
Simons type formulas for submanifolds with
parallel mean curvature in product spaces

and applications

DOREL FETCU

XIVTH INTERNATIONAL CONFERENCE ON

GEOMETRY, INTEGRABILITY AND QUANTIZATION

June 8–13, 2012 Varna, Bulgaria



References

D. Fetcu and H. Rosenberg, Surfaces with parallel mean
curvature in S3×R and H3×R,
Michigan Math. J., to appear,
arXiv:math.DG/1103.6254v1.

D. Fetcu, C. Oniciuc, and H. Rosenberg, Biharmonic
submanifolds with parallel mean curvature in Sn×R,
J. Geom. Anal., to appear,
arXiv:math.DG/1109.6138v1.

D. Fetcu and H. Rosenberg, On complete submanifolds
with parallel mean curvature in product spaces,
Rev. Mat. Iberoam., to appear,
arXiv:math.DG/1112.3452v1.



Using Simons inequalities to study minimal, cmc and
pmc submanifolds

I 1968 - J. Simons - a formula for the Laplacian of the
second fundamental form of a submanifold in a
Riemannian manifold

- for a minimal hypersurface Σm in Sm+1 this formula is

1
2

∆|A|2 = |∇A|2 + |A|2(m−|A|2)≥ |A|2(m−|A|2)

where ∇ and A are defined by

∇̄XY = ∇XY +σ(X,Y) and ∇̄XV =−AVX+∇
⊥
X V
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- for a minimal submanifold with arbitrary codimension in Sn:

Theorem (Simons - 1968)
Let Σm be a closed minimal submanifold in Sn. Then∫

Σm

(
|A|2− m(n−m)

2n−2m−1

)
|A|2 ≥ 0.

Corollary
Let Σm be a closed minimal submanifold in Sn with

|A|2 ≤ m(n−m)

2n−2m−1
.

Then, either Σm is totally geodesic or |A|2 = m(n−m)
2n−2m−1 .
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Definition
If the mean curvature vector field H = 1

m traceσ of a submanifold
Σm in a Riemannian manifold is parallel in the normal bundle,
i.e. ∇⊥H = 0, then Σm is called a pmc submanifold. If
|H|= constant, then Σm is a cmc submanifold.

I 1969 - K. Nomizu, B. Smyth; 1973 - B. Smyth - Simons
type formula for cmc hypersurfaces and, in general, pmc
submanifolds in a space form

I 1971 - J. Erbacher - Simons type formula for pmc
submanifolds in a space form:

1
2 ∆|A|2 = |∇∗A|2 + cm{|A|2−m|H|2}

+∑
n+1
α,β=m+1{(traceAβ )(trace(A2

αAβ ))

+ trace[Aα ,Aβ ]
2− (trace(AαAβ ))

2},
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I 1977 - S.-Y. Cheng, S.-T. Yau - a general Simons type
equation for operators S, acting on a submanifold of a
Riemannian manifold and satisfying (∇XS)Y = (∇YS)X

I 1970 - S.-S. Chern, M. do Carmo, S. Kobayashi; 1994 -
H. Alencar, M. do Carmo - gap theorems for minimal
hypersurfaces and cmc hypersurfaces, respectively, in
Sn(c)

I 1994 - W. Santos - a gap theorem for pmc submanifolds in
Sn(c)

I other studies on pmc submanifolds in space forms:
- 1984, 1993, 2005, 2010, 2011 - H.-W. Xu et al.
- 2001 - Q. M. Cheng, K. Nonaka
- 2009 - K. Araújo, K. Tenenblat

I 2010 - M. Batista - Simons type formulas for cmc surfaces
in M2(c)×R



A Simons type formula for submanifolds in Mn(c)×R

Theorem (F., Oniciuc, Rosenberg - 2011)
Let Σm be a submanifold of Mn(c)×R, with mean curvature
vector field H and shape operator A. If V is a normal vector
field, parallel in the normal bundle, with traceAV = constant, then

1
2 ∆|AV |2 = |∇AV |2 + c{(m−|T|2)|AV |2−2m|AVT|2

+3(traceAV)〈AVT,T〉−m(traceAV)〈H,N〉〈V,N〉

+m(trace(ANAV))〈V,N〉− (traceAV)
2}

+∑
n+1
α=m+1{(traceAα)(trace(A2

VAα))− (trace(AVAα))
2},

where {Eα}n+1
α=m+1 is a local orthonormal frame field in the

normal bundle, and T and N are the tangent and normal part,
respectively, of the unit vector ξ tangent to R.



