Simons type formulas for submanifolds with parallel mean curvature in product spaces and applications

DOREL FETCU

XIVTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION June 8–13, 2012 Varna, Bulgaria

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References

D. Fetcu and H. Rosenberg, Surfaces with parallel mean curvature in S³ × ℝ and H³ × ℝ, Michigan Math. J., to appear, arXiv:math.DG/1103.6254v1.

D. Fetcu, C. Oniciuc, and H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in Sⁿ × ℝ,
 J. Geom. Anal., to appear,
 arXiv:math.DG/1109.6138v1.

 D. Fetcu and H. Rosenberg, On complete submanifolds with parallel mean curvature in product spaces, Rev. Mat. Iberoam., to appear, arXiv:math.DG/1112.3452v1. Using Simons inequalities to study minimal, cmc and pmc submanifolds

 1968 - J. Simons - a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold

(ロ) (同) (三) (三) (三) (三) (○) (○)

Using Simons inequalities to study minimal, cmc and pmc submanifolds

- 1968 J. Simons a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold
 - for a minimal hypersurface Σ^m in \mathbb{S}^{m+1} this formula is

$$\frac{1}{2}\Delta|A|^2 = |\nabla A|^2 + |A|^2(m - |A|^2) \ge |A|^2(m - |A|^2)$$

where ∇ and *A* are defined by

$$ar{
abla}_X Y =
abla_X Y + \sigma(X,Y)$$
 and $ar{
abla}_X V = -A_V X +
abla_X^\perp V$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- for a minimal submanifold with arbitrary codimension in \mathbb{S}^n : Theorem (Simons - 1968)

Let Σ^m be a closed minimal submanifold in \mathbb{S}^n . Then

$$\int_{\Sigma^m} \left(|A|^2 - \frac{m(n-m)}{2n-2m-1} \right) |A|^2 \ge 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- for a minimal submanifold with arbitrary codimension in \mathbb{S}^n : Theorem (Simons - 1968)

Let Σ^m be a closed minimal submanifold in \mathbb{S}^n . Then

$$\int_{\Sigma^m} \left(|A|^2 - \frac{m(n-m)}{2n-2m-1} \right) |A|^2 \ge 0.$$

Corollary

Let Σ^m be a closed minimal submanifold in \mathbb{S}^n with

$$|A|^2 \le \frac{m(n-m)}{2n-2m-1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then, either Σ^m is totally geodesic or $|A|^2 = \frac{m(n-m)}{2n-2m-1}$.

Definition

If the mean curvature vector field $H = \frac{1}{m} \operatorname{trace} \sigma$ of a submanifold Σ^m in a Riemannian manifold is parallel in the normal bundle, i.e. $\nabla^{\perp} H = 0$, then Σ^m is called a pmc submanifold. If $|H| = \operatorname{constant}$, then Σ^m is a cmc submanifold.

(日) (日) (日) (日) (日) (日) (日)

Definition

If the mean curvature vector field $H = \frac{1}{m} \operatorname{trace} \sigma$ of a submanifold Σ^m in a Riemannian manifold is parallel in the normal bundle, i.e. $\nabla^{\perp} H = 0$, then Σ^m is called a pmc submanifold. If $|H| = \operatorname{constant}$, then Σ^m is a cmc submanifold.

- 1969 K. Nomizu, B. Smyth; 1973 B. Smyth Simons type formula for cmc hypersurfaces and, in general, pmc submanifolds in a space form
- 1971 J. Erbacher Simons type formula for pmc submanifolds in a space form:

$$\begin{split} [\Delta|A|^2 &= |\nabla^*A|^2 + cm\{|A|^2 - m|H|^2\} \\ &+ \sum_{\alpha,\beta=m+1}^{n+1} \{(\operatorname{trace} A_\beta)(\operatorname{trace} (A_\alpha^2 A_\beta)) \} \\ &+ \operatorname{trace} [A_\alpha, A_\beta]^2 - (\operatorname{trace} (A_\alpha A_\beta))^2\}, \end{split}$$

- ▶ 1977 S.-Y. Cheng, S.-T. Yau a general Simons type equation for operators *S*, acting on a submanifold of a Riemannian manifold and satisfying $(\nabla_X S)Y = (\nabla_Y S)X$
- ► 1970 S.-S. Chern, M. do Carmo, S. Kobayashi; 1994 -H. Alencar, M. do Carmo - gap theorems for minimal hypersurfaces and cmc hypersurfaces, respectively, in Sⁿ(c)
- ▶ 1994 W. Santos a gap theorem for pmc submanifolds in $S^n(c)$
- other studies on pmc submanifolds in space forms:
 - 1984, 1993, 2005, 2010, 2011 H.-W. Xu et al.
 - 2001 Q. M. Cheng, K. Nonaka
 - 2009 K. Araújo, K. Tenenblat
- ► 2010 M. Batista Simons type formulas for cmc surfaces in M²(c) × ℝ

A Simons type formula for submanifolds in $\mathbb{M}^n(c) \times \mathbb{R}$

Theorem (F., Oniciuc, Rosenberg - 2011)

Let Σ^m be a submanifold of $M^n(c) \times \mathbb{R}$, with mean curvature vector field *H* and shape operator *A*. If *V* is a normal vector field, parallel in the normal bundle, with trace $A_V = \text{constant}$, then

$$\frac{1}{2}\Delta |A_V|^2 = |\nabla A_V|^2 + c\{(m - |T|^2)|A_V|^2 - 2m|A_V T|^2$$

 $+3(\operatorname{trace} A_V)\langle A_VT,T\rangle - m(\operatorname{trace} A_V)\langle H,N\rangle\langle V,N\rangle$

+ $m(\operatorname{trace}(A_NA_V))\langle V,N\rangle - (\operatorname{trace}A_V)^2\}$

 $+\sum_{\alpha=m+1}^{n+1} \{(\operatorname{trace} A_{\alpha})(\operatorname{trace} (A_{V}^{2}A_{\alpha})) - (\operatorname{trace} (A_{V}A_{\alpha}))^{2}\},\$

where $\{E_{\alpha}\}_{\alpha=m+1}^{n+1}$ is a local orthonormal frame field in the normal bundle, and *T* and *N* are the tangent and normal part, respectively, of the unit vector ξ tangent to \mathbb{R} .

