4), we arrive at

$$
\begin{align*}
\operatorname{div} S_{2}^{f}(Y) & =(-)<d \psi(Y), \Delta \tau_{f}(\psi)+\sum_{i}<d \psi\left(e_{i}\right), R^{\prime}\left(Y, e_{i}\right) \tau_{f}(\psi)> \\
& =(-)<J_{\tau_{f}(\psi)}(Y), d \psi(Y)> \tag{4.5}
\end{align*}
$$

where $J_{\tau_{f}(\psi)}$ is the Jacobi field of $\tau_{f}(\psi)$.
Corollary 4.3. If $\tau_{f}(\psi)$ is a Jacobi field for a map $\psi: M_{1} \rightarrow M_{2}$, then it satisfies the conservation law (i.e., div $S_{2}^{f}=0$) for the stress f-bienergy tensor S_{2}^{f}.
Corollary 4.4. [22]. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is biharmonic between two Riemannian manifolds, then it satisfies the conservation law for stress bienergy tensor S_{2}

Proof. If $f=1$ and $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is biharmonic, then (4.5) yields to

$$
\begin{aligned}
\operatorname{div} S_{2}(Y) & =(-)<d \psi, \Delta \tau(\psi)+\sum_{i}\left(d \psi\left(e_{i}\right), R^{\prime}\left(Y, X_{i}\right) \tau(\psi)>\right. \\
& =(-)<J_{\tau(\psi)}(Y), d \psi(Y)> \\
& =(-)<\tau_{2}(\psi), d \psi(Y)>
\end{aligned}
$$

where $\tau_{2}(\psi)$ is the bi-tension field of ψ (i.e., $\tau(\psi)$ is a Jacobi field). Hence, we can conclude the result.
Proposition 4.5. Let $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ be a submersion such that $\tau_{f}(\psi)$ is basic, i.e., $\tau_{f}(\psi)=W \circ \psi$ for $W \in \Gamma\left(T M_{2}\right)$. Suppose that W is Killing and $|W|^{2}=c^{2}$ is non-zero constant. If M_{1} is non-compact, then $\tau_{f}(\psi)$ is a non-trivial Jacobi field.

Proof. Since $\tau_{f}(\psi)$ is basic,

$$
\begin{align*}
S_{2}^{f}(X, Y) & =\left[\frac{c^{2}}{2}+<d \psi, D \tau_{f}(\psi)>\right](X, Y)-<d \psi(X), D_{Y} \tau_{f}(\psi)> \\
& -<d \psi(Y), D_{X} \tau_{f}(\psi)> \tag{4.6}
\end{align*}
$$

where $X, Y \in \Gamma\left(T M_{1}\right)$. Let a be a point in M_{1} with the orthonormal frame $\left\{e_{i}\right\}_{i=1}^{m}$ such that $\left\{e_{j}\right\}_{j=1}^{n}$ are in $T_{a}^{H} M_{1}=\left(T_{a}^{V} M_{1}\right)^{\perp}$ and $\left\{e_{k}\right\}_{k=n+1}^{m}$ are in $T_{a}^{V} M_{1}=k e r d \psi(a)$. Because W is Killing, we have

$$
\begin{align*}
<d \psi, D \tau_{f}(\psi)>(a) & =\sum_{j}<d \psi_{a}\left(e_{j}\right), D_{e_{j}} \tau_{f}(\psi)>+\sum_{k}<d \psi_{a}\left(e_{k}\right), D_{e_{k}} \tau_{f}(\psi)> \\
& =\sum_{j}<d \psi_{a}\left(e_{j}\right), D_{d \psi_{a}\left(e_{j}\right)}^{M_{2}} W>=0 . \tag{4.7}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
S_{2}^{f}(a)(X, Y) & =\frac{c^{2}}{2}(X, Y)+<d \psi_{a}(X), D_{d \psi_{a}(Y)}^{M_{2}} W> \\
& -<d \psi_{a}(Y), D_{d \psi_{a}(X)}^{M_{2}} W>=\frac{c^{2}}{2}(X, Y)
\end{aligned}
$$

If M_{1} is not compact, $S_{2}^{f}=\frac{c^{2}}{2} g$ is divergence free and $\tau_{f}(\psi)$ is a non-trivial Jacobi field due to $c \neq 0$.
Proposition 4.6. If $\psi:\left(M_{1}^{2}, g\right) \rightarrow\left(M_{2}, h\right)$ is a map from a surface with $S_{2}^{f}=0$, then ψ is f-harmonic.

Proof. Since $S_{2}^{f}=0$, it implies

$$
\begin{aligned}
0=\operatorname{trace} S_{2}^{f} & =\left|\tau_{f}(\psi)\right|^{2}+2<D \tau_{f}(\psi), d \psi>-2<D \tau_{f}(\psi), d \psi> \\
& =\left|\tau_{f}(\psi)\right|^{2}
\end{aligned}
$$

Proposition 4.7. If $\psi:\left(M_{1}^{m}, g\right) \rightarrow\left(M_{2}, h\right)(m \neq 2)$ with $S_{2}^{f}=0$, then

$$
\begin{array}{cl}
\frac{1}{m-2} & \left|\tau_{f}(\psi)\right|^{2}(X, Y)+<D_{X} \tau_{f}(\psi), d \psi(Y)> \\
+\quad<D_{Y} \tau_{f}(\psi), d \psi(X)>=0 \tag{4.8}
\end{array}
$$

