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Introduction

We consider linear space ζ of micro-differential operators over
the field С of the following form:

L ∈ ζ =


n(L)∑

i=−∞
aiDi : n(L) ∈ Z

 , (1)

where coefficients ai are functions dependent on spatial variable
x = t1 and evolution parameters t2, t3 . . . . Coefficients ai(t),
t = (t1, t2, . . .), are supposed to be smooth functions of vector
variable t that has a finite number of elements that belong to
some functional space A. This space is a differential algebra
under arithmetic operations. An operator of differentiation is
denoted in the following way: D := ∂

∂x .



Introduction Symmetry reductions of the KP–hierarchy Exact solutions of some nonlinear models from the KP-hierarchy Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Introduction

Addition and multiplication of operators by scalars (elements of
the field C) are introduced in the following way:

λ1L1 ± λ2L2 =

N1∑
i=−∞

λ1a1iDi ±
N2∑

i=−∞
λ2a2iDi =

max<N1,N2>∑
i=−∞

(λ1a1i ± λ2a2i)Di , λ1, λ2 ∈ C.

The structure of Lie algebra on a linear space ζ (1) is defined by
the commutator [·, ·] : ζ × ζ → ζ , [L1,L2] = L1L2 − L2L1, where
the composition of micro-differential operators L1 and L2 is
induced by general Leibniz rule:
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Introduction

Dnf :=
∞∑

j=0

(
n
j

)
f (j)Dn−j , (2)

n ∈ Z, f ∈ A ⊂ ζ, f (j) := ∂ j f
∂x j ∈ A ⊂ ζ, DnDm = DmDn = Dn+m,

n,m ∈ Z, where
(n

0

)
:= 1,

(
n
j

)
:= n(n−1)...(n−j+1)

j! .
Formula (2) defines the composition of the operator Dn ∈ ζ and
the operator of multiplication by function f ∈ A ⊂ ζ in
contradistinction to the denotation Dk{f} := ∂k f

∂xk ∈ A, k ∈ Z+.
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Introduction

Consider a microdifferential Lax operator:

L := WDW−1 = D +
∞∑

i=1

UiD−i , (3)

which is parametrized by the infinite number of dynamic
variablesUi = Ui(t1, t2, t3, ...), i ∈ N, which depend on an
arbitrary (finite) number of independent variables t1 := x , t2, t3,
... All dynamic variables Ui can be expressed in terms of
functional coefficients of formal dressing Zakharov-Shabat
operator:

W = I +
∞∑

i=1

wiD−i , (4)

The inverse of formal operator W has the form:

W−1 = I +
∞∑

i=1

aiD−i . (5)
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Introduction

In scalar case, Kadomtsev -Petviashvili hierarchy is a commuting
family of evolution Lax equations for the operator L (3)

αiLti = [Bi ,L] := BiL− LBi , (6)

where αi ∈ C, i ∈ N, the operator Bi := (Li)+ is a differential
part of the i-th power of microdifferential symbol L.
By symbol Lti we will denote the following operator:

Lti := (WDW−1)ti =
∞∑

j=1

(Uj)ti D
−j . (7)

Formally transposed and conjugated operators Lτ , L∗ have the
form:
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Introduction

Lτ := −D +
∞∑

j=1

(−1)jD−jUj ,L∗ := L̄τ . (8)

Zakharov-Shabat equations are consequences of the
commutativity of two arbitrary flows in (6) with i = m and i = n

Ltmtn = Ltntm ⇒

⇒ [αn∂tn−Bn, αm∂tm−Bm] = αmBntm−αnBmtn+[Bn,Bm] = 0. (9)
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Symmetry reductions of the KP–hierarchy

Consider a symmetry reduction of the KP-hierarchy, which is a
generalization of the Gelfand-Dickey k-reduction:

(Lk )− := (Lk )<0 = qM0D−1r> =

=

∫ x
q(x , t2, t3, . . .)M0r>(s, t2, t3, . . .) · ds, (10)

where Matl×l(C) 3M0 is a constant matrix, and functions
q = (q1, ...,ql), r = (r1, ..., rl) are fixed solutions of the following
system of differential equations:{