• Weitzenböck formula: $\frac{1}{2}\Delta |A_V|^2 = |\nabla A_V|^2 + \langle \operatorname{trace} \nabla^2 A_V, A_V \rangle$

• Weitzenböck formula: $\frac{1}{2}\Delta |A_V|^2 = |\nabla A_V|^2 + \langle \operatorname{trace} \nabla^2 A_V, A_V \rangle$

•
$$C(X,Y) = (\nabla^2 A_V)(X,Y) = \nabla_X(\nabla_Y A_V) - \nabla_{\nabla_X Y} A_V$$

► consider an orthonormal basis $\{e_i\}_{i=1}^m$ in $T_p \Sigma^m$, $p \in \Sigma^m$, extend e_i to vector fields E_i in a neighborhood of p such that $\{E_i\}$ is a geodesic frame field around p, and denote $X = E_k$

$$(\operatorname{trace} \nabla^2 A_V) X = \sum_{i=1}^m C(E_i, E_i) X.$$

(日) (日) (日) (日) (日) (日) (日)

• Codazzi equation of Σ^m : $(\nabla_X A_V) Y = (\nabla_Y A_V) X + c \langle V, N \rangle (\langle Y, T \rangle X - \langle X, T \rangle Y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Codazzi equation of Σ^m :
 - $(\nabla_X A_V)Y = (\nabla_Y A_V)X + c\langle V, N \rangle (\langle Y, T \rangle X \langle X, T \rangle Y)$
- ▶ Ricci commutation formula: $C(X,Y) = C(Y,X) + [R(X,Y),A_V]$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Codazzi equation of Σ^m :

 $(\nabla_X A_V)Y = (\nabla_Y A_V)X + c\langle V, N \rangle (\langle Y, T \rangle X - \langle X, T \rangle Y)$

- ▶ Ricci commutation formula: $C(X,Y) = C(Y,X) + [R(X,Y),A_V]$
- ► Codazzi equation + Ricci formula ⇒

$$C(E_i, E_i)X = \nabla_X((\nabla_{E_i}A_V)E_i) + [R(E_i, X), A_V]E_i + c\langle A_VE_i, T\rangle(\langle E_i, T\rangle X - \langle X, T\rangle E_i) - c\langle V, N\rangle(\langle A_NE_i, E_i\rangle X - \langle A_NX, E_i\rangle E_i)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Codazzi equation of Σ^m :

 $(\nabla_X A_V)Y = (\nabla_Y A_V)X + c\langle V, N \rangle (\langle Y, T \rangle X - \langle X, T \rangle Y)$

- ▶ Ricci commutation formula: $C(X,Y) = C(Y,X) + [R(X,Y),A_V]$
- ► Codazzi equation + Ricci formula ⇒

$$C(E_i, E_i)X = \nabla_X((\nabla_{E_i}A_V)E_i) + [R(E_i, X), A_V]E_i + c\langle A_VE_i, T\rangle(\langle E_i, T\rangle X - \langle X, T\rangle E_i) - c\langle V, N\rangle(\langle A_NE_i, E_i\rangle X - \langle A_NX, E_i\rangle E_i)$$

► $\nabla_{E_i}A_V$ is symmetric + Codazzi eq. + trace A_V = constant \Rightarrow $\sum_{i=1}^{m} (\nabla_{E_i}A_V)E_i = c(m-1)\langle V,N\rangle T$

$$\begin{split} R(X,Y)Z &= c\{\langle Y,Z\rangle X - \langle X,Z\rangle Y - \langle Y,T\rangle \langle Z,T\rangle X + \langle X,T\rangle \langle Z,T\rangle Y \\ &+ \langle X,Z\rangle \langle Y,T\rangle T - \langle Y,Z\rangle \langle X,T\rangle T\} \\ &+ \sum_{\alpha=m+1}^{n+1} \{\langle A_{\alpha}Y,Z\rangle A_{\alpha}X - \langle A_{\alpha}X,Z\rangle A_{\alpha}Y\}, \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

• Codazzi equation of Σ^m :

 $(\nabla_X A_V)Y = (\nabla_Y A_V)X + c\langle V, N \rangle (\langle Y, T \rangle X - \langle X, T \rangle Y)$

- ▶ Ricci commutation formula: $C(X,Y) = C(Y,X) + [R(X,Y),A_V]$
- Codazzi equation + Ricci formula \Rightarrow

$$C(E_i, E_i)X = \nabla_X((\nabla_{E_i}A_V)E_i) + [R(E_i, X), A_V]E_i + c\langle A_VE_i, T\rangle(\langle E_i, T\rangle X - \langle X, T\rangle E_i) - c\langle V, N\rangle(\langle A_NE_i, E_i\rangle X - \langle A_NX, E_i\rangle E_i)$$

► $\nabla_{E_i}A_V$ is symmetric + Codazzi eq. + trace A_V = constant ⇒ $\sum_{i=1}^{m} (\nabla_{E_i}A_V)E_i = c(m-1)\langle V,N\rangle T$

$$\begin{split} R(X,Y)Z &= c\{\langle Y,Z\rangle X - \langle X,Z\rangle Y - \langle Y,T\rangle \langle Z,T\rangle X + \langle X,T\rangle \langle Z,T\rangle Y \\ &+ \langle X,Z\rangle \langle Y,T\rangle T - \langle Y,Z\rangle \langle X,T\rangle T \} \\ &+ \sum_{\alpha=m+1}^{n+1} \{\langle A_{\alpha}Y,Z\rangle A_{\alpha}X - \langle A_{\alpha}X,Z\rangle A_{\alpha}Y \}, \end{split}$$

► Ricci eq. $\langle R^{\perp}(X,Y)V,U\rangle = \langle [A_V,A_U]X,Y\rangle + \langle \bar{R}(X,Y)V,U\rangle \Rightarrow$ $[A_V,A_U] = 0, \forall U \in N\Sigma^m$

pmc surfaces in $M^3(c) \times \mathbb{R}$

• Let Σ^2 be a non-minimal pmc surface in $M^3(c) \times \mathbb{R}$ • Consider the orthonormal frame field $\{E_3 = \frac{H}{|H|}, E_4\}$ in the normal bundle $\Rightarrow E_4 =$ parallel

(日) (日) (日) (日) (日) (日) (日)

• $\phi_3 = A_3 - |H|$ I and $\phi_4 = A_4$

•
$$\phi(X,Y) = \sigma(X,Y) - \langle X,Y \rangle H = \langle \phi_3 X,Y \rangle E_3 + \langle \phi_4 X,Y \rangle E_4$$

•
$$|\phi|^2 = |\phi_3|^2 + |\phi_4|^2 = |\sigma|^2 - 2|H|^2$$

pmc surfaces in $M^3(c) \times \mathbb{R}$

- Let Σ² be a non-minimal pmc surface in M³(c) × ℝ
 Consider the orthonormal frame field {E₃ = H/|H|, E₄} in the normal bundle ⇒ E₄ = parallel
- $\phi_3 = A_3 |H|$ I and $\phi_4 = A_4$
- $\phi(X,Y) = \sigma(X,Y) \langle X,Y \rangle H = \langle \phi_3 X,Y \rangle E_3 + \langle \phi_4 X,Y \rangle E_4$
- $|\phi|^2 = |\phi_3|^2 + |\phi_4|^2 = |\sigma|^2 2|H|^2$

Proposition (F., Rosenberg - 2011) If Σ^2 is an immersed pmc surface in $M^n(c) \times \mathbb{R}$, then

$$\frac{1}{2}\Delta|T|^2 = |A_N|^2 - \frac{1}{2}|T|^2|\phi|^2 - 2\langle\phi(T,T),H\rangle + c|T|^2(1-|T|^2) - |T|^2|H|^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let Σ^2 be an immersed pmc 2-sphere in $M^n(c) \times \mathbb{R}$, such that

1.
$$|T|^2 = 0$$
 or $|T|^2 \ge \frac{2}{3}$ and $|\sigma|^2 \le c(2-3|T|^2)$, if $c < 0$;

2.
$$|T|^2 \leq \frac{2}{3}$$
 and $|\sigma|^2 \leq c(2-3|T|^2)$, if $c > 0$.

