Simons type formulas for submanifolds with parallel mean curvature in product spaces and applications

Dorel Fetcu

XIVth International Conference on
Geometry, Integrability and Quantization June 8-13, 2012 Varna, Bulgaria

References

(R. Fetcu and H. Rosenberg, Surfaces with parallel mean curvature in $\mathbb{S}^{3} \times \mathbb{R}$ and $\mathbb{H}^{3} \times \mathbb{R}$, Michigan Math. J., to appear,
arXiv:math.DG/1103.6254v1.
囯 D. Fetcu, C. Oniciuc, and H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in $\mathbb{S}^{n} \times \mathbb{R}$, J. Geom. Anal., to appear, arXiv:math.DG/1109.6138v1.
(围 D. Fetcu and H. Rosenberg, On complete submanifolds with parallel mean curvature in product spaces, Rev. Mat. Iberoam., to appear,
arXiv:math.DG/1112.3452v1.

Using Simons inequalities to study minimal, cmc and pmc submanifolds

- 1968-J. Simons - a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold

Using Simons inequalities to study minimal, cmc and pmc submanifolds

- 1968-J. Simons - a formula for the Laplacian of the second fundamental form of a submanifold in a
Riemannian manifold
- for a minimal hypersurface Σ^{m} in \mathbb{S}^{m+1} this formula is

$$
\frac{1}{2} \Delta|A|^{2}=|\nabla A|^{2}+|A|^{2}\left(m-|A|^{2}\right) \geq|A|^{2}\left(m-|A|^{2}\right)
$$

where ∇ and A are defined by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \quad \text { and } \quad \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V
$$

- for a minimal submanifold with arbitrary codimension in \mathbb{S}^{n} :

Theorem (Simons-1968)
Let Σ^{m} be a closed minimal submanifold in \mathbb{S}^{n}. Then

$$
\int_{\Sigma^{m}}\left(|A|^{2}-\frac{m(n-m)}{2 n-2 m-1}\right)|A|^{2} \geq 0 .
$$

- for a minimal submanifold with arbitrary codimension in \mathbb{S}^{n} :

Theorem (Simons-1968)
Let Σ^{m} be a closed minimal submanifold in \mathbb{S}^{n}. Then

$$
\int_{\Sigma^{m}}\left(|A|^{2}-\frac{m(n-m)}{2 n-2 m-1}\right)|A|^{2} \geq 0 .
$$

Corollary

Let Σ^{m} be a closed minimal submanifold in \mathbb{S}^{n} with

$$
|A|^{2} \leq \frac{m(n-m)}{2 n-2 m-1}
$$

Then, either Σ^{m} is totally geodesic or $|A|^{2}=\frac{m(n-m)}{2 n-2 m-1}$.

Definition

If the mean curvature vector field $H=\frac{1}{m}$ trace σ of a submanifold Σ^{m} in a Riemannian manifold is parallel in the normal bundle,
i.e. $\nabla^{\perp} H=0$, then Σ^{m} is called a pmc submanifold. If
$|H|=$ constant, then Σ^{m} is a cmc submanifold.

Definition

If the mean curvature vector field $H=\frac{1}{m}$ trace σ of a submanifold Σ^{m} in a Riemannian manifold is parallel in the normal bundle,
i.e. $\nabla^{\perp} H=0$, then Σ^{m} is called a pmc submanifold. If
$|H|=$ constant, then Σ^{m} is a cmc submanifold.

- 1969 - K. Nomizu, B. Smyth; 1973 - B. Smyth - Simons type formula for cmc hypersurfaces and, in general, pmc submanifolds in a space form
- 1971-J. Erbacher - Simons type formula for pmc submanifolds in a space form:

$$
\begin{aligned}
\frac{1}{2} \Delta|A|^{2}= & \left|\nabla^{*} A\right|^{2}+c m\left\{|A|^{2}-m|H|^{2}\right\} \\
& +\sum_{\alpha, \beta=m+1}^{n+1}\left\{\left(\operatorname{trace} A_{\beta}\right)\left(\operatorname{trace}\left(A_{\alpha}^{2} A_{\beta}\right)\right)\right. \\
& \left.+\operatorname{trace}\left[A_{\alpha}, A_{\beta}\right]^{2}-\left(\operatorname{trace}\left(A_{\alpha} A_{\beta}\right)\right)^{2}\right\}
\end{aligned}
$$

- 1977 - S.-Y. Cheng, S.-T. Yau - a general Simons type equation for operators S, acting on a submanifold of a Riemannian manifold and satisfying $\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X$
- 1970 - S.-S. Chern, M. do Carmo, S. Kobayashi; 1994 H. Alencar, M. do Carmo - gap theorems for minimal hypersurfaces and cmc hypersurfaces, respectively, in $\mathbb{S}^{n}(c)$
- 1994-W. Santos - a gap theorem for pmc submanifolds in $\mathbb{S}^{n}(c)$
- other studies on pmc submanifolds in space forms:
- 1984, 1993, 2005, 2010, 2011 - H.-W. Xu et al.
- 2001 - Q. M. Cheng, K. Nonaka
- 2009 - K. Araújo, K. Tenenblat
- 2010 - M. Batista - Simons type formulas for cmc surfaces in $M^{2}(c) \times \mathbb{R}$

A Simons type formula for submanifolds in $\mathbb{M}^{n}(c) \times \mathbb{R}$

Theorem (F., Oniciuc, Rosenberg - 2011)
Let Σ^{m} be a submanifold of $M^{n}(c) \times \mathbb{R}$, with mean curvature vector field H and shape operator A. If V is a normal vector field, parallel in the normal bundle, with trace $A_{V}=$ constant, then

$$
\begin{aligned}
\frac{1}{2} \Delta\left|A_{V}\right|^{2}= & \left|\nabla A_{V}\right|^{2}+c\left\{\left(m-|T|^{2}\right)\left|A_{V}\right|^{2}-2 m\left|A_{V} T\right|^{2}\right. \\
& +3\left(\operatorname{trace} A_{V}\right)\left\langle A_{V} T, T\right\rangle-m\left(\operatorname{trace} A_{V}\right)\langle H, N\rangle\langle V, N\rangle \\
& \left.+m\left(\operatorname{trace}\left(A_{N} A_{V}\right)\right)\langle V, N\rangle-\left(\operatorname{trace} A_{V}\right)^{2}\right\} \\
& +\sum_{\alpha=m+1}^{n+1}\left\{\left(\operatorname{trace} A_{\alpha}\right)\left(\operatorname{trace}\left(A_{V}^{2} A_{\alpha}\right)\right)-\left(\operatorname{trace}\left(A_{V} A_{\alpha}\right)\right)^{2}\right\}
\end{aligned}
$$

where $\left\{E_{\alpha}\right\}_{\alpha=m+1}^{n+1}$ is a local orthonormal frame field in the normal bundle, and T and N are the tangent and normal part, respectively, of the unit vector ξ tangent to \mathbb{R}.