Sketch of the proof.
I Weitzenböck formula: 1

2 ∆|AV |2 = |∇AV |2 + 〈trace∇2AV ,AV〉

I C(X,Y) = (∇2AV)(X,Y) = ∇X(∇YAV)−∇∇XYAV

I consider an orthonormal basis {ei}m
i=1 in TpΣm, p ∈ Σm,

extend ei to vector fields Ei in a neighborhood of p such that
{Ei} is a geodesic frame field around p, and denote X = Ek

(trace∇
2AV)X =

m

∑
i=1

C(Ei,Ei)X.
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I Codazzi equation of Σm:
(∇XAV)Y = (∇YAV)X+ c〈V,N〉(〈Y,T〉X−〈X,T〉Y)

I Ricci commutation formula: C(X,Y) = C(Y,X)+ [R(X,Y),AV ]

I Codazzi equation + Ricci formula⇒

C(Ei,Ei)X = ∇X((∇EiAV)Ei)+ [R(Ei,X),AV ]Ei

+c〈AVEi,T〉(〈Ei,T〉X−〈X,T〉Ei)
−c〈V,N〉(〈ANEi,Ei〉X−〈ANX,Ei〉Ei)

I ∇EiAV is symmetric + Codazzi eq. + traceAV = constant⇒
∑

m
i=1(∇EiAV)Ei = c(m−1)〈V,N〉T

I

R(X,Y)Z = c{〈Y,Z〉X−〈X,Z〉Y−〈Y,T〉〈Z,T〉X+ 〈X,T〉〈Z,T〉Y
+〈X,Z〉〈Y,T〉T−〈Y,Z〉〈X,T〉T}
+∑

n+1
α=m+1{〈AαY,Z〉AαX−〈AαX,Z〉AαY},

I Ricci eq. 〈R⊥(X,Y)V,U〉= 〈[AV ,AU]X,Y〉+ 〈R̄(X,Y)V,U〉 ⇒

[AV ,AU] = 0,∀U ∈ NΣ
m
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pmc surfaces in M3(c)×R

• Let Σ2 be a non-minimal pmc surface in M3(c)×R
• Consider the orthonormal frame field {E3 =

H
|H| ,E4} in the

normal bundle⇒ E4 = parallel
• φ3 = A3−|H| I and φ4 = A4
• φ(X,Y) = σ(X,Y)−〈X,Y〉H = 〈φ3X,Y〉E3 + 〈φ4X,Y〉E4
• |φ |2 = |φ3|2 + |φ4|2 = |σ |2−2|H|2

Proposition (F., Rosenberg - 2011)
If Σ2 is an immersed pmc surface in Mn(c)×R, then

1
2

∆|T|2 = |AN |2−
1
2
|T|2|φ |2−2〈φ(T,T),H〉+c|T|2(1−|T|2)−|T|2|H|2.
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Theorem (F., Rosenberg - 2011)
Let Σ2 be an immersed pmc 2-sphere in Mn(c)×R, such that

1. |T|2 = 0 or |T|2 ≥ 2
3 and |σ |2 ≤ c(2−3|T|2), if c < 0;

2. |T|2 ≤ 2
3 and |σ |2 ≤ c(2−3|T|2), if c > 0.

Then, Σ2 is either a minimal surface in a totally umbilical
hypersurface of Mn(c) or a standard sphere in M3(c).