Then, Σ^2 is either a minimal surface in a totally umbilical hypersurface of $M^n(c)$ or a standard sphere in $M^3(c)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let Σ^2 be an immersed pmc 2-sphere in $M^n(c) \times \mathbb{R}$, such that

1.
$$|T|^2 = 0$$
 or $|T|^2 \ge \frac{2}{3}$ and $|\sigma|^2 \le c(2-3|T|^2)$, if $c < 0$;

2.
$$|T|^2 \leq \frac{2}{3}$$
 and $|\sigma|^2 \leq c(2-3|T|^2)$, if $c > 0$.

Then, Σ^2 is either a minimal surface in a totally umbilical hypersurface of $M^n(c)$ or a standard sphere in $M^3(c)$. Proof.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

•
$$Q(X,Y) = 2\langle \sigma(X,Y),H \rangle - c \langle X,\xi \rangle \langle Y,\xi \rangle \Rightarrow$$

 $Q^{(2,0)} =$ holomorphic

Let Σ^2 be an immersed pmc 2-sphere in $M^n(c) \times \mathbb{R}$, such that

1.
$$|T|^2 = 0$$
 or $|T|^2 \ge \frac{2}{3}$ and $|\sigma|^2 \le c(2-3|T|^2)$, if $c < 0$;

2.
$$|T|^2 \leq \frac{2}{3}$$
 and $|\sigma|^2 \leq c(2-3|T|^2)$, if $c > 0$.

Then, Σ^2 is either a minimal surface in a totally umbilical hypersurface of $M^n(c)$ or a standard sphere in $M^3(c)$.

Proof.

- $Q(X,Y) = 2\langle \sigma(X,Y),H \rangle c \langle X,\xi \rangle \langle Y,\xi \rangle \Rightarrow$ $Q^{(2,0)} =$ holomorphic
- ► assume $|T| \neq 0$ on an open dense set, and consider $\{e_1 = T/|T|, e_2\}$
- Σ^2 is a sphere $\Rightarrow Q^{(2,0)} = 0 \Rightarrow \langle \phi(T,T), H \rangle = \frac{1}{4}c|T|^2 \Rightarrow$

• $\frac{1}{2}\Delta |T|^2 = |A_N|^2 + \frac{1}{2}|T|^2(-|\sigma|^2 + c(2-3|T|^2)) \ge 0$

Let Σ^2 be an immersed pmc 2-sphere in $M^n(c) \times \mathbb{R}$, such that

1.
$$|T|^2 = 0$$
 or $|T|^2 \ge \frac{2}{3}$ and $|\sigma|^2 \le c(2-3|T|^2)$, if $c < 0$;

2.
$$|T|^2 \leq \frac{2}{3}$$
 and $|\sigma|^2 \leq c(2-3|T|^2)$, if $c > 0$.

Then, Σ^2 is either a minimal surface in a totally umbilical hypersurface of $M^n(c)$ or a standard sphere in $M^3(c)$.

Proof.

- ► $Q(X,Y) = 2\langle \sigma(X,Y),H \rangle c \langle X,\xi \rangle \langle Y,\xi \rangle \Rightarrow$ $Q^{(2,0)} = \text{holomorphic}$
- ► assume |T| ≠ 0 on an open dense set, and consider {e₁ = T/|T|, e₂}
- Σ^2 is a sphere $\Rightarrow Q^{(2,0)} = 0 \Rightarrow \langle \phi(T,T), H \rangle = \frac{1}{4}c|T|^2 \Rightarrow$
- $\frac{1}{2}\Delta |T|^2 = |A_N|^2 + \frac{1}{2}|T|^2(-|\sigma|^2 + c(2-3|T|^2)) \ge 0$
- ► $K \ge 0 \Rightarrow \Sigma^2$ is a parabolic space \Rightarrow $|T| = \text{constant}, A_N = 0, \nabla_X T = 0 \Rightarrow K = 0$ (contradiction) $\Rightarrow T = 0$ (the result then follows from [Yau - 1974])

(ロ) (同) (三) (三) (三) (三) (○) (○)

Proposition (F., Rosenberg - 2011) If Σ^2 is a non-minimal pmc surface in $M^3(c) \times \mathbb{R}$, then

 $\frac{1}{2}\Delta|\phi|^2 = |\nabla\phi_3|^2 + |\nabla\phi_4|^2 - |\phi|^4 + \{c(2-3|T|^2) + 2|H|^2\}|\phi|^2$

 $-2c\langle\phi(T,T),H\rangle+2c|A_N|^2-4c\langle H,N\rangle^2.$

Theorem Let Σ^2 be a complete non-minimal pmc surface in $M^3(c) \times \mathbb{R}$, c > 0. Assume

i)
$$|\phi|^2 \le 2|H|^2 + 2c - \frac{5c}{2}|T|^2$$
, and
ii) a) $|T| = 0$, or
b) $|T|^2 > \frac{2}{3}$ and $|H|^2 \ge \frac{c|T|^2(1-|T|^2)}{3|T|^2-2}$.

Then either

1. $|\phi|^2 = 0$ and Σ^2 is a round sphere in $M^3(c)$, or 2. $|\phi|^2 = 2|H|^2 + 2c$ and Σ^2 is a torus $\mathbb{S}^1(r) \times \mathbb{S}^1(\sqrt{\frac{1}{c} - r^2})$, $r^2 \neq \frac{1}{2c}$, in $M^3(c)$.

(日) (日) (日) (日) (日) (日) (日)

$$\frac{1}{2}\Delta(|\phi|^2 - c|T|^2) = |\nabla\phi_3|^2 + |\nabla\phi_4|^2 + \{-|\phi|^2 + \frac{c}{2}(4 - 5|T|^2) + 2|H|^2\}|\phi|^2 + c|A_N|^2 - 4c\langle H, N\rangle^2 + c|T|^2|H|^2 - c^2|T|^2(1 - |T|^2)$$

$$\frac{1}{2}\Delta(|\phi|^2 - c|T|^2) = |\nabla\phi_3|^2 + |\nabla\phi_4|^2 + \{-|\phi|^2 + \frac{c}{2}(4 - 5|T|^2) + 2|H|^2\}|\phi|^2 + c|A_N|^2 - 4c\langle H, N\rangle^2 + c|T|^2|H|^2 - c^2|T|^2(1 - |T|^2)$$