Sketch of the proof.

- Weitzenböck formula: $\frac{1}{2} \Delta\left|A_{V}\right|^{2}=\left|\nabla A_{V}\right|^{2}+\left\langle\operatorname{trace} \nabla^{2} A_{V}, A_{V}\right\rangle$

Sketch of the proof.

- Weitzenböck formula: $\frac{1}{2} \Delta\left|A_{V}\right|^{2}=\left|\nabla A_{V}\right|^{2}+\left\langle\operatorname{trace} \nabla^{2} A_{V}, A_{V}\right\rangle$
- $C(X, Y)=\left(\nabla^{2} A_{V}\right)(X, Y)=\nabla_{X}\left(\nabla_{Y} A_{V}\right)-\nabla_{\nabla_{X} Y} A_{V}$
- consider an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{m}$ in $T_{p} \Sigma^{m}, p \in \Sigma^{m}$, extend e_{i} to vector fields E_{i} in a neighborhood of p such that $\left\{E_{i}\right\}$ is a geodesic frame field around p, and denote $X=E_{k}$

$$
\left(\operatorname{trace} \nabla^{2} A_{V}\right) X=\sum_{i=1}^{m} C\left(E_{i}, E_{i}\right) X
$$

- Codazzi equation of Σ^{m} :
$\left(\nabla_{X} A_{V}\right) Y=\left(\nabla_{Y} A_{V}\right) X+c\langle V, N\rangle(\langle Y, T\rangle X-\langle X, T\rangle Y)$
- Codazzi equation of Σ^{m} :
$\left(\nabla_{X} A_{V}\right) Y=\left(\nabla_{Y} A_{V}\right) X+c\langle V, N\rangle(\langle Y, T\rangle X-\langle X, T\rangle Y)$
- Ricci commutation formula: $C(X, Y)=C(Y, X)+\left[R(X, Y), A_{V}\right]$
- Codazzi equation of Σ^{m} :

$$
\left(\nabla_{X} A_{V}\right) Y=\left(\nabla_{Y} A_{V}\right) X+c\langle V, N\rangle(\langle Y, T\rangle X-\langle X, T\rangle Y)
$$

- Ricci commutation formula: $C(X, Y)=C(Y, X)+\left[R(X, Y), A_{V}\right]$
- Codazzi equation + Ricci formula \Rightarrow

$$
\begin{aligned}
C\left(E_{i}, E_{i}\right) X= & \nabla_{X}\left(\left(\nabla_{E_{i}} A_{V}\right) E_{i}\right)+\left[R\left(E_{i}, X\right), A_{V}\right] E_{i} \\
& +c\left\langle A_{V} E_{i}, T\right\rangle\left(\left\langle E_{i}, T\right\rangle X-\langle X, T\rangle E_{i}\right) \\
& -c\langle V, N\rangle\left(\left\langle A_{N} E_{i}, E_{i}\right\rangle X-\left\langle A_{N} X, E_{i}\right\rangle E_{i}\right)
\end{aligned}
$$

- Codazzi equation of Σ^{m} :

$$
\left(\nabla_{X} A_{V}\right) Y=\left(\nabla_{Y} A_{V}\right) X+c\langle V, N\rangle(\langle Y, T\rangle X-\langle X, T\rangle Y)
$$

- Ricci commutation formula: $C(X, Y)=C(Y, X)+\left[R(X, Y), A_{V}\right]$
- Codazzi equation + Ricci formula \Rightarrow

$$
\begin{aligned}
C\left(E_{i}, E_{i}\right) X= & \nabla_{X}\left(\left(\nabla_{E_{i}} A_{V}\right) E_{i}\right)+\left[R\left(E_{i}, X\right), A_{V}\right] E_{i} \\
& +c\left\langle A_{V} E_{i}, T\right\rangle\left(\left\langle E_{i}, T\right\rangle X-\langle X, T\rangle E_{i}\right) \\
& -c\langle V, N\rangle\left(\left\langle A_{N} E_{i}, E_{i}\right\rangle X-\left\langle A_{N} X, E_{i}\right\rangle E_{i}\right)
\end{aligned}
$$

- $\nabla_{E_{i}} A_{V}$ is symmetric + Codazzi eq. + trace $A_{V}=$ constant \Rightarrow $\sum_{i=1}^{m}\left(\nabla_{E_{i}} A_{V}\right) E_{i}=c(m-1)\langle V, N\rangle T$

$$
\begin{aligned}
R(X, Y) Z= & c\{\langle Y, Z\rangle X-\langle X, Z\rangle Y-\langle Y, T\rangle\langle Z, T\rangle X+\langle X, T\rangle\langle Z, T\rangle Y \\
& +\langle X, Z\rangle\langle Y, T\rangle T-\langle Y, Z\rangle\langle X, T\rangle T\} \\
& +\sum_{\alpha=m+1}^{n+1}\left\{\left\langle A_{\alpha} Y, Z\right\rangle A_{\alpha} X-\left\langle A_{\alpha} X, Z\right\rangle A_{\alpha} Y\right\}
\end{aligned}
$$

- Codazzi equation of Σ^{m} :

$$
\left(\nabla_{X} A_{V}\right) Y=\left(\nabla_{Y} A_{V}\right) X+c\langle V, N\rangle(\langle Y, T\rangle X-\langle X, T\rangle Y)
$$

- Ricci commutation formula: $C(X, Y)=C(Y, X)+\left[R(X, Y), A_{V}\right]$
- Codazzi equation + Ricci formula \Rightarrow

$$
\begin{aligned}
C\left(E_{i}, E_{i}\right) X= & \nabla_{X}\left(\left(\nabla_{E_{i}} A_{V}\right) E_{i}\right)+\left[R\left(E_{i}, X\right), A_{V}\right] E_{i} \\
& +c\left\langle A_{V} E_{i}, T\right\rangle\left(\left\langle E_{i}, T\right\rangle X-\langle X, T\rangle E_{i}\right) \\
& -c\langle V, N\rangle\left(\left\langle A_{N} E_{i}, E_{i}\right\rangle X-\left\langle A_{N} X, E_{i}\right\rangle E_{i}\right)
\end{aligned}
$$

- $\nabla_{E_{i}} A_{V}$ is symmetric + Codazzi eq. + trace $A_{V}=$ constant \Rightarrow $\sum_{i=1}^{m}\left(\nabla_{E_{i}} A_{V}\right) E_{i}=c(m-1)\langle V, N\rangle T$

$$
\begin{aligned}
R(X, Y) Z= & c\{\langle Y, Z\rangle X-\langle X, Z\rangle Y-\langle Y, T\rangle\langle Z, T\rangle X+\langle X, T\rangle\langle Z, T\rangle Y \\
& +\langle X, Z\rangle\langle Y, T\rangle T-\langle Y, Z\rangle\langle X, T\rangle T\} \\
& +\sum_{\alpha=m+1}^{n+1}\left\{\left\langle A_{\alpha} Y, Z\right\rangle A_{\alpha} X-\left\langle A_{\alpha} X, Z\right\rangle A_{\alpha} Y\right\}
\end{aligned}
$$

