Matrix generalizations of integrable systems with Lax integro-differential representations

Chvartatskyi O. ${ }^{1}$

advisor Yu. M. Sydorenko ${ }^{1}$

${ }^{1}$ IVAN FRANKO NATIONAL UNIVERSITY OF LVIV
XIV-th International Conference Geometry, Integrability and Quantization
Varna, Bulgaria, 8-13 June, 2012

Contents

(1) Introduction
(2) Symmetry reductions of the KP-hierarchy
(3) Exact solutions of some nonlinear models from the KP-hierarchy
(4) Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Introduction

We consider linear space ζ of micro-differential operators over the field C of the following form:

$$
\begin{equation*}
L \in \zeta=\left\{\sum_{i=-\infty}^{n(L)} a_{i} D^{i}: n(L) \in \mathbf{Z}\right\}, \tag{1}
\end{equation*}
$$

where coefficients a_{i} are functions dependent on spatial variable $x=t_{1}$ and evolution parameters $t_{2}, t_{3} \ldots$ Coefficients $a_{i}(t)$, $t=\left(t_{1}, t_{2}, \ldots\right)$, are supposed to be smooth functions of vector variable t that has a finite number of elements that belong to some functional space \boldsymbol{A}. This space is a differential algebra under arithmetic operations. An operator of differentiation is denoted in the following way: $D:=\frac{\partial}{\partial x}$.

Introduction

Addition and multiplication of operators by scalars (elements of the field C) are introduced in the following way:

$$
\begin{gathered}
\lambda_{1} L_{1} \pm \lambda_{2} L_{2}=\sum_{i=-\infty}^{N_{1}} \lambda_{1} a_{1 i} D^{i} \pm \sum_{i=-\infty}^{N_{2}} \lambda_{2} a_{2 i} D^{i}= \\
\sum_{i=-\infty}^{\max <N_{1}, N_{2}>}\left(\lambda_{1} a_{1 i} \pm \lambda_{2} a_{2 i}\right) D^{i}, \lambda_{1}, \lambda_{2} \in \mathbf{C}
\end{gathered}
$$

The structure of Lie algebra on a linear space ζ (1) is defined by the commutator $[\cdot, \cdot]: \zeta \times \zeta \rightarrow \zeta,\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1}$, where the composition of micro-differential operators L_{1} and L_{2} is induced by general Leibniz rule:

Introduction

$$
\begin{equation*}
D^{n} f:=\sum_{j=0}^{\infty}\left(\frac{n}{j}\right) f^{(j)} D^{n-j} \tag{2}
\end{equation*}
$$

$n \in \mathbf{Z}, f \in A \subset \zeta, f^{(j)}:=\frac{\partial^{i} f}{\partial x^{j}} \in A \subset \zeta, D^{n} D^{m}=D^{m} D^{n}=D^{n+m}$,
$n, m \in \mathbf{Z}$, where $\left(\frac{n}{0}\right):=1,\left(\frac{n}{j}\right):=\frac{n(n-1) \ldots(n-j+1)}{j!}$.
Formula (2) defines the composition of the operator $D^{n} \in \zeta$ and the operator of multiplication by function $f \in A \subset \zeta$ in contradistinction to the denotation $D^{k}\{f\}:=\frac{\partial^{k} f}{\partial x^{k}} \in A, k \in \mathbf{Z}_{+}$.

Introduction

Consider a microdifferential Lax operator:

$$
\begin{equation*}
L:=W D W^{-1}=D+\sum_{i=1}^{\infty} U_{i} D^{-i} \tag{3}
\end{equation*}
$$

which is parametrized by the infinite number of dynamic variables $U_{i}=U_{i}\left(t_{1}, t_{2}, t_{3}, \ldots\right), i \in \mathbb{N}$, which depend on an arbitrary (finite) number of independent variables $t_{1}:=x, t_{2}, t_{3}$, ... All dynamic variables U_{i} can be expressed in terms of functional coefficients of formal dressing Zakharov-Shabat operator:

$$
\begin{equation*}
W=I+\sum_{i=1}^{\infty} w_{i} D^{-i} \tag{4}
\end{equation*}
$$

The inverse of formal operator W has the form:

$$
\begin{equation*}
W^{-1}=I+\sum_{i=1}^{\infty} a_{i} D^{-i} \tag{5}
\end{equation*}
$$

Introduction

In scalar case, Kadomtsev -Petviashvili hierarchy is a commuting family of evolution Lax equations for the operator L (3)

$$
\begin{equation*}
\alpha_{i} L_{t_{i}}=\left[B_{i}, L\right]:=B_{i} L-L B_{i}, \tag{6}
\end{equation*}
$$

where $\alpha_{i} \in \mathbb{C}, i \in \mathbb{N}$, the operator $B_{i}:=\left(L^{i}\right)_{+}$is a differential part of the i-th power of microdifferential symbol L.
By symbol $L_{t_{i}}$ we will denote the following operator:

$$
\begin{equation*}
L_{t_{i}}:=\left(W D W^{-1}\right)_{t_{i}}=\sum_{j=1}^{\infty}\left(U_{j}\right)_{t_{i}} D^{-j} \tag{7}
\end{equation*}
$$

Formally transposed and conjugated operators L^{τ}, L^{*} have the form:

Introduction

$$
\begin{equation*}
L^{\tau}:=-D+\sum_{j=1}^{\infty}(-1)^{j} D^{-j} U_{j}, L^{*}:=\bar{L}^{\tau} \tag{8}
\end{equation*}
$$