• $|A_N|^2 \ge 2\langle H,N\rangle^2$ and $\langle H,N\rangle^2 \le (1-|T|^2)|H|^2$

$$\frac{1}{2}\Delta(|\phi|^2 - c|T|^2) = |\nabla\phi_3|^2 + |\nabla\phi_4|^2 + \{-|\phi|^2 + \frac{c}{2}(4 - 5|T|^2) + 2|H|^2\}|\phi|^2 + c|A_N|^2 - 4c\langle H, N\rangle^2 + c|T|^2|H|^2 - c^2|T|^2(1 - |T|^2)$$

$$\begin{aligned} &|A_N|^2 \ge 2\langle H, N\rangle^2 \text{ and } \langle H, N\rangle^2 \le (1 - |T|^2)|H|^2 \\ & \frac{1}{2}\Delta(|\phi|^2 - c|T|^2) \ge \{-|\phi|^2 + 2c + 2|H|^2\}|\phi|^2 \ge 0, \text{ if } T = 0 \\ & \frac{1}{2}\Delta(|\phi|^2 - c|T|^2) \ge \{-|\phi|^2 + \frac{c}{2}(4 - 5|T|^2) + 2|H|^2\}|\phi|^2 \\ & + c(3|T|^2 - 2)|H|^2 - c^2|T|^2(1 - |T|^2) \\ & \ge 0, \end{aligned}$$

otherwise

$$\frac{1}{2}\Delta(|\phi|^2 - c|T|^2) = |\nabla\phi_3|^2 + |\nabla\phi_4|^2 \\ + \{-|\phi|^2 + \frac{c}{2}(4 - 5|T|^2) + 2|H|^2\}|\phi|^2 \\ + c|A_N|^2 - 4c\langle H, N\rangle^2 + c|T|^2|H|^2 \\ - c^2|T|^2(1 - |T|^2)$$

- $|A_N|^2 \ge 2\langle H, N \rangle^2$ and $\langle H, N \rangle^2 \le (1 |T|^2)|H|^2$
- $\begin{array}{l} \bullet \quad \frac{1}{2}\Delta(|\phi|^2 c|T|^2) \geq \{-|\phi|^2 + 2c + 2|H|^2\} |\phi|^2 \geq 0, \text{ if } T = 0 \\ \quad \frac{1}{2}\Delta(|\phi|^2 c|T|^2) \quad \geq \quad \{-|\phi|^2 + \frac{c}{2}(4 5|T|^2) + 2|H|^2\} |\phi|^2 \\ \quad + c(3|T|^2 2)|H|^2 c^2|T|^2(1 |T|^2) \\ \quad \geq \quad 0, \end{array}$

otherwise

► $2K = 2c(1 - |T|^2) + 2|H|^2 - |\phi|^2 \ge \frac{1}{2}c|T|^2 \ge 0$ and $|\phi|^2 - c|T|^2$ is bounded and subharmonic \Rightarrow

• $|\phi|^2 - c|T|^2 = \text{constant}$ and $\phi = 0$ or $|\phi|^2 = 2|H|^2 + 2c - \frac{5c}{2}|T|^2$ and $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $|\phi|^2 - c|T|^2 = \text{constant and } \phi = 0 \text{ or } |\phi|^2 = 2|H|^2 + 2c - \frac{5c}{2}|T|^2$ and $|A|^2 = 2(H, N) - (H, N)^2 - (1 - |T|^2)|H|^2$

 $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

 φ = 0 ⇒ Σ² is pseudo-umbilical ⇒ Σ² lies in M³(c) ([Alencar, do Carmo, Tribuzy - 2010])

 $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

 φ = 0 ⇒ Σ² is pseudo-umbilical ⇒ Σ² lies in M³(c) ([Alencar, do Carmo, Tribuzy - 2010])

►
$$\phi \neq 0$$
, $|A_N|^2 = 2\langle H, N \rangle$, $\langle H, N \rangle^2 = (1 - |T|^2)|H|^2 \Rightarrow$
 $A_N = \langle H, N \rangle$ I and $N = 0$ or $N \parallel H$

 $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

 φ = 0 ⇒ Σ² is pseudo-umbilical ⇒ Σ² lies in M³(c) ([Alencar, do Carmo, Tribuzy - 2010])

►
$$\phi \neq 0$$
, $|A_N|^2 = 2\langle H, N \rangle$, $\langle H, N \rangle^2 = (1 - |T|^2)|H|^2 \Rightarrow$
 $A_N = \langle H, N \rangle$ I and $N = 0$ or $N \parallel H$

• N = 0 + hypothesis $\Rightarrow \Sigma^2$ is minimal (contradiction)

(日) (日) (日) (日) (日) (日) (日)

(日) (日) (日) (日) (日) (日) (日)

 $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

► $\phi = 0 \Rightarrow \Sigma^2$ is pseudo-umbilical $\Rightarrow \Sigma^2$ lies in $M^3(c)$ ([Alencar, do Carmo, Tribuzy - 2010])

►
$$\phi \neq 0$$
, $|A_N|^2 = 2\langle H, N \rangle$, $\langle H, N \rangle^2 = (1 - |T|^2)|H|^2 \Rightarrow$
 $A_N = \langle H, N \rangle$ I and $N = 0$ or $N \parallel H$

- ► N = 0 + hypothesis $\Rightarrow \Sigma^2$ is minimal (contradiction)
- ► $A_N = \langle H, N \rangle$ I and $N \parallel H \Rightarrow A_H = |H|^2 I \Rightarrow \Sigma^2$ is pseudo-umbilical $\Rightarrow \Sigma^2$ lies in $M^3(c)$

 $|A_N|^2 = 2\langle H, N \rangle, \ \langle H, N \rangle^2 = (1 - |T|^2)|H|^2$

 φ = 0 ⇒ Σ² is pseudo-umbilical ⇒ Σ² lies in M³(c) ([Alencar, do Carmo, Tribuzy - 2010])

►
$$\phi \neq 0$$
, $|A_N|^2 = 2\langle H, N \rangle$, $\langle H, N \rangle^2 = (1 - |T|^2)|H|^2 \Rightarrow$
 $A_N = \langle H, N \rangle$ I and $N = 0$ or $N \parallel H$

- N = 0 + hypothesis $\Rightarrow \Sigma^2$ is minimal (contradiction)
- $A_N = \langle H, N \rangle$ I and $N \parallel H \Rightarrow A_H = |H|^2 I \Rightarrow \Sigma^2$ is pseudo-umbilical $\Rightarrow \Sigma^2$ lies in $M^3(c)$
- In conclusion Σ² lies in M³(c) and the result follows from [Alencar, do Carmo 1994; Santos 1994], using ∇φ = 0.

Another Simons type formula

Proposition (F., Rosenberg - 2011)

Let Σ^m be a pmc submanifold of $M^n(c) \times \mathbb{R}$, with mean curvature vector field H, shape operator A, and second fundamental form σ . Then we have

$$\begin{split} \frac{1}{2}\Delta|\sigma|^2 &= |\nabla^{\perp}\sigma|^2 + c\{(m-|T|^2)|\sigma|^2 - 2m\sum_{\alpha=m+1}^{n+1}|A_{\alpha}T|^2 \\ &+ 3m\langle\sigma(T,T),H\rangle + m|A_N|^2 - m^2\langle H,N\rangle^2 - m^2|H|^2\} \\ &+ \sum_{\alpha,\beta=m+1}^{n+1}\{(\operatorname{trace} A_{\beta})(\operatorname{trace}(A_{\alpha}^2A_{\beta})) + \operatorname{trace}[A_{\alpha},A_{\beta}] \\ &- (\operatorname{trace}(A_{\alpha}A_{\beta}))^2\}, \end{split}$$

where $\{E_{\alpha}\}_{\alpha=m+1}^{n+1}$ is a local orthonormal frame field in the normal bundle.
Complete pmc submanifolds in product spaces

Case I. pmc submanifolds with dimension higher than **2**

Theorem (F., Rosenberg - 2011)

Let Σ^m be a complete non-minimal pmc submanifold in $M^n(c) \times \mathbb{R}$, $n > m \ge 3$, c > 0, with mean curvature vector field H and second fundamental form σ . If the angle between H and ξ is constant and

$$|\sigma|^2 + \frac{2c(2m+1)}{m}|T|^2 \le 2c + \frac{m^2}{m-1}|H|^2,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then Σ^m is a totally umbilical cmc hypersurface in $M^{m+1}(c)$.