Proof.
I Q(X,Y) = 2〈σ(X,Y),H〉− c〈X,ξ 〉〈Y,ξ 〉 ⇒

Q(2,0) = holomorphic
I assume |T| 6= 0 on an open dense set, and consider
{e1 = T/|T|,e2}

I Σ2 is a sphere⇒ Q(2,0) = 0⇒ 〈φ(T,T),H〉= 1
4 c|T|2 ⇒

I 1
2 ∆|T|2 = |AN |2 + 1

2 |T|
2(−|σ |2 + c(2−3|T|2))≥ 0

I K ≥ 0⇒ Σ2 is a parabolic space⇒
|T|= constant, AN = 0, ∇XT = 0⇒ K = 0 (contradiction)
⇒ T = 0 (the result then follows from [Yau - 1974])
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Proposition (F., Rosenberg - 2011)
If Σ2 is a non-minimal pmc surface in M3(c)×R, then

1
2 ∆|φ |2 = |∇φ3|2 + |∇φ4|2−|φ |4 +{c(2−3|T|2)+2|H|2}|φ |2

−2c〈φ(T,T),H〉+2c|AN |2−4c〈H,N〉2.



Theorem
Let Σ2 be a complete non-minimal pmc surface in M3(c)×R,
c > 0. Assume

i) |φ |2 ≤ 2|H|2 +2c− 5c
2 |T|

2, and
ii) a) |T|= 0, or

b) |T|2 > 2
3 and |H|2 ≥ c|T|2(1−|T|2)

3|T|2−2 .

Then either
1. |φ |2 = 0 and Σ2 is a round sphere in M3(c), or

2. |φ |2 = 2|H|2 +2c and Σ2 is a torus S1(r)×S1(
√

1
c − r2),

r2 6= 1
2c , in M3(c).



Sketch of the proof.

I

1
2 ∆(|φ |2− c|T|2) = |∇φ3|2 + |∇φ4|2

+{−|φ |2 + c
2(4−5|T|2)+2|H|2}|φ |2

+c|AN |2−4c〈H,N〉2 + c|T|2|H|2
−c2|T|2(1−|T|2)

I |AN |2 ≥ 2〈H,N〉2 and 〈H,N〉2 ≤ (1−|T|2)|H|2

I 1
2 ∆(|φ |2− c|T|2)≥ {−|φ |2 +2c+2|H|2}|φ |2 ≥ 0, if T = 0

I

1
2 ∆(|φ |2− c|T|2) ≥ {−|φ |2 + c

2(4−5|T|2)+2|H|2}|φ |2
+c(3|T|2−2)|H|2− c2|T|2(1−|T|2)

≥ 0,
otherwise

I 2K = 2c(1−|T|2)+2|H|2−|φ |2 ≥ 1
2 c|T|2 ≥ 0 and

|φ |2− c|T|2 is bounded and subharmonic⇒
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|φ |2− c|T|2 is bounded and subharmonic⇒



Sketch of the proof.
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I |φ |2− c|T|2 = constant and φ = 0 or |φ |2 = 2|H|2 +2c− 5c
2 |T|

2

and
|AN |2 = 2〈H,N〉, 〈H,N〉2 = (1−|T|2)|H|2

I φ = 0⇒ Σ2 is pseudo-umbilical⇒ Σ2 lies in M3(c)
([Alencar, do Carmo, Tribuzy - 2010])

I φ 6= 0, |AN |2 = 2〈H,N〉, 〈H,N〉2 = (1−|T|2)|H|2 ⇒
AN = 〈H,N〉 I and N = 0 or N ‖ H

I N = 0 + hypothesis⇒ Σ2 is minimal (contradiction)
I AN = 〈H,N〉 I and N ‖ H ⇒ AH = |H|2 I⇒ Σ2 is

pseudo-umbilical⇒ Σ2 lies in M3(c)
I in conclusion Σ2 lies in M3(c) and the result follows from

[Alencar, do Carmo - 1994; Santos - 1994], using ∇φ = 0.
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Another Simons type formula

Proposition (F., Rosenberg - 2011)
Let Σm be a pmc submanifold of Mn(c)×R, with mean curvature
vector field H, shape operator A, and second fundamental form
σ . Then we have

1
2 ∆|σ |2 = |∇⊥σ |2 + c{(m−|T|2)|σ |2−2m∑

n+1
α=m+1 |AαT|2

+3m〈σ(T,T),H〉+m|AN |2−m2〈H,N〉2−m2|H|2}

+∑
n+1
α,β=m+1{(traceAβ )(trace(A2

αAβ ))+ trace[Aα ,Aβ ]
2

−(trace(AαAβ ))
2},

where {Eα}n+1
α=m+1 is a local orthonormal frame field in the

normal bundle.