αnqtn = Bn{q},
αnrtn = −Bτ

n{r},
(11)

where n ∈ N.
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Symmetry reductions of the KP–hierarchy

Reduced flows (6), (10), (11) admit Lax representation

[Lk ,Mn] = 0, Lk = Bk + qM0D−1r>, Mn = αn∂tn − Bn. (12)

Equation (12) is equivalent to the (1 + 1)-dimensional integrable
systems for functional coefficients Ui , i = 1, k − 1 and functions
q, r: {

Uitn = Pin[U1,U2, ...,Uk−1,q, r],
qtn = Bn[Ui ,q, r]{q}, rtn = −Bτ

n [Ui ,q, r]{r}, (13)

where i = 1, k − 1, Pin and Bn are differential polynomials with
respect to dynamic variables that are indicated in square
brackets.
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Symmetry reductions of the KP–hierarchy

(2+1)-dimensional generalizations of Lax representations (12)
have the form:

[Lk ,Mn] = 0, (14)

where Lk is (2+1)-dimensional integro-differential operator:

Lk = α∂y − Bk − qM0D−1r>, (15)

and Mn in (14) is evolutional differential operator of n-th order
with respect to spatial variable x :

Mn = αn∂tn −
n∑

j=1

vjDj (16)
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Consider examples of equations (12)-(13) and their
generalizations (14)-(16) for some k and n:
1. k = 1,n = 2 :
L1 = D + qM0D−1q∗,M2 = α2∂t2 − D2 − 2qM0q∗,
where α2 ∈ iR,M∗0 =M0.
Equation [L1,M2] = 0 is equivalent to nonlinear Schrodinger
equation (NLS):

α2qt2 = qxx + 2 (qM0q∗) q. (17)
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Symmetry reductions of the KP–hierarchy

Now let us consider spatially two-dimesional generalizations of
the operators L1, M2:

L1 = ∂y − qM0D−1q∗,
M2 = α2∂t2 − c1D2 − 2c1S1,

(18)

where α2 ∈ iR, S1 = S1(x , y , t2) = S̄1(x , y , t2),c1 ∈ R
Lax equation [L1,M2] = 0 is equivalent to Davey-Stewartson
system DS-III: {

α2qt2 = c1qxx − 2c1S1q
S1y = (qM0q∗)x

(19)

System (19) is spatially two-dimensional l–component
generalization of NLS.
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Symmetry reductions of the KP–hierarchy

2. k = 2,n = 2 :
L2 = D2 + 2u + qM0D−1q∗, M2 = α2∂t2 − D2 − 2u,
whereM∗0 = −M0, u = ū, α2 ∈ iR.
Operator equation [L2,M2] = 0 is equivalent to Yajima-Oikawa
system: {

α2qt2 = qxx + 2uq,
α2ut2 = (qM0q∗)x .

(20)
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Symmetry reductions of the KP–hierarchy

(2+1)-dimensional generalization of the operators L2, M2 have a
form:

L2 = i∂y −D2 − 2u − qM0D−1q∗,

M2 = α2∂t2 −D
2 − 2u,

where α2 ∈ iR,M0 = −M∗0, u = ū.
Equation [L2,M2] = 0 can be represented in the following way:{

α2ut2 = iuy + (qM0q∗)x
α2qt2 = qxx + 2uq. (21)

System (21) is l–component spatially two-dimensional
generalization of the Yajima-Oikawa system.
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3. k = 2,n = 3 :
L2 = D2 + 2u + qM0D−1q∗,
M3 = α3∂t3 − D3 − 3uD − 3

2(ux + qM0q∗),
whereM0 = −M∗0, u = ū, α3 ∈ R.
Equation [L2,M3] = 0 is equivalent to the system:{

α3qt3 = qxxx + 3uqx + 3
2uxq + 3

2qM0q∗q,
α3ut3 = 1

4uxxx + 3uux + 3
4 (qxM0q∗ − qM0q∗x )x .