Theorem (F., Rosenberg - 2011)

Let Σ^m be a complete non-minimal pmc submanifold in $M^n(c) \times \mathbb{R}$, $n > m \ge 3$, c < 0, with mean curvature vector field H and second fundamental form σ . If H is orthogonal to ξ and

$$|\sigma|^{2} + \frac{2c(m+1)}{m}|T|^{2} \le 4c + \frac{m^{2}}{m-1}|H|^{2},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

then Σ^m is a totally umbilical cmc hypersurface in $M^{m+1}(c)$.

Case II. pmc surfaces

Theorem (F., Rosenberg - 2011)

Let Σ^2 be a complete non-minimal pmc surface in $M^n(c) \times \mathbb{R}$, n > 2, c > 0, such that the angle between H and ξ is constant and

$$|\sigma|^2 + 3c|T|^2 \le 4|H|^2 + 2c.$$

Then, either

1. Σ^2 is pseudo-umbilical and lies in $M^n(c)$; or

2.
$$\Sigma^2$$
 is a torus $\mathbb{S}^1(r) \times \mathbb{S}^1\left(\sqrt{\frac{1}{c}-r^2}\right)$ in $M^3(c)$, with $r^2 \neq \frac{1}{2c}$.

(ロ) (同) (三) (三) (三) (○) (○)

Case II. pmc surfaces

Theorem (F., Rosenberg - 2011)

Let Σ^2 be a complete non-minimal pmc surface in $M^n(c) \times \mathbb{R}$, n > 2, c > 0, such that the angle between H and ξ is constant and

$$|\sigma|^2 + 3c|T|^2 \le 4|H|^2 + 2c.$$

Then, either

1. Σ^2 is pseudo-umbilical and lies in $M^n(c)$; or

2.
$$\Sigma^2$$
 is a torus $\mathbb{S}^1(r) \times \mathbb{S}^1\left(\sqrt{\frac{1}{c}-r^2}\right)$ in $M^3(c)$, with $r^2 \neq \frac{1}{2c}$.

Theorem (F., Rosenberg - 2011)

Let Σ^2 be a complete non-minimal pmc surface in $M^n(c) \times \mathbb{R}$, n > 2, c < 0, such that H is orthogonal to ξ and

$$|\sigma|^2 + 5c|T|^2 \le 4|H|^2 + 4c.$$

Then Σ^2 is pseudo-umbilical and lies in $M^n(c)$.

A gap theorem for biharmonic pmc submanifolds in $\mathbb{S}^n \times \mathbb{R}$

Definition

A harmonic map $\psi: (M,g) \rightarrow (\overline{M},h)$ between two Riemannian manifolds is a critical point of the energy functional

$$E(\boldsymbol{\psi}) = \frac{1}{2} \int_{M} |d\boldsymbol{\psi}|^2 \, v_g.$$

The Euler-Lagrange equation for the energy functional:

$$\tau(\psi) = \operatorname{trace} \nabla d\psi = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and τ is called the tension field.

Definition A biharmonic map is a critical point of the bienergy functional

$$E_2(\boldsymbol{\psi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\psi})|^2 v_g.$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986) A map $\psi: (M,g) \rightarrow (\overline{M},h)$ is biharmonic if and only if

$$\tau_2(\psi) = \Delta \tau(\psi) - \operatorname{trace} \bar{R}(d\psi, \tau(\psi))d\psi = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition A biharmonic map is a critical point of the bienergy functional

$$E_2(\boldsymbol{\psi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\psi})|^2 v_g.$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986) A map $\psi : (M,g) \to (\bar{M},h)$ is biharmonic if and only if $\tau_2(\psi) = \Delta \tau(\psi) - \text{trace } \bar{R}(d\psi,\tau(\psi))d\psi = 0$

Definition

A submanifold of a Riemannian manifold is called a biharmonic submanifold if the inclusion map is biharmonic.

Definition A biharmonic map is a critical point of the bienergy functional

$$E_2(\boldsymbol{\psi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\psi})|^2 v_g.$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986) A map $\psi : (M,g) \to (\bar{M},h)$ is biharmonic if and only if $\tau_2(\psi) = \Delta \tau(\psi) - \text{trace } \bar{R}(d\psi,\tau(\psi))d\psi = 0$

Definition

A submanifold of a Riemannian manifold is called a biharmonic submanifold if the inclusion map is biharmonic.

Proposition (F., Oniciuc, Rosenberg - 2011)

If Σ^m is a compact biharmonic submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$, then Σ^m lies in $\mathbb{S}^n(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

If Σ^m is a compact biharmonic submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$, then Σ^m lies in $\mathbb{S}^n(c)$.

Theorem (Oniciuc - 2003)

A proper-biharmonic cmc submanifold Σ^m in $\mathbb{S}^n(c)$, with mean curvature equal to \sqrt{c} , is minimal in a small hypersphere $\mathbb{S}^{n-1}(2c) \subset \mathbb{S}^n(c)$.

Theorem (Balmuş, Oniciuc - 2010)

If Σ^m is a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c)$, with mean curvature vector field H and m > 2, then $|H| \in \left(0, \frac{m-2}{m}\sqrt{c}\right] \cup \{\sqrt{c}\}$. Moreover, $|H| = \frac{m-2}{m}\sqrt{c}$ if and only if Σ^m is (an open part of) a standard product

$$\Sigma_1^{m-1} \times \mathbb{S}^1(2c) \subset \mathbb{S}^n(c),$$

where Σ_1^{m-1} is a minimal submanifold in $\mathbb{S}^{n-2}(2c)$.

Theorem (Balmuş, Montaldo, Oniciuc - 2011)

A submanifold Σ^m in a Riemannian manifold \overline{M} is biharmonic iff

$$\begin{bmatrix} -\Delta^{\perp}H + \operatorname{trace} \sigma(\cdot, A_H \cdot) + \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp} = 0 \\ \frac{m}{2} \operatorname{grad} |H|^2 + 2 \operatorname{trace} A_{\nabla^{\perp}H}(\cdot) + 2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top} = 0,$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M} .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Balmuş, Montaldo, Oniciuc - 2011)

A submanifold Σ^m in a Riemannian manifold \overline{M} is biharmonic iff

$$\begin{aligned} & \left[-\Delta^{\perp} H + \operatorname{trace} \sigma(\cdot, A_H \cdot) + \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp} = 0 \\ & \frac{m}{2} \operatorname{grad} |H|^2 + 2 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top} = 0, \end{aligned}$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M} .