Zakharov-Shabat equations are consequences of the commutativity of two arbitrary flows in (6) with $i=m$ and $i=n$

$$
\begin{gather*}
L_{t_{m} t_{n}}=L_{t_{n} t_{m}} \Rightarrow \\
\Rightarrow\left[\alpha_{n} \partial_{t_{n}}-B_{n}, \alpha_{m} \partial_{t_{m}}-B_{m}\right]=\alpha_{m} B_{n t_{m}}-\alpha_{n} B_{m t_{n}}+\left[B_{n}, B_{m}\right]=0 . \tag{9}
\end{gather*}
$$

Symmetry reductions of the KP-hierarchy

References

- Sidorenko Yu., Strampp W. Symmetry constraints of the KP-hierarchy // Inverse Problems. - 1991. - V. 7. P. L37-L43.
- Konopelchenko B., Sidorenko Yu., Strampp W. (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems // Phys. Lett. A.
- 1991. - V. 157. - P. 17-21.
- Cheng Yi. Constrained of the Kadomtsev - Petviashvili hierarchy // J. Math. Phys. - 1992. - Vol.33. P. 3774-3787.
- Sidorenko Yu., Strampp W. Multicomponent integrable reductions in Kadomtsev-Petviashvilli hierarchy // J. Math. Phys. - 1993. - V. 34, №4. - P. 1429-1446.

Symmetry reductions of the KP-hierarchy

References

- A. M. Samoilenko, V. G. Samoilenko and Yu. M. Sidorenko Hierarchy of the Kadomtsev-Petviashvili equations under nonlocal constraints: Many-dimensional generalizations and exact solutions of reduced system // Ukr. Math. Journ., 1999, Vol. 51, № 1, p. 86-106

Symmetry reductions of the KP-hierarchy

Consider a symmetry reduction of the KP-hierarchy, which is a generalization of the Gelfand-Dickey k-reduction:

$$
\begin{gather*}
\left(L^{K}\right)_{-}:=\left(L^{k}\right)_{<0}=\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{r}^{\top}= \\
=\int^{x} \mathbf{q}\left(x, t_{2}, t_{3}, \ldots\right) \mathcal{M}_{0} \mathbf{r}^{\top}\left(s, t_{2}, t_{3}, \ldots\right) \cdot d s, \tag{10}
\end{gather*}
$$

where $\operatorname{Mat}_{/ \times 1}(\mathbb{C}) \ni \mathcal{M}_{0}$ is a constant matrix, and functions $\mathbf{q}=\left(q_{1}, \ldots, q_{l}\right), \mathbf{r}=\left(r_{1}, \ldots, r_{l}\right)$ are fixed solutions of the following system of differential equations:

$$
\left\{\begin{array}{l}
\alpha_{n} \mathbf{q}_{t_{n}}=B_{n}\{\mathbf{q}\}, \tag{11}\\
\alpha_{n} \mathbf{r}_{t_{n}}=-B_{n}^{\tau}\{\mathbf{r}\},
\end{array}\right.
$$

where $n \in \mathbb{N}$.

Symmetry reductions of the KP-hierarchy

Reduced flows (6), (10), (11) admit Lax representation

$$
\begin{equation*}
\left[L_{k}, M_{n}\right]=0, L_{k}=B_{k}+\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{r}^{\top}, M_{n}=\alpha_{n} \partial_{t_{n}}-B_{n} . \tag{12}
\end{equation*}
$$

Equation (12) is equivalent to the $(1+1)$-dimensional integrable systems for functional coefficients $U_{i}, i=\overline{1, k-1}$ and functions \mathbf{q}, \mathbf{r} :

$$
\left\{\begin{array}{l}
U_{i t_{n}}=P_{i n}\left[U_{1}, U_{2}, \ldots, U_{k-1}, \mathbf{q}, \mathbf{r}\right], \tag{13}\\
\mathbf{q}_{t_{n}}=B_{n}\left[U_{i}, \mathbf{q}, \mathbf{r}\right]\{\mathbf{q}\}, \mathbf{r}_{t_{n}}=-B_{n}^{\tau}\left[U_{i}, \mathbf{q}, \mathbf{r}\right]\{\mathbf{r}\}
\end{array}\right.
$$

where $i=\overline{1, k-1}, P_{\text {in }}$ and B_{n} are differential polynomials with respect to dynamic variables that are indicated in square brackets.

Symmetry reductions of the KP-hierarchy

(2+1)-dimensional generalizations of Lax representations (12) have the form:

$$
\begin{equation*}
\left[L_{k}, M_{n}\right]=0 \tag{14}
\end{equation*}
$$

where L_{k} is $(2+1)$-dimensional integro-differential operator:

$$
\begin{equation*}
L_{k}=\alpha \partial_{y}-B_{k}-\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{r}^{\top} \tag{15}
\end{equation*}
$$

and M_{n} in (14) is evolutional differential operator of n-th order with respect to spatial variable x :

$$
\begin{equation*}
M_{n}=\alpha_{n} \partial_{t_{n}}-\sum_{j=1}^{n} v_{j} \mathcal{D}^{j} \tag{16}
\end{equation*}
$$

Symmetry reductions of the KP-hierarchy

Consider examples of equations (12)-(13) and their generalizations (14)-(16) for some k and n :

1. $k=1, n=2$:
$L_{1}=D+\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{q}^{*}, M_{2}=\alpha_{2} \partial_{t_{2}}-D^{2}-2 \mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}$,
where $\alpha_{2} \in i \mathbf{R}, \mathcal{M}_{0}^{*}=\mathcal{M}_{0}$.
Equation $\left[L_{1}, M_{2}\right]=0$ is equivalent to nonlinear Schrodinger equation (NLS):

$$
\begin{equation*}
\alpha_{2} \mathbf{q}_{t_{2}}=\mathbf{q} \mathbf{q}_{x x}+2\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right) \mathbf{q} \tag{17}
\end{equation*}
$$