Complete pmc submanifolds in product spaces

Case I. pmc submanifolds with dimension higher than 2

Theorem (F., Rosenberg - 2011)
Let Σm be a complete non-minimal pmc submanifold in
Mn(c)×R, n > m≥ 3, c > 0, with mean curvature vector field H
and second fundamental form σ . If the angle between H and ξ

is constant and

|σ |2 + 2c(2m+1)
m

|T|2 ≤ 2c+
m2

m−1
|H|2,

then Σm is a totally umbilical cmc hypersurface in Mm+1(c).



Theorem (F., Rosenberg - 2011)
Let Σm be a complete non-minimal pmc submanifold in
Mn(c)×R, n > m≥ 3, c < 0, with mean curvature vector field H
and second fundamental form σ . If H is orthogonal to ξ and

|σ |2 + 2c(m+1)
m

|T|2 ≤ 4c+
m2

m−1
|H|2,

then Σm is a totally umbilical cmc hypersurface in Mm+1(c).



Case II. pmc surfaces

Theorem (F., Rosenberg - 2011)
Let Σ2 be a complete non-minimal pmc surface in Mn(c)×R,
n > 2, c > 0, such that the angle between H and ξ is constant
and

|σ |2 +3c|T|2 ≤ 4|H|2 +2c.

Then, either
1. Σ2 is pseudo-umbilical and lies in Mn(c); or

2. Σ2 is a torus S1(r)×S1
(√

1
c − r2

)
in M3(c), with r2 6= 1

2c .

Theorem (F., Rosenberg - 2011)
Let Σ2 be a complete non-minimal pmc surface in Mn(c)×R,
n > 2, c < 0, such that H is orthogonal to ξ and

|σ |2 +5c|T|2 ≤ 4|H|2 +4c.

Then Σ2 is pseudo-umbilical and lies in Mn(c).
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A gap theorem for biharmonic pmc submanifolds in
Sn×R

Definition
A harmonic map ψ : (M,g)→ (M̄,h) between two Riemannian
manifolds is a critical point of the energy functional

E(ψ) =
1
2

∫
M
|dψ|2 vg.

The Euler-Lagrange equation for the energy functional:

τ(ψ) = trace∇dψ = 0

and τ is called the tension field.



Definition
A biharmonic map is a critical point of the bienergy functional

E2(ψ) =
1
2

∫
M
|τ(ψ)|2 vg.

If ψ is a biharmonic non-harmonic map, then it is called a
proper-biharmonic map.

Theorem (Jiang - 1986)
A map ψ : (M,g)→ (M̄,h) is biharmonic if and only if

τ2(ψ) = ∆τ(ψ)− trace R̄(dψ,τ(ψ))dψ = 0

Definition
A submanifold of a Riemannian manifold is called a biharmonic
submanifold if the inclusion map is biharmonic.
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Proposition (F., Oniciuc, Rosenberg - 2011)
If Σm is a compact biharmonic submanifold in Sn(c)×R, then Σm

lies in Sn(c).

Theorem (Oniciuc - 2003)
A proper-biharmonic cmc submanifold Σm in Sn(c), with mean
curvature equal to

√
c, is minimal in a small hypersphere

Sn−1(2c)⊂ Sn(c).

Theorem (Balmuş, Oniciuc - 2010)
If Σm is a proper-biharmonic pmc submanifold in Sn(c), with
mean curvature vector field H and m > 2, then
|H| ∈

(
0, m−2

m
√

c
]
∪{
√

c}. Moreover, |H|= m−2
m
√

c if and only if
Σm is (an open part of) a standard product

Σ
m−1
1 ×S1(2c)⊂ Sn(c),

where Σ
m−1
1 is a minimal submanifold in Sn−2(2c).
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Theorem (Balmuş, Montaldo, Oniciuc - 2011)
A submanifold Σm in a Riemannian manifold M̄ is biharmonic iff{

−∆⊥H+ traceσ(·,AH·)+ trace(R̄(·,H)·)⊥ = 0
m
2 grad |H|2 +2traceA∇⊥· H(·)+2trace(R̄(·,H)·)> = 0,

where ∆⊥ is the Laplacian in the normal bundle and R̄ is the
curvature tensor of M̄.