Corollary

A pmc submanifold Σ^m in $M^n(c) \times \mathbb{R}$, with $m \ge 2$, is biharmonic iff

$$\begin{cases} H \perp \xi, \quad |A_H|^2 = c(m - |T|^2)|H|^2 \\ \operatorname{trace}(A_H A_U) = 0 \quad \text{for any normal vector} \quad U \perp H. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Balmuş, Montaldo, Oniciuc - 2011)

A submanifold Σ^m in a Riemannian manifold \overline{M} is biharmonic iff

$$\begin{aligned} & \left[-\Delta^{\perp} H + \operatorname{trace} \sigma(\cdot, A_H \cdot) + \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp} = 0 \\ & \frac{m}{2} \operatorname{grad} |H|^2 + 2 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top} = 0, \end{aligned}$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M} .

Corollary

A pmc submanifold Σ^m in $M^n(c) \times \mathbb{R}$, with $m \ge 2$, is biharmonic iff

$$\begin{cases} H \perp \xi, \quad |A_H|^2 = c(m - |T|^2)|H|^2 \\ \operatorname{trace}(A_H A_U) = 0 \quad \text{for any normal vector} \quad U \perp H. \end{cases}$$

Remark

There are no proper-biharmonic pmc submanifolds in $M^n(c) \times \mathbb{R}$ with $c \leq 0$.

Definition

A submanifold Σ^m of $M^n(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^m = \pi^{-1}(\Sigma^{m-1})$, where $\pi : M^n(c) \times \mathbb{R} \to M^n(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^n(c)$.

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A submanifold Σ^m of $M^n(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^m = \pi^{-1}(\Sigma^{m-1})$, where $\pi : M^n(c) \times \mathbb{R} \to M^n(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^n(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let Σ^m , $m \ge 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$. Then σ satisfies $|\sigma|^2 \ge c(m-1)$, and the equality holds if and only if Σ^m is a vertical cylinder $\pi^{-1}(\Sigma^{m-1})$ in $\mathbb{S}^m(c) \times \mathbb{R}$, where Σ^{m-1} is a proper biharmonic cmc hypersurface in $\mathbb{S}^m(c)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

A submanifold Σ^m of $M^n(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^m = \pi^{-1}(\Sigma^{m-1})$, where $\pi : M^n(c) \times \mathbb{R} \to M^n(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^n(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let Σ^m , $m \ge 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$. Then σ satisfies $|\sigma|^2 \ge c(m-1)$, and the equality holds if and only if Σ^m is a vertical cylinder $\pi^{-1}(\Sigma^{m-1})$ in $\mathbb{S}^m(c) \times \mathbb{R}$, where Σ^{m-1} is a proper biharmonic cmc hypersurface in $\mathbb{S}^m(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let Σ^m , $m \ge 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$. Then $|H|^2 \le c$, and the equality holds if and only if Σ^m is minimal in a small hypersphere $\mathbb{S}^{n-1}(2c) \subset \mathbb{S}^n(c)$.

Theorem (F., Oniciuc, Rosenberg - 2011)

Let Σ^m be a complete proper-biharmonic pmc submanifold in $\mathbb{S}^n \times \mathbb{R}$, with $m \ge 2$, such that its mean curvature satisfies

$$|H|^2 > C(m) = \frac{(m-1)(m^2+4) + (m-2)\sqrt{(m-1)(m-2)(m^2+m+2)}}{2m^3}$$

and the norm of its second fundamental form σ is bounded. Then m < n, |H| = 1 and Σ^m is a minimal submanifold of a small hypersphere $\mathbb{S}^{n-1}(2) \subset \mathbb{S}^n$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$\langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = -\langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$$

$$\langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = -\langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$$

• $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + m(\operatorname{trace} A_H^3) - m^2 |H|^4$

 $\blacktriangleright \langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = -\langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$

A D F A 同 F A E F A E F A Q A

- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + m(\text{trace}A_H^3) m^2 |H|^4$
- $\bullet \phi_H = A_H |H|^2 \mathbf{I}$
- Σ^m is biharmonic $\Rightarrow |\phi_H|^2 = (m |T|^2)|H|^2 m|H|^4$

 $\blacktriangleright \langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = -\langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + m(\text{trace}A_H^3) m^2 |H|^4$
- $\bullet \phi_H = A_H |H|^2 \mathbf{I}$
- $\Sigma^{m} \text{ is biharmonic} \Rightarrow |\phi_{H}|^{2} = (m |T|^{2})|H|^{2} m|H|^{4}$ $\frac{1}{2}\Delta|\phi_{H}|^{2} = |\nabla\phi_{H}|^{2} + m(\operatorname{trace}\phi_{H}^{3}) + 3m|H|^{2}|\phi_{H}|^{2}$ $-m^{2}|H|^{4}(1 |H|^{2})$

 $\blacktriangleright \langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = - \langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + m(\text{trace}A_H^3) m^2 |H|^4$
- $\bullet \phi_H = A_H |H|^2 \mathbf{I}$
- Σ^m is biharmonic $\Rightarrow |\phi_H|^2 = (m |T|^2)|H|^2 m|H|^4$ $\frac{1}{2}\Delta|\phi_H|^2 = |\nabla\phi_H|^2 + m(\text{trace }\phi_H^3) + 3m|H|^2|\phi_H|^2$ • $-m^2|H|^4(1 - |H|^2)$

• Okumura Lemma
$$\Rightarrow$$
 trace $\phi_H^3 \ge -\frac{m-2}{\sqrt{m(m-1)}} |\phi_H|^3$

 $\blacktriangleright \langle H, \xi \rangle = 0 \quad \Rightarrow \quad 0 = \langle \bar{\nabla}_X H, \xi \rangle = - \langle A_H T, X \rangle \quad \Rightarrow \quad A_H T = 0$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + m(\text{trace}A_H^3) m^2|H|^4$
- $\bullet \phi_H = A_H |H|^2 \mathbf{I}$
- $\Sigma^{m} \text{ is biharmonic} \Rightarrow |\phi_{H}|^{2} = (m |T|^{2})|H|^{2} m|H|^{4}$ $\frac{1}{2}\Delta|\phi_{H}|^{2} = |\nabla\phi_{H}|^{2} + m(\text{trace }\phi_{H}^{3}) + 3m|H|^{2}|\phi_{H}|^{2}$

$$-m^2|H|^4(1-|H|^2)$$

- Okumura Lemma \Rightarrow trace $\phi_H^3 \ge -\frac{m-2}{\sqrt{m(m-1)}} |\phi_H|^3$
- $\frac{1}{2}\Delta|\phi_H|^2 \ge m|\phi_H|^2 \left(-\frac{m-2}{\sqrt{m(m-1)}}|\phi_H|+2|H|^2-|T|^2\right)$

$$rac{1}{2}\Delta |\phi_H|^2 \geq rac{P(|T|^2)}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^2}+2\sqrt{m-1}|H|)}|\phi_H|^2$$

$$\ge \frac{P(1)}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^2}+2\sqrt{m-1}|H|)} |\phi_H|^2$$