Symmetry reductions of the KP-hierarchy

Now let us consider spatially two-dimesional generalizations of the operators L_{1}, M_{2} :

$$
\begin{gather*}
L_{1}=\partial_{y}-\mathbf{q} \mathcal{M}_{0} \mathcal{D}^{-1} \mathbf{q}^{*} \\
M_{2}=\alpha_{2} \partial_{t_{2}}-c_{1} \mathcal{D}^{2}-2 c_{1} S_{1}, \tag{18}
\end{gather*}
$$

where $\alpha_{2} \in i \mathbb{R}, S_{1}=S_{1}\left(x, y, t_{2}\right)=\bar{S}_{1}\left(x, y, t_{2}\right), c_{1} \in \mathbb{R}$ Lax equation $\left[L_{1}, M_{2}\right]=0$ is equivalent to Davey-Stewartson system DS-III:

$$
\left\{\begin{array}{l}
\alpha_{2} \mathbf{q}_{t_{2}}=c_{1} \mathbf{q}_{x x}-2 c_{1} S_{1} \mathbf{q} \tag{19}\\
S_{1 y}=\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x}
\end{array}\right.
$$

System (19) is spatially two-dimensional I-component generalization of NLS.

Symmetry reductions of the KP-hierarchy

2. $k=2, n=2$:
$L_{2}=D^{2}+2 u+\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{q}^{*}, M_{2}=\alpha_{2} \partial_{t_{2}}-D^{2}-2 u$, where $\mathcal{M}_{0}^{*}=-\mathcal{M}_{0}, u=\bar{u}, \alpha_{2} \in i \mathbf{R}$.
Operator equation $\left[L_{2}, M_{2}\right]=0$ is equivalent to Yajima-Oikawa system:

$$
\left\{\begin{array}{l}
\alpha_{2} \mathbf{q}_{t_{2}}=\mathbf{q}_{x x}+2 u \mathbf{q}, \tag{20}\\
\alpha_{2} u_{t_{2}}=\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x} .
\end{array}\right.
$$

Symmetry reductions of the KP-hierarchy

$(2+1)$-dimensional generalization of the operators L_{2}, M_{2} have a form:

$$
\begin{gathered}
L_{2}=i \partial_{y}-\mathcal{D}^{2}-2 u-\mathbf{q} \mathcal{M}_{0} \mathcal{D}^{-1} \mathbf{q}^{*} \\
M_{2}=\alpha_{2} \partial_{t_{2}}-\mathcal{D}^{2}-2 u,
\end{gathered}
$$

where $\alpha_{2} \in \mathbb{i} \mathbb{R}, \mathcal{M}_{0}=-\mathcal{M}_{0}^{*}, u=\bar{u}$.
Equation $\left[L_{2}, M_{2}\right]=0$ can be represented in the following way:

$$
\left\{\begin{array}{l}
\alpha_{2} u_{t_{2}}=i u_{y}+\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x} \tag{21}\\
\alpha_{2} \mathbf{q}_{t_{2}}=\mathbf{q} x x+2 u \mathbf{q} .
\end{array}\right.
$$

System (21) is I-component spatially two-dimensional generalization of the Yajima-Oikawa system.

Symmetry reductions of the KP-hierarchy

3. $k=2, n=3$:
$L_{2}=D^{2}+2 u+\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{q}^{*}$,
$M_{3}=\alpha_{3} \partial_{t_{3}}-D^{3}-3 u D-\frac{3}{2}\left(u_{x}+\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)$,
where $\mathcal{M}_{0}=-\mathcal{M}_{0}^{*}, u=\bar{u}, \alpha_{3} \in \mathbf{R}$.
Equation $\left[L_{2}, M_{3}\right]=0$ is equivalent to the system:

$$
\left\{\begin{array}{l}
\alpha_{3} \mathbf{q}_{t_{3}}=\mathbf{q}_{x x x}+3 u \mathbf{q}_{x}+\frac{3}{2} u_{x} \mathbf{q}+\frac{3}{2} \mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*} \mathbf{q}, \tag{22}\\
\alpha_{3} u_{t_{3}}=\frac{1}{4} u_{x x x}+3 u u_{x}+\frac{3}{4}\left(\mathbf{q}_{x} \mathcal{M}_{0} \mathbf{q}^{*}-\mathbf{q} \mathcal{M}_{0} \mathbf{q}_{x}^{*}\right)_{x}
\end{array}\right.
$$

Symmetry reductions of the KP-hierarchy

Spatially two-dimensional generalizations of L_{2} and M_{3} have the form:

$$
\begin{gather*}
L_{2}=i \partial_{y}-D^{2}-2 u-\mathbf{q} \mathcal{M}_{0} \mathcal{D}^{-1} \mathbf{q}^{*} \\
M_{3}=\alpha_{3} \partial_{t_{3}}-D^{3}-3 u D-\frac{3}{2}\left(u_{x}+i D^{-1}\left\{u_{y}\right\}+\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right) \tag{23}
\end{gather*}
$$

wher $\alpha_{3} \in \mathbb{R}, \mathcal{M}_{0}^{*}=-\mathcal{M}_{0}, \boldsymbol{u}=\bar{u}$. Equation $\left[L_{2}, M_{3}\right]=0$ is equivalent to the system:

$$
\left\{\begin{array}{l}
\alpha_{3} \mathbf{q}_{t_{3}}=\mathbf{q}_{x x x}+3 u \mathbf{q}_{x}+\frac{3}{2}\left(u_{x}+i D^{-1}\left\{u_{y}\right\}+\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right) \mathbf{q} \tag{24}\\
{\left[\alpha_{3} u_{t_{3}}-\frac{1}{4} u_{x x x}-3 u u_{x}+\frac{3}{4}\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}_{x}^{*}-\mathbf{q}_{x} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x}+\right.} \\
\left.\quad-\frac{3}{4} i\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{y}\right]_{x}=-\frac{3}{4} u_{y y} .
\end{array}\right.
$$

Equations (24) generalize Mel'nikov system.