- Ricci eq. $\left\langle R^{\perp}(X, Y) V, U\right\rangle=\left\langle\left[A_{V}, A_{U}\right] X, Y\right\rangle+\langle\bar{R}(X, Y) V, U\rangle \Rightarrow$

$$
\left[A_{V}, A_{U}\right]=0, \forall U \in N \Sigma^{m}
$$

pmc surfaces in $M^{3}(c) \times \mathbb{R}$

- Let Σ^{2} be a non-minimal pmc surface in $M^{3}(c) \times \mathbb{R}$
- Consider the orthonormal frame field $\left\{E_{3}=\frac{H}{|H|}, E_{4}\right\}$ in the normal bundle $\Rightarrow E_{4}=$ parallel
- $\phi_{3}=A_{3}-|H|$ I and $\phi_{4}=A_{4}$
- $\phi(X, Y)=\sigma(X, Y)-\langle X, Y\rangle H=\left\langle\phi_{3} X, Y\right\rangle E_{3}+\left\langle\phi_{4} X, Y\right\rangle E_{4}$
- $|\phi|^{2}=\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}=|\sigma|^{2}-2|H|^{2}$

pmc surfaces in $M^{3}(c) \times \mathbb{R}$

- Let Σ^{2} be a non-minimal pmc surface in $M^{3}(c) \times \mathbb{R}$
- Consider the orthonormal frame field $\left\{E_{3}=\frac{H}{|H|}, E_{4}\right\}$ in the normal bundle $\Rightarrow E_{4}=$ parallel
- $\phi_{3}=A_{3}-|H|$ I and $\phi_{4}=A_{4}$
- $\phi(X, Y)=\sigma(X, Y)-\langle X, Y\rangle H=\left\langle\phi_{3} X, Y\right\rangle E_{3}+\left\langle\phi_{4} X, Y\right\rangle E_{4}$
- $|\phi|^{2}=\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}=|\sigma|^{2}-2|H|^{2}$

Proposition (F., Rosenberg - 2011)
If Σ^{2} is an immersed pmc surface in $M^{n}(c) \times \mathbb{R}$, then

$$
\frac{1}{2} \Delta|T|^{2}=\left|A_{N}\right|^{2}-\frac{1}{2}|T|^{2}|\phi|^{2}-2\langle\phi(T, T), H\rangle+c|T|^{2}\left(1-|T|^{2}\right)-|T|^{2}|H|^{2} .
$$

Theorem (F., Rosenberg - 2011)
Let Σ^{2} be an immersed pmc 2 -sphere in $M^{n}(c) \times \mathbb{R}$, such that

1. $|T|^{2}=0$ or $|T|^{2} \geq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c<0$;
2. $|T|^{2} \leq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c>0$.

Then, Σ^{2} is either a minimal surface in a totally umbilical hypersurface of $M^{n}(c)$ or a standard sphere in $M^{3}(c)$.

Theorem (F., Rosenberg - 2011)
Let Σ^{2} be an immersed pme 2 -sphere in $M^{n}(c) \times \mathbb{R}$, such that

1. $|T|^{2}=0$ or $|T|^{2} \geq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c<0$;
2. $|T|^{2} \leq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c>0$.

Then, Σ^{2} is either a minimal surface in a totally umbilical hypersurface of $M^{n}(c)$ or a standard sphere in $M^{3}(c)$.
Proof.

- $Q(X, Y)=2\langle\sigma(X, Y), H\rangle-c\langle X, \xi\rangle\langle Y, \xi\rangle \Rightarrow$
$Q^{(2,0)}=$ holomorphic

Theorem (F., Rosenberg - 2011)
Let Σ^{2} be an immersed pmc 2-sphere in $M^{n}(c) \times \mathbb{R}$, such that

1. $|T|^{2}=0$ or $|T|^{2} \geq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c<0$;
2. $|T|^{2} \leq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c>0$.

Then, Σ^{2} is either a minimal surface in a totally umbilical hypersurface of $M^{n}(c)$ or a standard sphere in $M^{3}(c)$.
Proof.

- $Q(X, Y)=2\langle\sigma(X, Y), H\rangle-c\langle X, \xi\rangle\langle Y, \xi\rangle \Rightarrow$ $Q^{(2,0)}=$ holomorphic
- assume $|T| \neq 0$ on an open dense set, and consider $\left\{e_{1}=T /|T|, e_{2}\right\}$
- Σ^{2} is a sphere $\Rightarrow Q^{(2,0)}=0 \Rightarrow\langle\phi(T, T), H\rangle=\frac{1}{4} c|T|^{2} \Rightarrow$
- $\frac{1}{2} \Delta|T|^{2}=\left|A_{N}\right|^{2}+\frac{1}{2}|T|^{2}\left(-|\sigma|^{2}+c\left(2-3|T|^{2}\right)\right) \geq 0$

Theorem (F., Rosenberg - 2011)

Let Σ^{2} be an immersed pmc 2 -sphere in $M^{n}(c) \times \mathbb{R}$, such that

1. $|T|^{2}=0$ or $|T|^{2} \geq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c<0$;
2. $|T|^{2} \leq \frac{2}{3}$ and $|\sigma|^{2} \leq c\left(2-3|T|^{2}\right)$, if $c>0$.

Then, Σ^{2} is either a minimal surface in a totally umbilical hypersurface of $M^{n}(c)$ or a standard sphere in $M^{3}(c)$.
Proof.

- $Q(X, Y)=2\langle\sigma(X, Y), H\rangle-c\langle X, \xi\rangle\langle Y, \xi\rangle \Rightarrow$ $Q^{(2,0)}=$ holomorphic
- assume $|T| \neq 0$ on an open dense set, and consider $\left\{e_{1}=T /|T|, e_{2}\right\}$
- Σ^{2} is a sphere $\Rightarrow Q^{(2,0)}=0 \Rightarrow\langle\phi(T, T), H\rangle=\frac{1}{4} c|T|^{2} \Rightarrow$
- $\frac{1}{2} \Delta|T|^{2}=\left|A_{N}\right|^{2}+\frac{1}{2}|T|^{2}\left(-|\sigma|^{2}+c\left(2-3|T|^{2}\right)\right) \geq 0$
- $K \geq 0 \Rightarrow \Sigma^{2}$ is a parabolic space \Rightarrow
$|T|=$ constant $, \quad A_{N}=0, \quad \nabla_{X} T=0 \Rightarrow K=0$ (contradiction)
$\Rightarrow T=0$ (the result then follows from [Yau-1974])

Proposition (F., Rosenberg-2011)
If Σ^{2} is a non-minimal pmc surface in $M^{3}(c) \times \mathbb{R}$, then

$$
\begin{aligned}
\frac{1}{2} \Delta|\phi|^{2}= & \left|\nabla \phi_{3}\right|^{2}+\left|\nabla \phi_{4}\right|^{2}-|\phi|^{4}+\left\{c\left(2-3|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
& -2 c\langle\phi(T, T), H\rangle+2 c\left|A_{N}\right|^{2}-4 c\langle H, N\rangle^{2}
\end{aligned}
$$

Theorem

Let Σ^{2} be a complete non-minimal pmc surface in $M^{3}(c) \times \mathbb{R}$, $c>0$. Assume
i) $|\phi|^{2} \leq 2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$, and
ii) a) $|T|=0$, or
b) $|T|^{2}>\frac{2}{3}$ and $|H|^{2} \geq \frac{c|T|^{2}\left(1-|T|^{2}\right)}{3|T|^{2}-2}$.