(22)
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Spatially two-dimensional generalizations of L2 and M3 have the
form:

L2 = i∂y − D2 − 2u − qM0D−1q∗,
M3 = α3∂t3 − D3 − 3uD − 3

2

(
ux + iD−1{uy}+ qM0q∗

)
,
(23)

wher α3 ∈ R,M∗0 = −M0, u = ū. Equation [L2,M3] = 0 is
equivalent to the system:


α3qt3 = qxxx + 3uqx + 3

2

(
ux + iD−1{uy}+ qM0q∗

)
q,[

α3ut3 −
1
4uxxx − 3uux + 3

4 (qM0q∗x − qxM0q∗)x +

−3
4 i (qM0q∗)y

]
x

= −3
4uyy .

(24)
Equations (24) generalize Mel’nikov system.
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In other cases we will obtain:
4. Vector generalization of the modified Korteweg-de Vries
equation (k = 1,n = 3):

α3qt3 = qxxx +3 (qM0q∗) qx +3 (qxM0q∗) q, M∗0 =M0. (25)

5. Generalization of the Boussinesq equation (k = 3,n = 2):

{
3α2

2ut2t2 = (−uxx − 6u2 + 4(qM0q∗))xx , M∗0 =M0,
α2qt2 − qxx − 2uq = 0,

(26)

6. Vector generalization of the Drinfeld-Sokolov system
(k = 3,n = 3):

{
α3qt3 = qxxx + 3uqx + 3

2uxq, q = q̄, M∗0 =M0,
α3ut3 = (qM0q>)x ,

(27)
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Exact solutions of some nonlinear models from the KP-hierarchy

In this section we will consider the construction of exact
solutions of the integrable systems from the KP-hierarchy. For
this reason we will use invariant transformations for linear
integro-differential operators from the previous section. Consider
the integro-differential operator:

L := α∂t −
n∑

i=0

uiDi + qM0D−1r>, α ∈ iR ∪ R (28)

with (N × N)-matrix coefficients ui = ui(x , t); Λ, Λ̃ andM0 are
(K × K ) and (l × l)-matrices correspondingly; q, r are
(N × l)-matrices. Assume that (N × K )-matrix functions ϕ, ψ
satisfy linear problems: L{ϕ} = ϕΛ, Lτ{ψ} = ψΛ̃.
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Define the binary Darboux-type transformation (BT) as:

W = I − ϕ
(

C + D−1{ψ>ϕ}
)−1

D−1ψ> (29)

The following theorem holds:

Theorem 1
Let functions f and g be (N × 1)-solutions of the linear systems
L{f} = fλ, Lτ{g} = gλ̃.
Then, functions F = W{f}, G = W−1,τ{g} satisfy equations
L̂{F} = Fλ, L̂−1,τ{G} = Gλ̃
with the operator

L̂ = α∂t −
n∑

i=0

ûiDi + q̂M0D−1r̂> + ΦMD−1Ψ>, (30)

whereM = CΛ− Λ̃>C, Φ = ϕ
(
C + D−1{ψ>ϕ}

)−1,
Ψ> =

(
C + D−1{ψ>ϕ}

)−1
ψ>, q̂ = W{q}, r̂ = W−1,τ{r}.
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Consider two possible realizations of the integration operator
D−1 in BT (29):

W + = I − ϕ
(

C +

∫ x

−∞
ψ>(s)ϕ(s)ds

)−1 ∫ x

−∞
ψ>(s) · ds, (31)

W− = I − ϕ
(

C +

∫ x

−∞
ψ>(s)ϕ(s)ds

)−1 ∫ x

+∞
ψ>(s) · ds, (32)

under assumption that the components of (N × K )-matrix
functions ϕ and ψ decrease rapidly at both infinities. A
composition of operators (W +)−1 and W− gives Fredholm
operator:

SR = (W +)−1W− = I + ϕC−1
∫ +∞

−∞
ψ>(s) · ds. (33)
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Assume that integral part in L is equal to zero. Using the
equalities L{ϕ} = ϕΛ, Lτ{ψ} = ψΛ̃ we obtain that the
commutator of SR and L has the form:

[L,SR] = ϕC−1M
∫ +∞

−∞
C−1ψ>(s) · ds,M = CΛ− Λ̃>C

Using W +, W− as the dressing operators for L we obtain that:

L̂1 = W +L(W +)−1 = (L̂1)+ + ΦM
∫ x
−∞Ψ>(s) · ds,

L̂2 = W−L(W−)−1 = (L̂2)+ + ΦM
∫ x

+∞Ψ>(s) · ds,
(L̂1)+ = (L̂2)+

(34)
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If we put Λ = Λ̃ = 0 and consider the differential operator L
(M0 = 0), then using transformations W + or W− we obtain
the differential operator L̂. In this case, [L,SR] = 0. Thus, we
obtain dressing due to Zakharov-Shabat.
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Now we will consider realizations of integral transformation W
(29) and construction of the solutions for integrable systems
from the KP-hierarchy. At first we will consider the scalar NLS

iqt = qxx + 2µ|q|2q, µ = ±1, (35)

and its vector generalization – Manakov system (l components):

i(qj)t = (qj)xx + 2

(
l∑

s=1

µs|q|2s

)
qj , µs = ±1, j = 1, l . (36)
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Proposition 1
Let function ϕ := (ϕ1, . . . , ϕK ) be a fixed solution of the system:{

ϕx = ϕΛ,
iϕt = ϕxx ,

(37)

where Λ ∈ MatK×K (C).
Let f := (f1, . . . , fl) be an arbitrary solution of the problem

ift = fxx . (38)

Then functions F := f − ϕ(C + Ω[ϕ̄, ϕ])−1Ω[ϕ̄, f ],
Φ = ϕ(C + Ω[ϕ̄, ϕ])−1, where
Ω[ϕ̄, ϕ] =

∫ (x ,t)
(x0,t0) ϕ

∗ϕdx + i(ϕ∗xϕ− ϕ∗ϕx )dt ,

Ω[ϕ̄, f ] =
∫ (x ,t)

(x0,t0) ϕ
∗fdx + i(ϕ∗x f − ϕ∗fx )dt , C = C∗ ∈ MatK×K (C)

satisfy equations:
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iFt = Fxx + 2ΦM̂Φ∗F , (39)

iΦt = Φxx + 2ΦM̂Φ∗Φ, (40)

where M̂ = CΛ + Λ∗C − (ϕ∗ϕ)(x0, t0)
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Using proposition 1, we can obtain K-soliton solution of NLS
(µ = 1) of the following structure:

q =

det

(
∆2

−→
1

ϕ 0

)
det(∆2)

,

where ϕj = γje
λj x+iλ2

j t , γj , λj ∈ C, j = 1,K ;
−→
1 is a row-vector

(K -components) consisting of 1,

∆2 =

(
1

λs + λ̄j
(ϕ̄jϕs + 1)

)K

j,s=1

Animation 1 describes the behavior of 3-soliton solution (|q| and
Re(q) ) with λ1 = 1.5 + i , λ2 = 1 + 2i , λ3 = 2.5 + 3.5i and
γ1 = e, γ2 = e10, γ3 = e5.
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Exact solutions of some nonlinear models from the KP-hierarchy

We can also use Proposition 1 for obtaining other kinds of
solutions (e.g. bound states) for NLS and constructing solutions
of vector generalization of NLS.
Animation 2 describes the behavior of NLS solution, consisting
of 1 bound state and 1 soliton.
Animation 3 represents the absolute value of the solution
(λ1 = 2− 3i , λ2 = 1 + 2i , γ1 = e100, γ2 = e10) for 2-component
NLS generalization of the form:

i(qj)t = (qj)xx + 2
(
|q1|2 − |q2|2

)
qj , j = 1,2 (41)
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Exact solutions of some nonlinear models from the KP-hierarchy