Symmetry reductions of the KP-hierarchy

References

- V.K.Mel'nikov. On equations for wave interactions. Lett.Math.Phys. 7:2 (1983) 129-136.

Symmetry reductions of the KP-hierarchy

In other cases we will obtain:
4. Vector generalization of the modified Korteweg-de Vries equation $(k=1, n=3)$:

$$
\begin{equation*}
\alpha_{3} \mathbf{q}_{t_{3}}=\mathbf{q}_{x x x}+3\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right) \mathbf{q}_{x}+3\left(\mathbf{q}_{x} \mathcal{M}_{0} \mathbf{q}^{*}\right) \mathbf{q}, \mathcal{M}_{0}^{*}=\mathcal{M}_{0} \tag{25}
\end{equation*}
$$

5. Generalization of the Boussinesq equation $(k=3, n=2)$:

$$
\left\{\begin{array}{l}
3 \alpha_{2}^{2} u_{t_{2} t_{2}}=\left(-u_{x x}-6 u^{2}+4\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)\right)_{x x}, \mathcal{M}_{0}^{*}=\mathcal{M}_{0} \tag{26}\\
\alpha_{2} \mathbf{q}_{t_{2}}-\mathbf{q}_{x x}-2 u \mathbf{q}=0
\end{array}\right.
$$

6. Vector generalization of the Drinfeld-Sokolov system $(k=3, n=3)$:

$$
\left\{\begin{array}{l}
\alpha_{3} \mathbf{q}_{t_{3}}=\mathbf{q}_{x x x}+3 u \mathbf{q}_{x}+\frac{3}{2} u_{x} \mathbf{q}, \mathbf{q}=\overline{\mathbf{q}}, \mathcal{M}_{0}^{*}=\mathcal{M}_{0}, \tag{27}\\
\alpha_{3} u_{t_{3}}=\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{\top}\right)_{x},
\end{array}\right.
$$

Exact solutions of some nonlinear models from the KP-hierarchy

In this section we will consider the construction of exact solutions of the integrable systems from the KP-hierarchy. For this reason we will use invariant transformations for linear integro-differential operators from the previous section. Consider the integro-differential operator:

$$
\begin{equation*}
L:=\alpha \partial_{t}-\sum_{i=0}^{n} u_{i} \mathcal{D}^{i}+\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{r}^{\top}, \alpha \in i \mathbb{R} \cup \mathbb{R} \tag{28}
\end{equation*}
$$

with $(N \times N)$-matrix coefficients $u_{i}=u_{i}(x, t) ; \Lambda, \tilde{\Lambda}$ and \mathcal{M}_{0} are $(K \times K)$ and $(I \times I)$-matrices correspondingly; \mathbf{q}, \mathbf{r} are $(N \times I)$-matrices. Assume that $(N \times K)$-matrix functions φ, ψ satisfy linear problems: $L\{\varphi\}=\varphi \Lambda, L^{\tau}\{\psi\}=\psi \tilde{\Lambda}$.

Define the binary Darboux-type transformation (BT) as:

$$
\begin{equation*}
W=I-\varphi\left(C+D^{-1}\left\{\psi^{\top} \varphi\right\}\right)^{-1} D^{-1} \psi^{\top} \tag{29}
\end{equation*}
$$

The following theorem holds:

Theorem 1

Let functions f and g be $(N \times 1)$-solutions of the linear systems $L\{f\}=f \lambda, L^{\tau}\{g\}=g \tilde{\lambda}$.
Then, functions $F=W\{f\}, G=W^{-1, \tau}\{g\}$ satisfy equations $\hat{L}\{F\}=F \lambda, \hat{L}^{-1, \tau}\{G\}=G \tilde{\lambda}$
with the operator

$$
\begin{equation*}
\hat{L}=\alpha \partial_{t}-\sum_{i=0}^{n} \hat{u}_{i} \mathcal{D}^{i}+\hat{\mathbf{q}} \mathcal{M}_{0} D^{-1} \hat{\mathbf{r}}^{\top}+\Phi \mathcal{M} D^{-1} \Psi^{\top} \tag{30}
\end{equation*}
$$

where $\mathcal{M}=C \Lambda-\tilde{\Lambda}^{\top} C, \Phi=\varphi\left(C+D^{-1}\left\{\psi^{\top} \varphi\right\}\right)^{-1}$,
$\psi^{\top}=\left(C+D^{-1}\left\{\psi^{\top} \varphi\right\}\right)^{-1} \psi^{\top}, \hat{\mathbf{q}}=W\{\mathbf{q}\}, \hat{\mathbf{r}}=W^{-1, \tau}\{\mathbf{r}\}$.

Exact solutions of some nonlinear models from the KP-hierarchy

References

- Sydorenko Yu. Generalized Binary Darboux-like Theorem for Constrained Kadomtsev-Petviashvili (cKP) Flows // Proceedings of Institute of Mathematics of NAS of Ukraine. - 2004. - V. 50, Part 1. - P. 470-477.
- Sydorenko Yu., Chvartatskyi O. Binary transformations for spatially two-dimensional operators and Lax equations // Visn. Kyiv. Univ. Ser: mech.-mat. - 2009. - V . 22. p. 32-35