Then either

1. $|\phi|^{2}=0$ and Σ^{2} is a round sphere in $M^{3}(c)$, or
2. $|\phi|^{2}=2|H|^{2}+2 c$ and Σ^{2} is a torus $\mathbb{S}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{\frac{1}{c}-r^{2}}\right)$, $r^{2} \neq \frac{1}{2 c}$, in $M^{3}(c)$.

Sketch of the proof.

$$
\begin{aligned}
\frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right)= & \left|\nabla \phi_{3}\right|^{2}+\left|\nabla \phi_{4}\right|^{2} \\
& +\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
& +c\left|A_{N}\right|^{2}-4 c\langle H, N\rangle^{2}+c|T|^{2}|H|^{2} \\
& -c^{2}|T|^{2}\left(1-|T|^{2}\right)
\end{aligned}
$$

Sketch of the proof.

$$
\begin{aligned}
\frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right)= & \left|\nabla \phi_{3}\right|^{2}+\left|\nabla \phi_{4}\right|^{2} \\
& +\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
& +c\left|A_{N}\right|^{2}-4 c\langle H, N\rangle^{2}+c|T|^{2}|H|^{2} \\
& -c^{2}|T|^{2}\left(1-|T|^{2}\right)
\end{aligned}
$$

- $\left|A_{N}\right|^{2} \geq 2\langle H, N\rangle^{2}$ and $\langle H, N\rangle^{2} \leq\left(1-|T|^{2}\right)|H|^{2}$

Sketch of the proof.

$$
\begin{aligned}
& \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right)=\left|\nabla \phi_{3}\right|^{2}+\left|\nabla \phi_{4}\right|^{2} \\
&+\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
&+c\left|A_{N}\right|^{2}-4 c\langle H, N\rangle^{2}+c|T|^{2}|H|^{2} \\
&-c^{2}|T|^{2}\left(1-|T|^{2}\right) \\
& \bullet\left|A_{N}\right|^{2} \geq 2\langle H, N\rangle^{2} \text { and }\langle H, N\rangle^{2} \leq\left(1-|T|^{2}\right)|H|^{2} \\
& \qquad \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right) \geq\left\{-|\phi|^{2}+2 c+2|H|^{2}\right\}|\phi|^{2} \geq 0, \text { if } T=0 \\
& \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right) \geq\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
&+c\left(3|T|^{2}-2\right)|H|^{2}-c^{2}|T|^{2}\left(1-|T|^{2}\right) \\
& \geq 0,
\end{aligned}
$$

otherwise

Sketch of the proof.

$$
\begin{aligned}
& \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right)=\left|\nabla \phi_{3}\right|^{2}+\left|\nabla \phi_{4}\right|^{2} \\
&+\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
&+c\left|A_{N}\right|^{2}-4 c\langle H, N\rangle^{2}+c|T|^{2}|H|^{2} \\
&-c^{2}|T|^{2}\left(1-|T|^{2}\right) \\
& \bullet\left|A_{N}\right|^{2} \geq 2\langle H, N\rangle^{2} \text { and }\langle H, N\rangle^{2} \leq\left(1-|T|^{2}\right)|H|^{2} \\
& \qquad \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right) \geq\left\{-|\phi|^{2}+2 c+2|H|^{2}\right\}|\phi|^{2} \geq 0, \text { if } T=0 \\
& \frac{1}{2} \Delta\left(|\phi|^{2}-c|T|^{2}\right) \geq\left\{-|\phi|^{2}+\frac{c}{2}\left(4-5|T|^{2}\right)+2|H|^{2}\right\}|\phi|^{2} \\
&+c\left(3|T|^{2}-2\right)|H|^{2}-c^{2}|T|^{2}\left(1-|T|^{2}\right) \\
& \geq 0,
\end{aligned}
$$

otherwise

- $2 K=2 c\left(1-|T|^{2}\right)+2|H|^{2}-|\phi|^{2} \geq \frac{1}{2} c|T|^{2} \geq 0$ and $|\phi|^{2}-c|T|^{2}$ is bounded and subharmonic \Rightarrow
- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $\phi=0 \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$
([Alencar, do Carmo, Tribuzy - 2010])
- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $\phi=0 \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$
([Alencar, do Carmo, Tribuzy - 2010])
- $\phi \neq 0,\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2} \Rightarrow$ $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N=0$ or $N \| H$
- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $\phi=0 \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$
([Alencar, do Carmo, Tribuzy - 2010])
- $\phi \neq 0,\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2} \Rightarrow$ $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N=0$ or $N \| H$
- $N=0+$ hypothesis $\Rightarrow \Sigma^{2}$ is minimal (contradiction)
- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $\phi=0 \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$ ([Alencar, do Carmo, Tribuzy - 2010])
- $\phi \neq 0,\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2} \Rightarrow$ $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N=0$ or $N \| H$
- $N=0+$ hypothesis $\Rightarrow \Sigma^{2}$ is minimal (contradiction)
- $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N \| H \Rightarrow A_{H}=|H|^{2} \mathrm{I} \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$
- $|\phi|^{2}-c|T|^{2}=$ constant and $\phi=0$ or $|\phi|^{2}=2|H|^{2}+2 c-\frac{5 c}{2}|T|^{2}$ and

$$
\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2}
$$

- $\phi=0 \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$ ([Alencar, do Carmo, Tribuzy - 2010])
- $\phi \neq 0,\left|A_{N}\right|^{2}=2\langle H, N\rangle,\langle H, N\rangle^{2}=\left(1-|T|^{2}\right)|H|^{2} \Rightarrow$ $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N=0$ or $N \| H$
- $N=0+$ hypothesis $\Rightarrow \Sigma^{2}$ is minimal (contradiction)
- $A_{N}=\langle H, N\rangle \mathrm{I}$ and $N \| H \Rightarrow A_{H}=|H|^{2} \mathrm{I} \Rightarrow \Sigma^{2}$ is pseudo-umbilical $\Rightarrow \Sigma^{2}$ lies in $M^{3}(c)$
- in conclusion Σ^{2} lies in $M^{3}(c)$ and the result follows from [Alencar, do Carmo - 1994; Santos - 1994], using $\nabla \phi=0$.