$\forall X, Y \in \Gamma T\left(M_{1}\right)$.
Proof. Suppose that $S_{2}^{f}=0$, it implies trace $S_{2}^{f}=0$. Therefore,

$$
\begin{equation*}
<D \tau_{f}(\psi), d \psi>=-\frac{m}{2(m-2)}\left|\tau_{f}(\psi)\right|^{2}(m \neq 2) \tag{4.9}
\end{equation*}
$$

Substituting it into the definition of S_{2}^{f}, we arrive at

$$
\begin{align*}
0 & =S_{2}^{f}(X, Y)=-\frac{1}{m-2}\left|\tau_{f}(\psi)\right|^{2}(X, Y) \\
& -<D_{X} \tau_{f}(\psi>, d \psi(Y))-<D_{Y} \tau_{f}(\psi), d \psi(X)> \tag{4.10}
\end{align*}
$$

Corollary 4.8. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)(m>2)$ with $S_{1}^{f}=0$ and rank $\psi \leq m-1$, then ψ is f-harmonic.

Proof. Since $\operatorname{rank} \psi(a) \leq m-1$, for a point $a \in M_{1}$ there exists a unit vector $X_{a} \in \operatorname{Ker} d \psi_{a}$. Letting $X=Y=X_{a},(4.8)$ gives to $\tau_{f}(\psi)=0$.
Corollary 4.9. If $\psi:\left(M_{1}, g\right) \rightarrow\left(M_{2}, h\right)$ is a submersion $(m>n)$ with $S_{2}^{f}=0$, then ψ is f-harmonic.

References

[1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J., 22(1999), 242-263.
[2] M. Ara, Stability of F-harmonic maps into pinched manifolds, Hiroshima Math. J. Vol. 31, No. 1 (2001), 171-181.
[3] P. Baird and J. Eells, A conservation law for harmonic maps, Geometry Symposium Utrecht 1980, Lecture Notes in Math., 894, Springer-Verlag, 1981, 1-15.
[4] Y. J. Chiang, Harmonic maps of V-manifolds, Ann. of Global Anal. and Geom., Vol. 8(3)(1990), 315-344.
[5] Y.-J. Chiang and A. Ratto, Harmonic maps on spaces with conical singularities, Bull. Soc. Math. France, Vol. 120 (3)(1992), 251-262.
[6] Y.-J. Chiang, Spectral geometry of V-manifolds and its applications to harmonic maps, Proc. Sympos. Pure Math., Amer. Math. Soc., Part 1, Vol. 54 (1993), 93-99.
[7] Y.-J. Chiang and H. Sun, 2-harmonic totally real submanifolds in a complex projective space, Bull. Inst. Math. Acad. Sinica $27(2)(1999)$, 99-107.
[8] Y.-J. Chiang and H. Sun, Biharmonic maps on V-manifolds, Int. J. Math. Math. Sci. 27)8)(2001), 477-484.
[9] Y.-J. Chiang and R. Wolak, Transversally biharmonic maps between foliated Riemannian manifolds, Internat. J. of Math. Vol. 19, No. 8 (2008), 981-996.
[10] J. Cieslinski, A. Sym and W. Wesselius, On the geometry of the inhomogeneous Heisenberg ferromagnet model: non-integrable case, J. Phys. A. Math. Gen. 26(1993), 1353-1364.
[11] J. Cieslinski, P. Goldstein and A. Sym, On integrability of the inhomogeneous Heisenberg ferromagnet: Examination of a new test, J. Phys. A. Math. Gen. 27(1994), 1645-1664.
[12] N. Course, f-harmonic maps, Thesis, University of Warwick, 2004.
[13] N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13(2007), 423-435(Electronic).
[14] M. Daniels, K. Porsezian and M. Lakshmanan, On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimension, J. Math Phys. (1994), 35(10):64986510.
[15] J. Eells and L. Lemaire, A report on harmonic maps, London Math. Soc. 10(1978),1-68.
[16] J. Eells and L. Lemaire, Another report on harmonic maps, London Math. Soc. 20(1988), 385-524.
[17] J. Eells and L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conf. Series 50, AMS (1983).
[18] J. Eells and J. H. Sampson,Harmonic maps of Riemannian manifolds, Amer. J. of Math 86(1964), 109-164.
[19] P. Huang and H. Tang, On the heat flow of f-harmonic maps from D^{2} into S^{2}, Nonlinear Anal. 67(2007) no. 7, 21492156.
[20] G. Y. Jiang, 2-harmonic maps between Riemannian manifolds1986, Annals of Math., China, Vol. 7A(4)(1986), 389-402.
[21] G. Y. Jiang, The 2-harmonic isometric immersions between Riemannian manifolds, Annals of Math., China, 7A(2)(1986), 130-144.
[22] G. Y. Jiang, The conservation law of biharmonic maps between Riemannian manifolds, Acta Math. Sinica(1987), Vol. 30, No. 2, 220-225.
[23] M. Lakshmanan and R. K. Bullough, Geometry of generalized nonlinear Schrodinger and Heisenberg ferro-magnetic spin equations with x-dependent coefficients, Phys. Lett. A (1980), 80(4), 287292.
[24] Y. X. Li and Y. D. Wang, Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz equations, Comment. Math. Helv. 81(2006), 81(2), 433448.
[25] A. Lichnerowicz, Applications harmoniques et varietes kahlerinnes, Sym. Math. III, Acad. Press, London, 1970, 341-402.
[26] S. Ouakkas, R. Basri and M. Djaa, On the f-harmonic and f-biharmonic maps, J. P. Journal. of Geom. and Top., V. 10, No. 1, 2010, 11-27.
[27] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math., 113(1981), 1-24.