Exact solutions of some nonlinear models from the KP-hierarchy

Consider two possible realizations of the integration operator D^{-1} in BT (29):

$$
\begin{align*}
& W^{+}=I-\varphi\left(C+\int_{-\infty}^{X} \psi^{\top}(s) \varphi(s) d s\right)^{-1} \int_{-\infty}^{x} \psi^{\top}(s) \cdot d s, \tag{31}\\
& W^{-}=I-\varphi\left(C+\int_{-\infty}^{X} \psi^{\top}(s) \varphi(s) d s\right)^{-1} \int_{+\infty}^{x} \psi^{\top}(s) \cdot d s, \tag{32}
\end{align*}
$$

under assumption that the components of $(N \times K)$-matrix functions φ and ψ decrease rapidly at both infinities. A composition of operators $\left(W^{+}\right)^{-1}$ and W^{-}gives Fredholm operator:

$$
\begin{equation*}
S_{R}=\left(W^{+}\right)^{-1} W^{-}=I+\varphi C^{-1} \int_{-\infty}^{+\infty} \psi^{\top}(s) \cdot d s \tag{33}
\end{equation*}
$$

Exact solutions of some nonlinear models from the KP-hierarchy

Assume that integral part in L is equal to zero. Using the equalities $L\{\varphi\}=\varphi \Lambda, L^{\tau}\{\psi\}=\psi \tilde{\Lambda}$ we obtain that the commutator of S_{R} and L has the form:

$$
\left[L, S_{R}\right]=\varphi C^{-1} \mathcal{M} \int_{-\infty}^{+\infty} C^{-1} \psi^{\top}(s) \cdot d s, \mathcal{M}=C \Lambda-\tilde{\Lambda}^{\top} C
$$

Using W^{+}, W^{-}as the dressing operators for L we obtain that:

$$
\begin{gather*}
\hat{L}_{1}=W^{+} L\left(W^{+}\right)^{-1}=\left(\hat{L}_{1}\right)_{+}+\Phi \mathcal{M} \int_{-\infty}^{x} \Psi^{\top}(s) \cdot d s, \\
\hat{L}_{2}=W^{-} L\left(W^{-}\right)^{-1}=\left(\hat{L}_{2}\right)_{+}+\Phi \mathcal{M} \int_{+\infty}^{x} \Psi^{\top}(s) \cdot d s, \tag{34}\\
\left(\hat{L}_{1}\right)_{+}=\left(\hat{L}_{2}\right)_{+}
\end{gather*}
$$

Exact solutions of some nonlinear models from the KP-hierarchy

If we put $\Lambda=\tilde{\Lambda}=0$ and consider the differential operator L $\left(\mathcal{M}_{0}=0\right)$, then using transformations W^{+}or W^{-}we obtain the differential operator \hat{L}. In this case, $\left[L, S_{R}\right]=0$. Thus, we obtain dressing due to Zakharov-Shabat.

References

- V.E. Zakharov, A.B. Shabat. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl., 8(3), 226-235, 1974.

Exact solutions of some nonlinear models from the KP-hierarchy

Now we will consider realizations of integral transformation W (29) and construction of the solutions for integrable systems from the KP-hierarchy. At first we will consider the scalar NLS

$$
\begin{equation*}
i q_{t}=q_{x x}+2 \mu|q|^{2} q, \mu= \pm 1 \tag{35}
\end{equation*}
$$

and its vector generalization - Manakov system (I components):

$$
\begin{equation*}
i\left(q_{j}\right)_{t}=\left(q_{j}\right)_{x x}+2\left(\sum_{s=1}^{l} \mu_{s}|q|_{s}^{2}\right) q_{j}, \mu_{s}= \pm 1, j=\overline{1, l} \tag{36}
\end{equation*}
$$

Exact solutions of some nonlinear models from the KP-hierarchy

References

- S.V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38:2 (1974) 248-253.

Exact solutions of some nonlinear models from the KP-hierarchy

Proposition 1

Let function $\varphi:=\left(\varphi_{1}, \ldots, \varphi_{K}\right)$ be a fixed solution of the system:

$$
\left\{\begin{array}{l}
\varphi_{x}=\varphi \Lambda \tag{37}\\
i \varphi_{t}=\varphi_{x x}
\end{array}\right.
$$

where $\Lambda \in \operatorname{Mat}_{K \times K}(\mathbb{C})$.
Let $f:=\left(f_{1}, \ldots, f_{l}\right)$ be an arbitrary solution of the problem

$$
\begin{equation*}
i f_{t}=f_{x x} \tag{38}
\end{equation*}
$$

Then functions $F:=f-\varphi(C+\Omega[\bar{\varphi}, \varphi])^{-1} \Omega[\bar{\varphi}, f]$, $\Phi=\varphi(C+\Omega[\bar{\varphi}, \varphi])^{-1}$, where
$\Omega[\bar{\varphi}, \varphi]=\int_{\left(x_{0}, t_{0}\right)}^{(x, t)} \varphi^{*} \varphi d x+i\left(\varphi_{x}^{*} \varphi-\varphi^{*} \varphi_{x}\right) d t$,
$\Omega[\bar{\varphi}, f]=\int_{\left(x_{0}, t_{0}\right)}^{(x, t)} \varphi^{*} f d x+i\left(\varphi_{x}^{*} f-\varphi^{*} f_{x}\right) d t, C=C^{*} \in \operatorname{Mat}_{K \times K}(\mathbb{C})$
satisfy equations:

Exact solutions of some nonlinear models from the KP-hierarchy

$$
\begin{align*}
i F_{t} & =F_{x x}+2 \Phi \hat{\mathcal{M}} \Phi^{*} F \tag{39}\\
i \Phi_{t} & =\Phi_{x x}+2 \Phi \hat{\mathcal{M}} \Phi^{*} \Phi \tag{40}
\end{align*}
$$

where $\hat{\mathcal{M}}=C \wedge+\Lambda^{*} C-\left(\varphi^{*} \varphi\right)\left(x_{0}, t_{0}\right)$