Another Simons type formula

Proposition (F., Rosenberg - 2011)
Let Σ^{m} be a pmc submanifold of $M^{n}(c) \times \mathbb{R}$, with mean curvature vector field H, shape operator A, and second fundamental form σ. Then we have

$$
\begin{aligned}
\frac{1}{2} \Delta|\sigma|^{2}= & \left|\nabla^{\perp} \sigma\right|^{2}+c\left\{\left(m-|T|^{2}\right)|\sigma|^{2}-2 m \sum_{\alpha=m+1}^{n+1}\left|A_{\alpha} T\right|^{2}\right. \\
& \left.+3 m\langle\sigma(T, T), H\rangle+m\left|A_{N}\right|^{2}-m^{2}\langle H, N\rangle^{2}-m^{2}|H|^{2}\right\} \\
& +\sum_{\alpha, \beta=m+1}^{n+1}\left\{\left(\operatorname{trace} A_{\beta}\right)\left(\operatorname{trace}\left(A_{\alpha}^{2} A_{\beta}\right)\right)+\operatorname{trace}\left[A_{\alpha}, A_{\beta}\right]^{2}\right. \\
& \left.-\left(\operatorname{trace}\left(A_{\alpha} A_{\beta}\right)\right)^{2}\right\}
\end{aligned}
$$

where $\left\{E_{\alpha}\right\}_{\alpha=m+1}^{n+1}$ is a local orthonormal frame field in the normal bundle.

Complete pmc submanifolds in product spaces

Case I. pmc submanifolds with dimension higher than 2
Theorem (F., Rosenberg - 2011)
Let Σ^{m} be a complete non-minimal pmc submanifold in $M^{n}(c) \times \mathbb{R}, n>m \geq 3, c>0$, with mean curvature vector field H and second fundamental form σ. If the angle between H and ξ is constant and

$$
|\sigma|^{2}+\frac{2 c(2 m+1)}{m}|T|^{2} \leq 2 c+\frac{m^{2}}{m-1}|H|^{2},
$$

then Σ^{m} is a totally umbilical cmc hypersurface in $M^{m+1}(c)$.

Theorem (F., Rosenberg - 2011)
Let Σ^{m} be a complete non-minimal pmc submanifold in $M^{n}(c) \times \mathbb{R}, n>m \geq 3, c<0$, with mean curvature vector field H and second fundamental form σ. If H is orthogonal to ξ and

$$
|\sigma|^{2}+\frac{2 c(m+1)}{m}|T|^{2} \leq 4 c+\frac{m^{2}}{m-1}|H|^{2},
$$

then Σ^{m} is a totally umbilical cmc hypersurface in $M^{m+1}(c)$.

Case II. pmc surfaces

Theorem (F., Rosenberg - 2011)
Let Σ^{2} be a complete non-minimal pmc surface in $M^{n}(c) \times \mathbb{R}$, $n>2, c>0$, such that the angle between H and ξ is constant and

$$
|\sigma|^{2}+3 c|T|^{2} \leq 4|H|^{2}+2 c .
$$

Then, either

1. Σ^{2} is pseudo-umbilical and lies in $M^{n}(c)$; or
2. Σ^{2} is a torus $\mathbb{S}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{\frac{1}{c}-r^{2}}\right)$ in $M^{3}(c)$, with $r^{2} \neq \frac{1}{2 c}$.

Case II. pmc surfaces

Theorem (F., Rosenberg - 2011)
Let Σ^{2} be a complete non-minimal pmc surface in $M^{n}(c) \times \mathbb{R}$, $n>2, c>0$, such that the angle between H and ξ is constant and

$$
|\sigma|^{2}+3 c|T|^{2} \leq 4|H|^{2}+2 c .
$$

Then, either

1. Σ^{2} is pseudo-umbilical and lies in $M^{n}(c)$; or
2. Σ^{2} is a torus $\mathbb{S}^{1}(r) \times \mathbb{S}^{1}\left(\sqrt{\frac{1}{c}-r^{2}}\right)$ in $M^{3}(c)$, with $r^{2} \neq \frac{1}{2 c}$.

Theorem (F., Rosenberg - 2011)

Let Σ^{2} be a complete non-minimal pmc surface in $M^{n}(c) \times \mathbb{R}$, $n>2, c<0$, such that H is orthogonal to ξ and

$$
|\sigma|^{2}+5 c|T|^{2} \leq 4|H|^{2}+4 c
$$

Then Σ^{2} is pseudo-umbilical and lies in $M^{n}(c)$.

A gap theorem for biharmonic pmc submanifolds in $\mathbb{S}^{n} \times \mathbb{R}$

Definition
A harmonic map $\psi:(M, g) \rightarrow(\bar{M}, h)$ between two Riemannian manifolds is a critical point of the energy functional

$$
E(\psi)=\frac{1}{2} \int_{M}|d \psi|^{2} v_{g} .
$$

The Euler-Lagrange equation for the energy functional:

$$
\tau(\psi)=\operatorname{trace} \nabla d \psi=0
$$

and τ is called the tension field.

Definition

A biharmonic map is a critical point of the bienergy functional

$$
E_{2}(\psi)=\frac{1}{2} \int_{M}|\tau(\psi)|^{2} v_{g}
$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986)
A map $\psi:(M, g) \rightarrow(\bar{M}, h)$ is biharmonic if and only if

$$
\tau_{2}(\psi)=\Delta \tau(\psi)-\operatorname{trace} \bar{R}(d \psi, \tau(\psi)) d \psi=0
$$

Definition

A biharmonic map is a critical point of the bienergy functional

$$
E_{2}(\psi)=\frac{1}{2} \int_{M}|\tau(\psi)|^{2} v_{g}
$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986)
A map $\psi:(M, g) \rightarrow(\bar{M}, h)$ is biharmonic if and only if

$$
\tau_{2}(\psi)=\Delta \tau(\psi)-\operatorname{trace} \bar{R}(d \psi, \tau(\psi)) d \psi=0
$$

Definition
A submanifold of a Riemannian manifold is called a biharmonic submanifold if the inclusion map is biharmonic.

Definition

A biharmonic map is a critical point of the bienergy functional

$$
E_{2}(\psi)=\frac{1}{2} \int_{M}|\tau(\psi)|^{2} v_{g}
$$

If ψ is a biharmonic non-harmonic map, then it is called a proper-biharmonic map.

Theorem (Jiang - 1986)
A map $\psi:(M, g) \rightarrow(\bar{M}, h)$ is biharmonic if and only if

$$
\tau_{2}(\psi)=\Delta \tau(\psi)-\operatorname{trace} \bar{R}(d \psi, \tau(\psi)) d \psi=0
$$

Definition
A submanifold of a Riemannian manifold is called a biharmonic submanifold if the inclusion map is biharmonic.

Proposition (F., Oniciuc, Rosenberg - 2011)

If Σ^{m} is a compact biharmonic submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$, then Σ^{m} lies in $\mathbb{S}^{n}(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)
If Σ^{m} is a compact biharmonic submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$, then Σ^{m} lies in $\mathbb{S}^{n}(c)$.