Corollary
A pmc submanifold Σm in Mn(c)×R, with m≥ 2, is biharmonic iff{

H ⊥ ξ , |AH|2 = c(m−|T|2)|H|2

trace(AHAU) = 0 for any normal vector U ⊥ H.

Remark
There are no proper-biharmonic pmc submanifolds in Mn(c)×R
with c≤ 0.
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Definition
A submanifold Σm of Mn(c)×R is called a vertical cylinder over
Σm−1 if Σm = π−1(Σm−1), where π : Mn(c)×R→Mn(c) is the
projection map and Σm−1 is a submanifold of Mn(c).

Proposition (F., Oniciuc, Rosenberg - 2011)
Let Σm, m≥ 2, be a proper-biharmonic pmc submanifold in
Sn(c)×R. Then σ satisfies |σ |2 ≥ c(m−1), and the equality
holds if and only if Σm is a vertical cylinder π−1(Σm−1) in
Sm(c)×R, where Σm−1 is a proper biharmonic cmc hypersurface
in Sm(c).

Proposition (F., Oniciuc, Rosenberg - 2011)
Let Σm, m≥ 2, be a proper-biharmonic pmc submanifold in
Sn(c)×R. Then |H|2 ≤ c, and the equality holds if and only if Σm

is minimal in a small hypersphere Sn−1(2c)⊂ Sn(c).
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Theorem (F., Oniciuc, Rosenberg - 2011)
Let Σm be a complete proper-biharmonic pmc submanifold in
Sn×R, with m≥ 2, such that its mean curvature satisfies

|H|2 >C(m)=
(m−1)(m2 +4)+(m−2)

√
(m−1)(m−2)(m2 +m+2)

2m3

and the norm of its second fundamental form σ is bounded.
Then m < n, |H|= 1 and Σm is a minimal submanifold of a small
hypersphere Sn−1(2)⊂ Sn.



Sketch of the proof.
I 〈H,ξ 〉= 0 ⇒ 0 = 〈∇̄XH,ξ 〉=−〈AHT,X〉 ⇒ AHT = 0

I 1
2 ∆|AH|2 = |∇AH|2 +m(traceA3

H)−m2|H|4

I φH = AH−|H|2 I
I Σm is biharmonic⇒ |φH|2 = (m−|T|2)|H|2−m|H|4

I

1
2 ∆|φH|2 = |∇φH|2 +m(traceφ 3

H)+3m|H|2|φH|2

−m2|H|4(1−|H|2)
I Okumura Lemma⇒ traceφ 3

H ≥− m−2√
m(m−1)

|φH|3

I 1
2 ∆|φH|2 ≥ m|φH|2

(
− m−2√

m(m−1)
|φH|+2|H|2−|T|2

)
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I

1
2 ∆|φH|2 ≥ P(|T|2)√

m−1|H|((m−2)
√

1−|H|2+2
√

m−1|H|)
|φH|2

≥ P(1)√
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I Theorem (Omori-Yau Maximum Principle)
If Σm is a complete Riemannian manifold with Ricci curvature
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with supΣm u <+∞ there exists a sequence of points
{pk}k∈N ⊂ Σm satisfying

lim
k→∞

u(pk) = sup
Σm

u, |∇u|(pk)<
1
k

and ∆u(pk)<
1
k
.
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I

{
φH = 0 (Σm = pseudo-umbilical)
AHT = 0

⇒ T = 0 (Σm lies in Sn)

I |H|2 > C(m)> (m−1
m )2 > (m−2

m )2

I |H|= 1 and Σm is a minimal submanifold of a small
hypersphere Sn−1(2)⊂ Sn
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Biharmonic pmc surfaces in Sn(c)×R

Lemma (F., Oniciuc, Rosenberg - 2011)
A pmc surface Σ2 in Sn(c)×R is proper-biharmonic iff either

1. Σ2 is pseudo-umbilical and, therefore, it is a minimal
surface of a small hypersphere Sn−1(2c)⊂ Sn(c); or

2. the mean curvature vector field H is orthogonal to ξ ,
|AH|2 = c(2−|T|2)|H|2, and AU = 0 for any normal vector
field U orthogonal to H.