Exact solutions of some nonlinear models from the KP-hierarchy

Using proposition 1, we can obtain K-soliton solution of NLS ($\mu=1$) of the following structure:

$$
q=\frac{\operatorname{det}\left(\begin{array}{cc}
\Delta_{2} & \overrightarrow{1} \\
\varphi & 0
\end{array}\right)}{\operatorname{det}\left(\Delta_{2}\right)}
$$

where $\varphi_{j}=\gamma_{j} e^{\lambda_{j} x+i \lambda_{j}^{2} t}, \gamma_{j}, \lambda_{j} \in \mathbb{C}, j=\overline{1, K} ; \overrightarrow{1}$ is a row-vector (K-components) consisting of 1 ,

$$
\Delta_{2}=\left(\frac{1}{\lambda_{s}+\bar{\lambda}_{j}}\left(\bar{\varphi}_{j} \varphi_{s}+1\right)\right)_{j, s=1}^{K}
$$

Animation 1 describes the behavior of 3 -soliton solution $(|q|$ and $\operatorname{Re}(q))$ with $\lambda_{1}=1.5+i, \lambda_{2}=1+2 i, \lambda_{3}=2.5+3.5 i$ and $\gamma_{1}=e, \gamma_{2}=e^{10}, \gamma_{3}=e^{5}$.

Exact solutions of some nonlinear models from the KP-hierarchy

We can also use Proposition 1 for obtaining other kinds of solutions (e.g. bound states) for NLS and constructing solutions of vector generalization of NLS.
Animation 2 describes the behavior of NLS solution, consisting of 1 bound state and 1 soliton.
Animation 3 represents the absolute value of the solution $\left(\lambda_{1}=2-3 i, \lambda_{2}=1+2 i, \gamma_{1}=e^{100}, \gamma_{2}=e^{10}\right)$ for 2-component NLS generalization of the form:

$$
\begin{equation*}
i\left(q_{j}\right)_{t}=\left(q_{j}\right)_{x x}+2\left(\left|q_{1}\right|^{2}-\left|q_{2}\right|^{2}\right) q_{j}, j=1,2 \tag{41}
\end{equation*}
$$

Exact solutions of some nonlinear models from the KP-hierarchy

Similar types of solutions for other integrable systems of the KP-hierarchy can also be constructed. In particular, one of bound-state solutions of the Yajima-Oikawa system

$$
\left\{\begin{array}{l}
i q_{t_{2}}=q_{x x}+2 u q . \tag{42}\\
i u_{t_{2}}=\left(\mu|q|^{2}\right)_{x} ;
\end{array}\right.
$$

in case $\mu=-i$ is presented on animation $4\left(\lambda=3+i, \gamma=e^{5}\right)$. Animation 5 describes the behavior of 2-soliton solution of Drinfeld-Sokolov system:

$$
\left\{\begin{array}{l}
q_{t_{3}}=q_{x x x}+3 u q_{x}+\frac{3}{2} u_{x} q \tag{43}\\
u_{t_{3}}=\left(q^{2}\right)_{x}
\end{array}\right.
$$

Exact solutions of some nonlinear models from the KP-hierarchy

References

- Sydorenko Yu., Chvartatskyi O. Integration of scalar Kadomtsev-Petviashvili kierarchy by the method of integral Darboux-like transformations // Visn. Lviv. Univ. Ser: mech.-mat. - 2011. - V . 75. p. 181-225

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Consider the generalizations of operators L_{1}, M_{2} (18):

$$
\begin{gather*}
L_{1}=\partial_{y}-\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{q}^{*} \\
M_{2}=\alpha_{2} \partial_{t_{2}}-c_{1} D^{2}-c_{2} \partial_{y}^{2}+2 c_{1} S_{1}+2 c_{2} \mathbf{q} \mathcal{M}_{0} D^{-1} \partial_{y} \mathbf{q}^{*} \tag{44}
\end{gather*}
$$

where $c_{1}, c_{2} \in \mathbb{R}, \alpha_{2} \in i \mathbb{R}, \mathbf{q}=\mathbf{q}(x, y, t)$ and
$S_{1}=S_{1}(x, y, t)=S_{1}^{*}(x, y, t)$ are matrix functions with dimensions $N \times I$ and $N \times N$ respectively; $\mathcal{M}_{0}=\mathcal{M}_{0}^{*}$ is a constant $(I \times I)$-dimensional matrix.
Lax equation $\left[L_{1}, M_{2}\right]=0$ is equivalent to the system:

$$
\left\{\begin{array}{c}
\alpha_{2} \mathbf{q}_{t_{2}}=c_{1} \mathbf{q}_{x x}+c_{2} \mathbf{q}_{y y}-2 c_{1} S_{1} \mathbf{q}-2 c_{2} \mathbf{q} \mathcal{M}_{0} S_{2} \tag{45}\\
S_{1 y}=\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x}, S_{2 x}=\left(\mathbf{q}^{*} \mathbf{q}\right)_{y}
\end{array}\right.
$$

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

In scalar case $(N=1, I=1)$, by taking $S=c_{1} S_{1}+c_{2} S_{2}$,
$\mu:=\mathcal{M}_{0}=1$, we obtain the following differential consequence from (45):

$$
\left\{\begin{array}{c}
\alpha_{2} q_{t_{2}}=c_{1} q_{x x}+c_{2} q_{y y}-2 S q \tag{46}\\
S_{x y}=c_{1}|q|_{x x}^{2}+c_{2}|q|_{y y}^{2}
\end{array}\right.
$$

If $c_{1}=-c_{2}=c \in \mathbb{R}$ we obtain Davey-Stewartson system (DS-I) from (46).