Theorem (Oniciuc - 2003)
A proper-biharmonic cmc submanifold Σ^{m} in $\mathbb{S}^{n}(c)$, with mean curvature equal to \sqrt{c}, is minimal in a small hypersphere $\mathbb{S}^{n-1}(2 c) \subset \mathbb{S}^{n}(c)$.

Theorem (Balmuş, Oniciuc - 2010)
If Σ^{m} is a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c)$, with mean curvature vector field H and $m>2$, then $|H| \in\left(0, \frac{m-2}{m} \sqrt{c}\right] \cup\{\sqrt{c}\}$. Moreover, $|H|=\frac{m-2}{m} \sqrt{c}$ if and only if Σ^{m} is (an open part of) a standard product

$$
\Sigma_{1}^{m-1} \times \mathbb{S}^{1}(2 c) \subset \mathbb{S}^{n}(c),
$$

where Σ_{1}^{m-1} is a minimal submanifold in $\mathbb{S}^{n-2}(2 c)$.

Theorem (Balmuş, Montaldo, Oniciuc - 2011)
A submanifold Σ^{m} in a Riemannian manifold \bar{M} is biharmonic iff

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H} \cdot\right)+\operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp}=0 \\
\frac{m}{2} \operatorname{grad}|H|^{2}+2 \operatorname{trace} A_{\nabla \stackrel{\perp}{ }}(\cdot)+2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top}=0
\end{array}\right.
$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M}.

Theorem (Balmuş, Montaldo, Oniciuc - 2011)
A submanifold Σ^{m} in a Riemannian manifold \bar{M} is biharmonic iff

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H} \cdot\right)+\operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp}=0 \\
\frac{m}{2} \operatorname{grad}|H|^{2}+2 \operatorname{trace} A_{\nabla \perp H}(\cdot)+2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top}=0,
\end{array}\right.
$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M}.

Corollary
A pmc submanifold Σ^{m} in $M^{n}(c) \times \mathbb{R}$, with $m \geq 2$, is biharmonic iff

$$
\left\{\begin{array}{l}
H \perp \xi, \quad\left|A_{H}\right|^{2}=c\left(m-|T|^{2}\right)|H|^{2} \\
\operatorname{trace}\left(A_{H} A_{U}\right)=0 \quad \text { for any normal vector } \quad U \perp H .
\end{array}\right.
$$

Theorem (Balmuş, Montaldo, Oniciuc - 2011)
A submanifold Σ^{m} in a Riemannian manifold \bar{M} is biharmonic iff

$$
\left\{\begin{array}{l}
-\Delta^{\perp} H+\operatorname{trace} \sigma\left(\cdot, A_{H} \cdot\right)+\operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp}=0 \\
\frac{m}{2} \operatorname{grad}|H|^{2}+2 \operatorname{trace} A_{\nabla \perp H}(\cdot)+2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top}=0,
\end{array}\right.
$$

where Δ^{\perp} is the Laplacian in the normal bundle and \bar{R} is the curvature tensor of \bar{M}.

Corollary
A pmc submanifold Σ^{m} in $M^{n}(c) \times \mathbb{R}$, with $m \geq 2$, is biharmonic iff

$$
\left\{\begin{array}{l}
H \perp \xi, \quad\left|A_{H}\right|^{2}=c\left(m-|T|^{2}\right)|H|^{2} \\
\operatorname{trace}\left(A_{H} A_{U}\right)=0 \quad \text { for any normal vector } \quad U \perp H .
\end{array}\right.
$$

Remark
There are no proper-biharmonic pmc submanifolds in $M^{n}(c) \times \mathbb{R}$ with $c \leq 0$.

Definition

A submanifold Σ^{m} of $M^{n}(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^{m}=\pi^{-1}\left(\Sigma^{m-1}\right)$, where $\pi: M^{n}(c) \times \mathbb{R} \rightarrow M^{n}(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^{n}(c)$.

Definition

A submanifold Σ^{m} of $M^{n}(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^{m}=\pi^{-1}\left(\Sigma^{m-1}\right)$, where $\pi: M^{n}(c) \times \mathbb{R} \rightarrow M^{n}(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^{n}(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let $\Sigma^{m}, m \geq 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$. Then σ satisfies $|\sigma|^{2} \geq c(m-1)$, and the equality holds if and only if Σ^{m} is a vertical cylinder $\pi^{-1}\left(\Sigma^{m-1}\right)$ in $\mathbb{S}^{m}(c) \times \mathbb{R}$, where Σ^{m-1} is a proper biharmonic cmc hypersurface in $\mathbb{S}^{m}(c)$.

Definition

A submanifold Σ^{m} of $M^{n}(c) \times \mathbb{R}$ is called a vertical cylinder over Σ^{m-1} if $\Sigma^{m}=\pi^{-1}\left(\Sigma^{m-1}\right)$, where $\pi: M^{n}(c) \times \mathbb{R} \rightarrow M^{n}(c)$ is the projection map and Σ^{m-1} is a submanifold of $M^{n}(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let $\Sigma^{m}, m \geq 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$. Then σ satisfies $|\sigma|^{2} \geq c(m-1)$, and the equality holds if and only if Σ^{m} is a vertical cylinder $\pi^{-1}\left(\Sigma^{m-1}\right)$ in $\mathbb{S}^{m}(c) \times \mathbb{R}$, where Σ^{m-1} is a proper biharmonic cmc hypersurface in $\mathbb{S}^{m}(c)$.

Proposition (F., Oniciuc, Rosenberg - 2011)

Let $\Sigma^{m}, m \geq 2$, be a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$. Then $|H|^{2} \leq c$, and the equality holds if and only if Σ^{m} is minimal in a small hypersphere $\mathbb{S}^{n-1}(2 c) \subset \mathbb{S}^{n}(c)$.

Theorem (F., Oniciuc, Rosenberg - 2011)

Let Σ^{m} be a complete proper-biharmonic pmc submanifold in $\mathbb{S}^{n} \times \mathbb{R}$, with $m \geq 2$, such that its mean curvature satisfies

$$
|H|^{2}>C(m)=\frac{(m-1)\left(m^{2}+4\right)+(m-2) \sqrt{(m-1)(m-2)\left(m^{2}+m+2\right)}}{2 m^{3}}
$$

and the norm of its second fundamental form σ is bounded. Then $m<n,|H|=1$ and Σ^{m} is a minimal submanifold of a small hypersphere $\mathbb{S}^{n-1}(2) \subset \mathbb{S}^{n}$.

Sketch of the proof.

- $\langle H, \boldsymbol{\xi}\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$

Sketch of the proof.

- $\langle H, \xi\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+m\left(\operatorname{trace} A_{H}^{3}\right)-m^{2}|H|^{4}$

Sketch of the proof.