Similar types of solutions for other integrable systems of the
KP-hierarchy can also be constructed. In particular, one of
bound-state solutions of the Yajima-Oikawa system{

iqt2 = qxx + 2uq.
iut2 = (µ|q|2)x ;

(42)

in case µ = −i is presented on animation 4 (λ = 3 + i , γ = e5).
Animation 5 describes the behavior of 2-soliton solution of
Drinfeld-Sokolov system:{

qt3 = qxxx + 3uqx + 3
2uxq,

ut3 = (q2)x .
(43)
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Integro-differential Lax representations for Davey-Stewartson and
Chen-Lee-Liu equations

Consider the generalizations of operators L1, M2 (18):

L1 = ∂y − qM0D−1q∗,

M2 = α2∂t2 − c1D2 − c2∂
2
y + 2c1S1 + 2c2qM0D−1∂yq∗, (44)

where c1, c2 ∈ R, α2 ∈ iR, q = q(x , y , t) and
S1 = S1(x , y , t) = S∗1(x , y , t) are matrix functions with
dimensions N × l and N × N respectively;M0 =M∗0 is a
constant (l × l)-dimensional matrix.
Lax equation [L1,M2] = 0 is equivalent to the system:{

α2qt2 = c1qxx + c2qyy − 2c1S1q− 2c2qM0S2,
S1y = (qM0q∗)x , S2x = (q∗q)y .

(45)
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In scalar case (N = 1, l = 1), by taking S = c1S1 + c2S2,
µ :=M0 = 1, we obtain the following differential consequence
from (45): {

α2qt2 = c1qxx + c2qyy − 2Sq,
Sxy = c1|q|2xx + c2|q|2yy .

(46)

If c1 = −c2 = c ∈ R we obtain Davey-Stewartson system (DS-I)
from (46).
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Consider the following pair of operators:

L1 = ∂z̄ − qD−1
z q̄,

M2 = α2∂t2−cD2
zz +c∂2

z̄z̄ +2cS1−2cqD−1
z q̄z̄−2cqD−1

z q̄∂z̄ , (47)

where α2, c ∈ iR;
q and S1 are (N × N)-matrices, z = x + iy . Lax equation
[L1,M2] = 0 is equivalent to the system:{

α2qt2 = −icqxy − 2cS1q + 2cqS̄1,
S1x + iS1y = (qq̄)x − i(qq̄)y .

(48)
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In scalar case (N = 1) we obtain the following differential
consequence from system (48):{

α2qt2 = −icqxy − 4icS̃q,
S̃xx + S̃yy = −4|q|2xy .

(49)

System (49) is Davey-Stewartson system (DS-II).
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Consider the following pair of operators:

L1 = ∂y − qM0D−1r>D, (50)

M2 = α2∂t2−c1D2−c2∂
2
y + 2c1S1D + 2c2qM0D−1∂y r>D, (51)

where q = q(x , y , t2), r = r(x , y , t2) and S1 = S1(x , y , t2) are
matrix functions with dimensions (N ×M) and (N × N)
respectively;M0 is a constant (M ×M)-dimensional matrix.
Equation [L1,M2] = 0 is equivalent to the following system:


α2qt2 − c1qxx − c2qyy + 2c1S1qx − 2c2qM0S2+

+2c2qM0(r>q)y = 0,
α2r>t2 + c1r>xx + c2r>yy + 2c1r>x S1 + 2c2S2M0r> = 0,

S1y = (qM0r>)x + [qM0r>,S1], S2x = (r>x q)y .

(52)
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a). Under additional conditions α2 ∈ iR, c1, c2 ∈ R,
M0 = −M∗0, r> = q∗, S1 = S∗1 operators L1 (50) and M2 (51)
are D-skew-Hermitian (L∗1 = −DL1D−1) and D-Hermitian
(M∗2 = DM2D−1). System (52) has a form:{

α2qt2 − c1qxx − c2qyy + 2c1S1qx + 2c2qM0S2 = 0,
S1y = (qM0q∗)x + [qM0q∗,S1], S2x = (q∗qx )y .