$$\geq 0$$

 $P(t) = m(m-1)t^2 - (3m^2 - 4)|H|^2t + m|H|^2(m^2|H|^2 - (m-2)^2)$

$$rac{1}{2}\Delta |\phi_{H}|^{2} \geq rac{P(|T|^{2})}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^{2}}+2\sqrt{m-1}|H|)}|\phi_{H}|^{2}$$

$$\blacktriangleright \geq \frac{P(1)}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^2}+2\sqrt{m-1}|H|)}|\phi_H|^2$$

$$\geq 0$$

$$P(t) = m(m-1)t^2 - (3m^2 - 4)|H|^2t + m|H|^2(m^2|H|^2 - (m-2)^2)$$

$$\mathsf{Ric}X \geq -m|A_H| - |\sigma|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\frac{1}{2}\Delta |\phi_H|^2 \geq \frac{P(|T|^2)}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^2}+2\sqrt{m-1}|H|)}|\phi_H|^2$$

$$\geq rac{P(1)}{\sqrt{m-1}|H|((m-2)\sqrt{1-|H|^2}+2\sqrt{m-1}|H|)}|\phi_H|^2$$

$$\geq 0$$

$$P(t) = m(m-1)t^2 - (3m^2 - 4)|H|^2t + m|H|^2(m^2|H|^2 - (m-2)^2)$$

$$\operatorname{Ric} X \geq -m|A_H| - |\sigma|^2$$

Theorem (Omori-Yau Maximum Principle)

If Σ^m is a complete Riemannian manifold with Ricci curvature bounded from below, then for any smooth function $u \in C^2(\Sigma^m)$ with $\sup_{\Sigma^m} u < +\infty$ there exists a sequence of points $\{p_k\}_{k \in \mathbb{N}} \subset \Sigma^m$ satisfying

$$\lim_{k \to \infty} u(p_k) = \sup_{\Sigma^m} u, \quad |\nabla u|(p_k) < \frac{1}{k} \quad \text{and} \quad \Delta u(p_k) < \frac{1}{k}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

►
$$\begin{cases} \phi_H = 0 \ (\Sigma^m = \text{pseudo-umbilical}) \\ A_H T = 0 \end{cases} \Rightarrow T = 0 \ (\Sigma^m \text{ lies in } \mathbb{S}^n) \\ \models |H|^2 > C(m) > (\frac{m-1}{m})^2 > (\frac{m-2}{m})^2 \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

►
$$|H|^2 > C(m) > (\frac{m-1}{m})^2 > (\frac{m-2}{m})^2$$

 |H| = 1 and Σ^m is a minimal submanifold of a small hypersphere Sⁿ⁻¹(2) ⊂ Sⁿ

Biharmonic pmc surfaces in $\mathbb{S}^n(c) \times \mathbb{R}$

Lemma (F., Oniciuc, Rosenberg - 2011)

A pmc surface Σ^2 in $\mathbb{S}^n(c) \times \mathbb{R}$ is proper-biharmonic iff either

- 1. Σ^2 is pseudo-umbilical and, therefore, it is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2c) \subset \mathbb{S}^n(c)$; or
- 2. the mean curvature vector field *H* is orthogonal to ξ , $|A_H|^2 = c(2 - |T|^2)|H|^2$, and $A_U = 0$ for any normal vector field *U* orthogonal to *H*.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Biharmonic pmc surfaces in $\mathbb{S}^n(c) \times \mathbb{R}$

Lemma (F., Oniciuc, Rosenberg - 2011)

A pmc surface Σ^2 in $\mathbb{S}^n(c) \times \mathbb{R}$ is proper-biharmonic iff either

- 1. Σ^2 is pseudo-umbilical and, therefore, it is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2c) \subset \mathbb{S}^n(c)$; or
- 2. the mean curvature vector field *H* is orthogonal to ξ , $|A_H|^2 = c(2 - |T|^2)|H|^2$, and $A_U = 0$ for any normal vector field *U* orthogonal to *H*.

Corollary

If Σ^2 is a proper-biharmonic pmc surface in $\mathbb{S}^n(c) \times \mathbb{R}$ then the tangent part *T* of ξ has constant length.

Proof.

- ► the map $p \in \Sigma^2 \rightarrow (A_H \mu I)(p)$, where μ is a constant, is analytic, and, therefore, either
 - Σ^2 is a pseudo-umbilical surface (at every point), or
 - *H*(*p*) is an umbilical direction on a closed set without interior points

► $\Sigma^2 \neq$ pseudo-umbilical + $[A_H, A_U] = 0 \Rightarrow$ at $p \in \Sigma^2 \exists \{e_1, e_2\}$ - orthonormal basis that diagonalizes A_H and A_U , $\forall U \perp H$

►
$$H \perp U \Rightarrow \text{trace} A_U = 2\langle H, U \rangle = 0$$

► $A_H = \begin{pmatrix} a + |H|^2 & 0 \\ 0 & -a + |H|^2 \end{pmatrix} \text{ and } A_U = \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}$

Proof.

- ► the map $p \in \Sigma^2 \rightarrow (A_H \mu I)(p)$, where μ is a constant, is analytic, and, therefore, either
 - Σ^2 is a pseudo-umbilical surface (at every point), or
 - *H*(*p*) is an umbilical direction on a closed set without interior points
- ► $\Sigma^2 \neq$ pseudo-umbilical + $[A_H, A_U] = 0 \Rightarrow$ at $p \in \Sigma^2 \exists \{e_1, e_2\}$ - orthonormal basis that diagonalizes A_H and A_U , $\forall U \perp H$

$$H \perp U \Rightarrow \operatorname{trace} A_U = 2\langle H, U \rangle = 0$$

$$A_H = \begin{pmatrix} a + |H|^2 & 0 \\ 0 & -a + |H|^2 \end{pmatrix} \text{ and } A_U = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}$$

$$\begin{cases} 0 = \operatorname{trace}(A_H A_U) = 2ab \\ a \neq 0 \end{cases} \Rightarrow b = 0, \text{ i.e. } A_U = 0$$

Proof.

- ► the map $p \in \Sigma^2 \rightarrow (A_H \mu I)(p)$, where μ is a constant, is analytic, and, therefore, either
 - Σ² is a pseudo-umbilical surface (at every point), or
 - *H*(*p*) is an umbilical direction on a closed set without interior points
- ► $\Sigma^2 \neq$ pseudo-umbilical + $[A_H, A_U] = 0 \Rightarrow$ at $p \in \Sigma^2 \exists \{e_1, e_2\}$ - orthonormal basis that diagonalizes A_H and A_U , $\forall U \perp H$

$$H \perp U \Rightarrow \operatorname{trace} A_U = 2\langle H, U \rangle = 0$$

$$A_H = \begin{pmatrix} a + |H|^2 & 0 \\ 0 & -a + |H|^2 \end{pmatrix} \text{ and } A_U = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}$$

$$\begin{cases} 0 = \operatorname{trace}(A_H A_U) = 2ab \\ a \neq 0 \end{cases} \Rightarrow b = 0, \text{ i.e. } A_U = 0$$

• (Corollary) $H \perp N \Rightarrow \nabla_X T = A_N X = 0 \Rightarrow X(|T|^2) = 0$

Proposition (F., Rosenberg - 2010) If Σ^2 is a pmc surface in $M^n(c) \times \mathbb{R}$, then

$$\frac{1}{2}\Delta |T|^{2} = |A_{N}|^{2} + K|T|^{2} + 2T(\langle H, N \rangle),$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where *K* is the Gaussian curvature of the surface.