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Consider the following pair of operators:

$$
\begin{gather*}
L_{1}=\partial_{\bar{z}}-\mathbf{q} D_{z}^{-1} \overline{\mathbf{q}} \\
M_{2}=\alpha_{2} \partial_{t_{2}}-c D_{z z}^{2}+c \partial_{\bar{z} \bar{z}}^{2}+2 c S_{1}-2 c \mathbf{q} D_{z}^{-1} \overline{\mathbf{q}}_{\bar{z}}-2 c \mathbf{q} D_{z}^{-1} \overline{\mathbf{q}} \partial_{\bar{z}} \tag{47}
\end{gather*}
$$

where $\alpha_{2}, \boldsymbol{c} \in \mathbb{i}$;
\mathbf{q} and S_{1} are $(N \times N)$-matrices, $z=x+i y$. Lax equation
$\left[L_{1}, M_{2}\right]=0$ is equivalent to the system:

$$
\left\{\begin{array}{c}
\alpha_{2} \mathbf{q}_{t_{2}}=-i c \mathbf{q}_{x y}-2 c S_{1} \mathbf{q}+2 c \mathbf{q} \bar{S}_{1} \tag{48}\\
S_{1 x}+i S_{1 y}=(\mathbf{q} \overline{\mathbf{q}})_{x}-i(\mathbf{q} \overline{\mathbf{q}})_{y}
\end{array}\right.
$$

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

In scalar case $(N=1)$ we obtain the following differential consequence from system (48):

$$
\left\{\begin{array}{c}
\alpha_{2} q_{t_{2}}=-i c q_{x y}-4 i c \tilde{S} q, \\
\tilde{S}_{x x}+\tilde{S}_{y y}=-4|q|_{x y}^{2} . \tag{49}
\end{array}\right.
$$

System (49) is Davey-Stewartson system (DS-II).

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

References

- Athorne C., Fordy A.P., Integrable equations in $(2+1)$-dimensions associated with symmetric and homogeneous spaces, J. Math. Phys. 28 (1987) 2018-2024
- Sydorenko Yu.M. Binary transformations and $(2+$ 1)-dimensional integrable systems // Ukr. Math. journ. 2002. - V. 54, №11. - p. 1859-1884.

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Consider the following pair of operators:

$$
\begin{equation*}
L_{1}=\partial_{y}-\mathbf{q} \mathcal{M}_{0} D^{-1} \mathbf{r}^{\top} D \tag{50}
\end{equation*}
$$

$$
M_{2}=\alpha_{2} \partial_{t_{2}}-c_{1} D^{2}-c_{2} \partial_{y}^{2}+2 c_{1} S_{1} D+2 c_{2} \mathbf{q} \mathcal{M}_{0} D^{-1} \partial_{y} \mathbf{r}^{\top} D
$$

where $\mathbf{q}=\mathbf{q}\left(x, y, t_{2}\right), \mathbf{r}=\mathbf{r}\left(x, y, t_{2}\right)$ and $S_{1}=S_{1}\left(x, y, t_{2}\right)$ are matrix functions with dimensions $(N \times M)$ and $(N \times N)$ respectively; \mathcal{M}_{0} is a constant $(M \times M)$-dimensional matrix. Equation $\left[L_{1}, M_{2}\right]=0$ is equivalent to the following system:

$$
\left\{\begin{array}{c}
\alpha_{2} \mathbf{q}_{t_{2}}-c_{1} \mathbf{q}_{x x}-c_{2} \mathbf{q}_{y y}+2 c_{1} S_{1} \mathbf{q}_{x}-2 c_{2} \mathbf{q} \mathcal{M}_{0} S_{2}+ \\
\quad+2 c_{2} \mathbf{q} \mathcal{M}_{0}\left(\mathbf{r}^{\top} \mathbf{q}\right)_{y}=0, \\
\alpha_{2} \mathbf{r}_{t_{2}}^{\top}+c_{1} \mathbf{r}_{x x}^{\top}+c_{2} \mathbf{r}_{y y}^{\top}+2 c_{1} \mathbf{r}_{x}^{\top} S_{1}+2 c_{2} S_{2} \mathcal{M}_{0} \mathbf{r}^{\top}=0 \tag{52}\\
S_{1 y}=\left(\mathbf{q} \mathcal{M}_{0} \mathbf{r}^{\top}\right)_{x}+\left[\mathbf{q} \mathcal{M}_{0} \mathbf{r}^{\top}, S_{1}\right], S_{2 x}=\left(\mathbf{r}_{x}^{\top} \mathbf{q}\right)_{y}
\end{array}\right.
$$

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations
a). Under additional conditions $\alpha_{2} \in \mathbb{R}, c_{1}, c_{2} \in \mathbb{R}$, $\mathcal{M}_{0}=-\mathcal{M}_{0}^{*}, \mathbf{r}^{\top}=\mathbf{q}^{*}, S_{1}=S_{1}^{*}$ operators L_{1} (50) and M_{2} (51) are D-skew-Hermitian ($L_{1}^{*}=-D L_{1} D^{-1}$) and D-Hermitian $\left(M_{2}^{*}=D M_{2} D^{-1}\right)$. System (52) has a form:

$$
\left\{\begin{align*}
\alpha_{2} \mathbf{q}_{t_{2}} & -c_{1} \mathbf{q}_{x x}-c_{2} \mathbf{q}_{y y}+2 c_{1} S_{1} \mathbf{q}_{x}+2 c_{2} \mathbf{q} \mathcal{M}_{0} S_{2}=0 \tag{53}\\
S_{1 y} & =\left(\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}\right)_{x}+\left[\mathbf{q} \mathcal{M}_{0} \mathbf{q}^{*}, S_{1}\right], \quad S_{2 x}=\left(\mathbf{q}^{*} \mathbf{q}_{x}\right)_{y}
\end{align*}\right.
$$