Corollary
If Σ2 is a proper-biharmonic pmc surface in Sn(c)×R then the
tangent part T of ξ has constant length.
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Proof.
I the map p ∈ Σ2→ (AH−µ I)(p), where µ is a constant, is

analytic, and, therefore, either
I Σ2 is a pseudo-umbilical surface (at every point), or
I H(p) is an umbilical direction on a closed set without interior

points
I Σ2 6= pseudo-umbilical + [AH,AU] = 0⇒

at p ∈ Σ2 ∃{e1,e2} - orthonormal basis that diagonalizes
AH and AU, ∀U ⊥ H

I H ⊥ U ⇒ traceAU = 2〈H,U〉= 0

I AH =

 a+ |H|2 0

0 −a+ |H|2

 and AU =

 b 0

0 −b



I

{
0 = trace(AHAU) = 2ab
a 6= 0

⇒ b = 0, i.e. AU = 0

I (Corollary) H ⊥ N ⇒ ∇XT = ANX = 0⇒ X(|T|2) = 0
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Proposition (F., Rosenberg - 2010)
If Σ2 is a pmc surface in Mn(c)×R, then

1
2

∆|T|2 = |AN |2 +K|T|2 +2T(〈H,N〉),

where K is the Gaussian curvature of the surface.

Corollary
If Σ2 is a non-pseudo-umbilical proper-biharmonic pmc surface
in Sn(c)×R, then it is flat.
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Theorem (F., Oniciuc, Rosenberg - 2011)
Let Σ2 be a proper-biharmonic pmc surface in Sn(c)×R. Then
either

1. Σ2 is a minimal surface of a small hypersphere
Sn−1(2c)⊂ Sn(c); or

2. Σ2 is (an open part of) a vertical cylinder π−1(γ), where γ is
a circle in S2(c) with curvature equal to

√
c, i.e. γ is a

biharmonic circle in S2(c).



Sketch of the proof.

I assume Σ2 6= pseudo-umbilical⇒ |T|= constant 6= 0, i.e.
|N|= constant ∈ [0,1)

I AU = 0, ∀U ⊥ H ⇒ dimL = dimspan{Imσ ,N} ≤ 2⇒
• TΣ2⊕L is parallel, invariant by R̄, and ξ ∈ TΣ2⊕L⇒
• Σ2 lies in

I S2(c)×R (if N = 0), or
I S3(c)×R

I |N|> 0⇒
{

E3 =
H
|H| ,E4 =

N
|N|
}

global orthonormal frame
field⇒ |σ |2 = |A3|2 = c(2−|T|2)

I 0 = 2K = 2c(1−|T|2)+4|H|2−|σ |2 ⇒ 4|H|2 = c|T|2

I 1
2 ∆|AH|2 = |∇AH|2+2(traceA3

H)−4c|H|4 = |∇AH|2+8c|H|4|N|2

I |AH|2 = c(2−|T|2)|H|2 = constant⇒ N = 0⇒ Σ2 = π−1(γ),
where γ is a proper-biharmonic pmc curve with curvature
κ = 2|H|=

√
c
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Remark
∇AH = 0 for all proper-biharmonic surfaces in Sn(c)×R.

Theorem (F., Oniciuc, Rosenberg - 2011)
If Σm, with m≥ 3, is a proper-biharmonic pmc submanifold in
Sn(c)×R such that ∇AH = 0, then either

1. Σm is a proper-biharmonic pmc submanifold in Sn(c), with
∇AH = 0; or

2. Σm is (an open part of) a vertical cylinder π−1(Σm−1), where
Σm−1 is a proper-biharmonic pmc submanifold in Sn(c) such
that the shape operator corresponding to its mean
curvature vector field in Sn(c) is parallel.
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