Proposition (F., Rosenberg - 2010) If Σ^2 is a pmc surface in $M^n(c) \times \mathbb{R}$, then

$$\frac{1}{2}\Delta|T|^{2} = |A_{N}|^{2} + K|T|^{2} + 2T(\langle H, N \rangle),$$

where K is the Gaussian curvature of the surface.

Corollary

If Σ^2 is a non-pseudo-umbilical proper-biharmonic pmc surface in $\mathbb{S}^n(c) \times \mathbb{R}$, then it is flat.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (F., Oniciuc, Rosenberg - 2011)

Let Σ^2 be a proper-biharmonic pmc surface in $\mathbb{S}^n(c) \times \mathbb{R}$. Then either

- 1. Σ^2 is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2c) \subset \mathbb{S}^n(c)$; or
- Σ² is (an open part of) a vertical cylinder π⁻¹(γ), where γ is a circle in S²(c) with curvature equal to √c, i.e. γ is a biharmonic circle in S²(c).

(日) (日) (日) (日) (日) (日) (日)
► assume $\Sigma^2 \neq$ pseudo-umbilical \Rightarrow $|T| = \text{constant} \neq 0$, i.e. $|N| = \text{constant} \in [0, 1)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► assume $\Sigma^2 \neq$ pseudo-umbilical \Rightarrow |T| =constant $\neq 0$, i.e. |N| =constant $\in [0, 1)$
- $A_U = 0, \forall U \perp H \Rightarrow \dim L = \dim \operatorname{span} \{\operatorname{Im} \sigma, N\} \le 2 \Rightarrow$
 - $T\Sigma^2 \oplus L$ is parallel, invariant by \overline{R} , and $\xi \in T\Sigma^2 \oplus L \Rightarrow$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Σ^2 lies in

•
$$\mathbb{S}^2(c) \times \mathbb{R}$$
 (if $N = 0$), or

• $\mathbb{S}^3(c) \times \mathbb{R}$

- ► assume $\Sigma^2 \neq$ pseudo-umbilical \Rightarrow |T| =constant $\neq 0$, i.e. |N| =constant $\in [0, 1)$
- ► $A_U = 0$, $\forall U \perp H \Rightarrow \dim L = \dim \operatorname{span} \{\operatorname{Im} \sigma, N\} \le 2 \Rightarrow$
 - $T\Sigma^2 \oplus L$ is parallel, invariant by \overline{R} , and $\xi \in T\Sigma^2 \oplus L \Rightarrow$
 - Σ^2 lies in
 - $\mathbb{S}^2(c) \times \mathbb{R}$ (if N = 0), or
 - $\mathbb{S}^3(c) \times \mathbb{R}$
- ► $|N| > 0 \Rightarrow \{E_3 = \frac{H}{|H|}, E_4 = \frac{N}{|N|}\}$ global orthonormal frame field $\Rightarrow |\sigma|^2 = |A_3|^2 = c(2 |T|^2)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

► $0 = 2K = 2c(1 - |T|^2) + 4|H|^2 - |\sigma|^2 \Rightarrow 4|H|^2 = c|T|^2$

- ► assume $\Sigma^2 \neq$ pseudo-umbilical \Rightarrow |T| =constant $\neq 0$, i.e. |N| =constant $\in [0, 1)$
- ► $A_U = 0$, $\forall U \perp H \Rightarrow \dim L = \dim \operatorname{span} \{\operatorname{Im} \sigma, N\} \le 2 \Rightarrow$
 - $T\Sigma^2 \oplus L$ is parallel, invariant by \overline{R} , and $\xi \in T\Sigma^2 \oplus L \Rightarrow$
 - Σ^2 lies in
 - $\mathbb{S}^2(c) \times \mathbb{R}$ (if N = 0), or
 - $\mathbb{S}^3(c) \times \mathbb{R}$
- ► $|N| > 0 \Rightarrow \{E_3 = \frac{H}{|H|}, E_4 = \frac{N}{|N|}\}$ global orthonormal frame field $\Rightarrow |\sigma|^2 = |A_3|^2 = c(2 |T|^2)$
- $0 = 2K = 2c(1 |T|^2) + 4|H|^2 |\sigma|^2 \Rightarrow 4|H|^2 = c|T|^2$
- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + 2(\operatorname{trace} A_H^3) 4c|H|^4 = |\nabla A_H|^2 + 8c|H|^4|N|^2$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- ► assume $\Sigma^2 \neq$ pseudo-umbilical \Rightarrow |T| =constant $\neq 0$, i.e. |N| =constant $\in [0, 1)$
- ► $A_U = 0$, $\forall U \perp H \Rightarrow \dim L = \dim \operatorname{span} \{\operatorname{Im} \sigma, N\} \le 2 \Rightarrow$
 - $T\Sigma^2 \oplus L$ is parallel, invariant by \overline{R} , and $\xi \in T\Sigma^2 \oplus L \Rightarrow$
 - Σ^2 lies in
 - $\mathbb{S}^2(c) \times \mathbb{R}$ (if N = 0), or
 - $\mathbb{S}^3(c) \times \mathbb{R}$
- ► $|N| > 0 \Rightarrow \{E_3 = \frac{H}{|H|}, E_4 = \frac{N}{|N|}\}$ global orthonormal frame field $\Rightarrow |\sigma|^2 = |A_3|^2 = c(2 |T|^2)$
- ► $0 = 2K = 2c(1 |T|^2) + 4|H|^2 |\sigma|^2 \Rightarrow 4|H|^2 = c|T|^2$
- $\frac{1}{2}\Delta |A_H|^2 = |\nabla A_H|^2 + 2(\operatorname{trace} A_H^3) 4c|H|^4 = |\nabla A_H|^2 + 8c|H|^4|N|^2$
- $|A_H|^2 = c(2 |T|^2)|H|^2 = \text{constant} \Rightarrow N = 0 \Rightarrow \Sigma^2 = \pi^{-1}(\gamma)$, where γ is a proper-biharmonic pmc curve with curvature $\kappa = 2|H| = \sqrt{c}$

Remark

 $\nabla A_H = 0$ for all proper-biharmonic surfaces in $\mathbb{S}^n(c) \times \mathbb{R}$.

Theorem (F., Oniciuc, Rosenberg - 2011)

If Σ^m , with $m \ge 3$, is a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c) \times \mathbb{R}$ such that $\nabla A_H = 0$, then either

- 1. Σ^m is a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c)$, with $\nabla A_H = 0$; or
- 2. Σ^m is (an open part of) a vertical cylinder $\pi^{-1}(\Sigma^{m-1})$, where Σ^{m-1} is a proper-biharmonic pmc submanifold in $\mathbb{S}^n(c)$ such that the shape operator corresponding to its mean curvature vector field in $\mathbb{S}^n(c)$ is parallel.