- $\langle H, \xi\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+m\left(\operatorname{trace} A_{H}^{3}\right)-m^{2}|H|^{4}$
- $\phi_{H}=A_{H}-|H|^{2} \mathrm{I}$
- Σ^{m} is biharmonic $\Rightarrow\left|\phi_{H}\right|^{2}=\left(m-|T|^{2}\right)|H|^{2}-m|H|^{4}$

Sketch of the proof.

- $\langle H, \xi\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+m\left(\operatorname{trace} A_{H}^{3}\right)-m^{2}|H|^{4}$
- $\phi_{H}=A_{H}-|H|^{2} \mathrm{I}$
- Σ^{m} is biharmonic $\Rightarrow\left|\phi_{H}\right|^{2}=\left(m-|T|^{2}\right)|H|^{2}-m|H|^{4}$

$$
\frac{1}{2} \Delta\left|\phi_{H}\right|^{2}=\left|\nabla \phi_{H}\right|^{2}+m\left(\operatorname{trace} \phi_{H}^{3}\right)+3 m|H|^{2}\left|\phi_{H}\right|^{2}
$$

$$
-m^{2}|H|^{4}\left(1-|H|^{2}\right)
$$

Sketch of the proof.

- $\langle H, \xi\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+m\left(\operatorname{trace} A_{H}^{3}\right)-m^{2}|H|^{4}$
- $\phi_{H}=A_{H}-|H|^{2} \mathrm{I}$
- Σ^{m} is biharmonic $\Rightarrow\left|\phi_{H}\right|^{2}=\left(m-|T|^{2}\right)|H|^{2}-m|H|^{4}$

$$
\frac{1}{2} \Delta\left|\phi_{H}\right|^{2}=\left|\nabla \phi_{H}\right|^{2}+m\left(\operatorname{trace} \phi_{H}^{3}\right)+3 m|H|^{2}\left|\phi_{H}\right|^{2}
$$

$$
-m^{2}|H|^{4}\left(1-|H|^{2}\right)
$$

- Okumura Lemma $\Rightarrow \operatorname{trace} \phi_{H}^{3} \geq-\frac{m-2}{\sqrt{m(m-1)}}\left|\phi_{H}\right|^{3}$

Sketch of the proof.

- $\langle H, \xi\rangle=0 \quad \Rightarrow \quad 0=\left\langle\bar{\nabla}_{X} H, \xi\right\rangle=-\left\langle A_{H} T, X\right\rangle \quad \Rightarrow \quad A_{H} T=0$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+m\left(\operatorname{trace} A_{H}^{3}\right)-m^{2}|H|^{4}$
- $\phi_{H}=A_{H}-|H|^{2} \mathrm{I}$
- Σ^{m} is biharmonic $\Rightarrow\left|\phi_{H}\right|^{2}=\left(m-|T|^{2}\right)|H|^{2}-m|H|^{4}$

$$
\frac{1}{2} \Delta\left|\phi_{H}\right|^{2}=\left|\nabla \phi_{H}\right|^{2}+m\left(\operatorname{trace} \phi_{H}^{3}\right)+3 m|H|^{2}\left|\phi_{H}\right|^{2}
$$

$$
-m^{2}|H|^{4}\left(1-|H|^{2}\right)
$$

- Okumura Lemma $\Rightarrow \operatorname{trace} \phi_{H}^{3} \geq-\frac{m-2}{\sqrt{m(m-1)}}\left|\phi_{H}\right|^{3}$
- $\frac{1}{2} \Delta\left|\phi_{H}\right|^{2} \geq m\left|\phi_{H}\right|^{2}\left(-\frac{m-2}{\sqrt{m(m-1)}}\left|\phi_{H}\right|+2|H|^{2}-|T|^{2}\right)$

$$
\begin{aligned}
& \frac{1}{2} \Delta\left|\phi_{H}\right|^{2} \geq \frac{P\left(|T|^{2}\right)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2} \\
& \geq \frac{P(1)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2} \\
& \geq 0 \\
& P(t)=m(m-1) t^{2}-\left(3 m^{2}-4\right)|H|^{2} t+m|H|^{2}\left(m^{2}|H|^{2}-(m-2)^{2}\right)
\end{aligned}
$$

$$
\frac{1}{2} \Delta\left|\phi_{H}\right|^{2} \geq \frac{P\left(|T|^{2}\right)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2}
$$

$$
\geq \frac{P(1)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2}
$$

$$
\begin{gathered}
\geq 0 \\
P(t)=m(m-1) t^{2}-\left(3 m^{2}-4\right)|H|^{2} t+m|H|^{2}\left(m^{2}|H|^{2}-(m-2)^{2}\right)
\end{gathered}
$$

- $\operatorname{Ric} X \geq-m\left|A_{H}\right|-|\sigma|^{2}$

$$
\frac{1}{2} \Delta\left|\phi_{H}\right|^{2} \geq \frac{P\left(|T|^{2}\right)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2}
$$

$$
\geq \frac{P(1)}{\sqrt{m-1}|H|\left((m-2) \sqrt{1-|H|^{2}}+2 \sqrt{m-1}|H|\right)}\left|\phi_{H}\right|^{2}
$$

$$
\begin{gathered}
\geq 0 \\
P(t)=m(m-1) t^{2}-\left(3 m^{2}-4\right)|H|^{2} t+m|H|^{2}\left(m^{2}|H|^{2}-(m-2)^{2}\right)
\end{gathered}
$$

- $\operatorname{Ric} X \geq-m\left|A_{H}\right|-|\sigma|^{2}$
- Theorem (Omori-Yau Maximum Principle) If Σ^{m} is a complete Riemannian manifold with Ricci curvature bounded from below, then for any smooth function $u \in C^{2}\left(\Sigma^{m}\right)$ with $\sup _{\Sigma^{m}} u<+\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}} \subset \Sigma^{m}$ satisfying

$$
\lim _{k \rightarrow \infty} u\left(p_{k}\right)=\sup _{\Sigma^{m}} u, \quad|\nabla u|\left(p_{k}\right)<\frac{1}{k} \quad \text { and } \quad \Delta u\left(p_{k}\right)<\frac{1}{k}
$$

- $\left\{\begin{array}{l}\phi_{H}=0\left(\Sigma^{m}=\text { pseudo-umbilical }\right) \\ A_{H} T=0\end{array} \Rightarrow T=0\left(\Sigma^{m}\right.\right.$ lies in $\left.\mathbb{S}^{n}\right)$
- $|H|^{2}>C(m)>\left(\frac{m-1}{m}\right)^{2}>\left(\frac{m-2}{m}\right)^{2}$
- $\left\{\begin{array}{l}\phi_{H}=0\left(\Sigma^{m}=\text { pseudo-umbilical }\right) \\ A_{H} T=0\end{array} \Rightarrow T=0\left(\Sigma^{m}\right.\right.$ lies in $\left.\mathbb{S}^{n}\right)$
- $|H|^{2}>C(m)>\left(\frac{m-1}{m}\right)^{2}>\left(\frac{m-2}{m}\right)^{2}$
- $|H|=1$ and Σ^{m} is a minimal submanifold of a small hypersphere $\mathbb{S}^{n-1}(2) \subset \mathbb{S}^{n}$

Biharmonic pmc surfaces in $\mathbb{S}^{n}(c) \times \mathbb{R}$

Lemma (F., Oniciuc, Rosenberg - 2011)
A pmc surface Σ^{2} in $\mathbb{S}^{n}(c) \times \mathbb{R}$ is proper-biharmonic iff either

1. Σ^{2} is pseudo-umbilical and, therefore, it is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2 c) \subset \mathbb{S}^{n}(c)$; or
2. the mean curvature vector field H is orthogonal to ξ, $\left|A_{H}\right|^{2}=c\left(2-|T|^{2}\right)|H|^{2}$, and $A_{U}=0$ for any normal vector field U orthogonal to H.