(53)

Consider a scalar case of equation (53) (N = 1,M = 1) and take
c2 = 0, y = x , µ :=M0. Then we obtain Chen-Lee-Liu equation
(DNLS-II) from (53):

α2qt2 − c1qxx + 2c1µ|q|2qx = 0. (54)



Introduction Symmetry reductions of the KP–hierarchy Exact solutions of some nonlinear models from the KP-hierarchy Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Integro-differential Lax representations for Davey-Stewartson and
Chen-Lee-Liu equations

References
H.H.Chen, Y.C.Lee, C.S.Liu. Integrability of nonlinear
Hamiltonian systems by inverse scattering method. Physica
Scr. 20 (1979) 490–492.
D.J.Kaup, A.C.Newell. An exact solution for a derivative
nonlinear Schrodinger equation. J.Math. Phys. 19:4 (1978)
798–801.
V. S. Gerdjikov, M. I. Ivanov. The quadratic bundle of
general form and the nonlinear evolution equations. II.
Hierarchies of Hamiltonian structures, Bulgarian J. Phys.,
v.10, N.2, 130-143, (1983)



Introduction Symmetry reductions of the KP–hierarchy Exact solutions of some nonlinear models from the KP-hierarchy Integro-differential Lax representations for Davey-Stewartson and Chen-Lee-Liu equations

Integro-differential Lax representations for Davey-Stewartson and
Chen-Lee-Liu equations

b). We will putM0r>(x , y , t2) = ν, where ν is
(M × N)-dimensional constant matrix. After the change u := qν
system (52) takes the form:{

α2ut2 − c1uxx − c2uyy + 2c1S1ux + 2c2uuy = 0,
S1y = ux + [u,S1].

(55)

System (55) is (2+1)-dimensional matrix generalization of
Burgers equation. It can be generalized onto (n + 1)-dimensional
case: {

α2ut2 = ∆u − 2S∇u,
∂Si
∂x1

= ∂u
∂xi

+ [u,S1], i = 1,n,
(56)

where S = (S1, . . .Sn), ∆ =
∑n

i=1
∂2

∂x2
i
, ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
).
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Proposition
Let T := T (x , y , t2) be ((N × N))-matrix function that satisfies
equation:

α2Tt2 = c1Txx + c2Tyy (57)

Then (N × N)-matrix functions

u := −T−1Ty , S1 = −T−1Tx . (58)

satisfy system (55).
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Remark
It can be checked that functions u, S1 defined by formula (58)
satisfy another version of (2+1)-dimensional generalization of
matrix Burgers equation:

{
α2ut2 − c1uxx − c2uyy + 2c1S1ux + 2c2uuy = 0,

α2S1t2 − c1S1xx − c2S1yy + 2c1S1S1x + 2c2uS1y = 0
(59)
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It is also constructed the integro-differential representation for
the equation:

α3qt3 + c1qxxx − c2qyyy − 3c1µqx

∫
|q|2xdy+

3c2µqy

∫
|q|2ydx + 3c2µq

∫
(q̄qy )ydx − 3c1µq

∫
(qxq)xdy = 0.

(60)
where α3, µ, c1, c2 ∈ R, which can be reduced to the mKdV
equation:

α3qt3 + qxxx − 6µq2qx = 0. (61)
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Lax integro-differential representation was also constructed for
the following system:

α3qt3 +c1qxxx−c2qyyy−3c1v1qxx−3c1v3qx +3µc2qyD−1{q̄qx}y +

+3c2µqD−1{q̄qxy}y − 3c2µ
2qD−1{|q|2q̄qx}y = 0,

v1y = µ(|q|2)x ,

v3y = µ(qx q̄)x − 2µv1(|q|2)x , (62)

where α3, c1, c2 ∈ R, µ ∈ iR, v1 = v∗1 , v3 + v∗3 = v1x , which
reduces to the higher Chen-Lee-Liu equation (c1 = 1, c2 = 0):

α3qt3 + qxxx − 3µ|q|2qxx − 3µq̄q2
x + 3µ2|q|4qx = 0.
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Thank you for your attention!
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