Consider a scalar case of equation (53) ($N=1, M=1$) and take $c_{2}=0, y=x, \mu:=\mathcal{M}_{0}$. Then we obtain Chen-Lee-Liu equation (DNLS-II) from (53):

$$
\begin{equation*}
\alpha_{2} q_{t_{2}}-c_{1} q_{x x}+2 c_{1} \mu|q|^{2} q_{x}=0 \tag{54}
\end{equation*}
$$ Chen-Lee-Liu equations

References

- H.H.Chen, Y.C.Lee, C.S.Liu. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Physica Scr. 20 (1979) 490-492.
- D.J.Kaup, A.C.Newell. An exact solution for a derivative nonlinear Schrodinger equation. J.Math. Phys. 19:4 (1978) 798-801.
- V. S. Gerdjikov, M. I. Ivanov. The quadratic bundle of general form and the nonlinear evolution equations. II. Hierarchies of Hamiltonian structures, Bulgarian J. Phys., v.10, N.2, 130-143, (1983)

Integro-differential Lax representations for Davey-Stewartson and

 Chen-Lee-Liu equationsb). We will put $\mathcal{M}_{0} \mathbf{r}^{\top}\left(x, y, t_{2}\right)=\nu$, where ν is
$(M \times N)$-dimensional constant matrix. After the change $u:=\mathbf{q} \nu$ system (52) takes the form:

$$
\left\{\begin{array}{c}
\alpha_{2} u_{t_{2}}-c_{1} u_{x x}-c_{2} u_{y y}+2 c_{1} S_{1} u_{x}+2 c_{2} u u_{y}=0 \tag{55}\\
s_{1 y}=u_{x}+\left[u, S_{1}\right]
\end{array}\right.
$$

System (55) is (2+1)-dimensional matrix generalization of
Burgers equation. It can be generalized onto ($n+1$)-dimensional case:

$$
\left\{\begin{array}{c}
\alpha_{2} u_{t_{2}}=\Delta u-2 S \nabla u \tag{56}\\
\frac{\partial S_{i}}{\partial x_{1}}=\frac{\partial u}{\partial x_{i}}+\left[u, S_{1}\right], i=\overline{1, n}
\end{array}\right.
$$

where $\mathbf{S}=\left(S_{1}, \ldots S_{n}\right), \Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, \nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Proposition

Let $T:=T\left(x, y, t_{2}\right)$ be $((N \times N))$-matrix function that satisfies equation:

$$
\begin{equation*}
\alpha_{2} T_{t_{2}}=c_{1} T_{x x}+c_{2} T_{y y} \tag{57}
\end{equation*}
$$

Then $(N \times N)$-matrix functions

$$
\begin{equation*}
u:=-T^{-1} T_{y}, S_{1}=-T^{-1} T_{x} \tag{58}
\end{equation*}
$$

satisfy system (55).

Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Remark

It can be checked that functions u, S_{1} defined by formula (58) satisfy another version of $(2+1)$-dimensional generalization of matrix Burgers equation:

$$
\left\{\begin{array}{c}
\alpha_{2} u_{t_{2}}-c_{1} u_{x x}-c_{2} u_{y y}+2 c_{1} S_{1} u_{x}+2 c_{2} u u_{y}=0, \\
\alpha_{2} S_{1 t_{2}}-c_{1} S_{1 x x}-c_{2} S_{1 y y}+2 c_{1} S_{1} S_{1 x}+2 c_{2} u S_{1 y}=0 \tag{59}
\end{array}\right.
$$

It is also constructed the integro-differential representation for the equation:

$$
\begin{gather*}
\alpha_{3} q_{t_{3}}+c_{1} q_{x x x}-c_{2} q_{y y y}-3 c_{1} \mu q_{x} \int|q|_{x}^{2} d y+ \\
3 c_{2} \mu q_{y} \int|q|_{y}^{2} d x+3 c_{2} \mu q \int\left(\bar{q} q_{y}\right)_{y} d x-3 c_{1} \mu q \int\left(q_{x} q\right)_{x} d y=0 \tag{60}
\end{gather*}
$$

where $\alpha_{3}, \mu, c_{1}, c_{2} \in \mathbb{R}$, which can be reduced to the mKdV equation:

$$
\begin{equation*}
\alpha_{3} q_{t_{3}}+q_{x x x}-6 \mu q^{2} q_{x}=0 \tag{61}
\end{equation*}
$$

Lax integro-differential representation was also constructed for the following system:

$$
\begin{gather*}
\alpha_{3} q_{t_{3}}+c_{1} q_{x x x}-c_{2} q_{y y y}-3 c_{1} v_{1} q_{x x}-3 c_{1} v_{3} q_{x}+3 \mu c_{2} q_{y} D^{-1}\left\{\bar{q} q_{x}\right\}_{y}+ \\
+3 c_{2} \mu q D^{-1}\left\{\bar{q} q_{x y}\right\}_{y}-3 c_{2} \mu^{2} q D^{-1}\left\{|q|^{2} \bar{q} q_{x}\right\}_{y}=0 \\
v_{1 y}=\mu\left(|q|^{2}\right)_{x} \\
v_{3 y}=\mu\left(q_{x} \bar{q}\right)_{x}-2 \mu v_{1}\left(|q|^{2}\right)_{x} \tag{62}
\end{gather*}
$$

where $\alpha_{3}, c_{1}, c_{2} \in \mathbb{R}, \mu \in \mathbb{R}, v_{1}=v_{1}^{*}, v_{3}+v_{3}^{*}=v_{1 x}$, which reduces to the higher Chen-Lee-Liu equation ($c_{1}=1, c_{2}=0$):

$$
\alpha_{3} q_{t_{3}}+q_{x x x}-3 \mu|q|^{2} q_{x x}-3 \mu \bar{q} q_{x}^{2}+3 \mu^{2}|q|^{4} q_{x}=0
$$

Thank you for your attention!