Biharmonic pmc surfaces in $\mathbb{S}^{n}(c) \times \mathbb{R}$

Lemma (F., Oniciuc, Rosenberg - 2011)
A pmc surface Σ^{2} in $\mathbb{S}^{n}(c) \times \mathbb{R}$ is proper-biharmonic iff either

1. Σ^{2} is pseudo-umbilical and, therefore, it is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2 c) \subset \mathbb{S}^{n}(c)$; or
2. the mean curvature vector field H is orthogonal to ξ, $\left|A_{H}\right|^{2}=c\left(2-|T|^{2}\right)|H|^{2}$, and $A_{U}=0$ for any normal vector field U orthogonal to H.

Corollary

If Σ^{2} is a proper-biharmonic pmc surface in $\mathbb{S}^{n}(c) \times \mathbb{R}$ then the tangent part T of ξ has constant length.

Proof.

- the map $p \in \Sigma^{2} \rightarrow\left(A_{H}-\mu \mathrm{I}\right)(p)$, where μ is a constant, is analytic, and, therefore, either
- Σ^{2} is a pseudo-umbilical surface (at every point), or
- $H(p)$ is an umbilical direction on a closed set without interior points
- $\Sigma^{2} \neq$ pseudo-umbilical $+\left[A_{H}, A_{U}\right]=0 \Rightarrow$ at $p \in \Sigma^{2} \exists\left\{e_{1}, e_{2}\right\}$ - orthonormal basis that diagonalizes A_{H} and $A_{U}, \forall U \perp H$
- $H \perp U \Rightarrow \operatorname{trace} A_{U}=2\langle H, U\rangle=0$
- $A_{H}=\left(\begin{array}{c}a+|H|^{2} \\ 0\end{array}\right.$

$$
\left.\begin{array}{c}
0 \\
-a+|H|^{2}
\end{array}\right)
$$

$$
\text { and } \quad A_{U}=\left(\begin{array}{cc}
b & 0 \\
0 & -b
\end{array}\right)
$$

Proof.

- the map $p \in \Sigma^{2} \rightarrow\left(A_{H}-\mu \mathrm{I}\right)(p)$, where μ is a constant, is analytic, and, therefore, either
- Σ^{2} is a pseudo-umbilical surface (at every point), or
- $H(p)$ is an umbilical direction on a closed set without interior points
- $\Sigma^{2} \neq$ pseudo-umbilical $+\left[A_{H}, A_{U}\right]=0 \Rightarrow$ at $p \in \Sigma^{2} \exists\left\{e_{1}, e_{2}\right\}$ - orthonormal basis that diagonalizes A_{H} and $A_{U}, \forall U \perp H$
- $H \perp U \Rightarrow \operatorname{trace} A_{U}=2\langle H, U\rangle=0$
- $A_{H}=\left(\begin{array}{cc}a+|H|^{2} & 0 \\ 0 & -a+|H|^{2}\end{array}\right)$ and $A_{U}=\left(\begin{array}{cc}b & 0 \\ 0 & -b\end{array}\right)$
- $\left\{\begin{array}{l}0=\operatorname{trace}\left(A_{H} A_{U}\right)=2 a b \\ a \neq 0\end{array} \Rightarrow b=0\right.$, i.e. $A_{U}=0$

Proof.

- the map $p \in \Sigma^{2} \rightarrow\left(A_{H}-\mu \mathrm{I}\right)(p)$, where μ is a constant, is analytic, and, therefore, either
- Σ^{2} is a pseudo-umbilical surface (at every point), or
- $H(p)$ is an umbilical direction on a closed set without interior points
- $\Sigma^{2} \neq$ pseudo-umbilical $+\left[A_{H}, A_{U}\right]=0 \Rightarrow$ at $p \in \Sigma^{2} \exists\left\{e_{1}, e_{2}\right\}$ - orthonormal basis that diagonalizes A_{H} and $A_{U}, \forall U \perp H$
- $H \perp U \Rightarrow \operatorname{trace} A_{U}=2\langle H, U\rangle=0$
- $A_{H}=\left(\begin{array}{cc}a+|H|^{2} & 0 \\ 0 & -a+|H|^{2}\end{array}\right)$ and $A_{U}=\left(\begin{array}{cc}b & 0 \\ 0 & -b\end{array}\right)$
- $\left\{\begin{array}{l}0=\operatorname{trace}\left(A_{H} A_{U}\right)=2 a b \\ a \neq 0\end{array} \Rightarrow b=0\right.$, i.e. $A_{U}=0$
- (Corollary) $H \perp N \Rightarrow \nabla_{X} T=A_{N} X=0 \Rightarrow X\left(|T|^{2}\right)=0$

Proposition (F., Rosenberg - 2010)
If Σ^{2} is a pmc surface in $M^{n}(c) \times \mathbb{R}$, then

$$
\frac{1}{2} \Delta|T|^{2}=\left|A_{N}\right|^{2}+K|T|^{2}+2 T(\langle H, N\rangle),
$$

where K is the Gaussian curvature of the surface.

Proposition (F., Rosenberg - 2010)

If Σ^{2} is a pmc surface in $M^{n}(c) \times \mathbb{R}$, then

$$
\frac{1}{2} \Delta|T|^{2}=\left|A_{N}\right|^{2}+K|T|^{2}+2 T(\langle H, N\rangle),
$$

where K is the Gaussian curvature of the surface.
Corollary
If Σ^{2} is a non-pseudo-umbilical proper-biharmonic pmc surface in $\mathbb{S}^{n}(c) \times \mathbb{R}$, then it is flat.

Theorem (F., Oniciuc, Rosenberg - 2011)

Let Σ^{2} be a proper-biharmonic pmc surface in $\mathbb{S}^{n}(c) \times \mathbb{R}$. Then either

1. Σ^{2} is a minimal surface of a small hypersphere $\mathbb{S}^{n-1}(2 c) \subset \mathbb{S}^{n}(c)$; or
2. Σ^{2} is (an open part of) a vertical cylinder $\pi^{-1}(\gamma)$, where γ is a circle in $\mathbb{S}^{2}(c)$ with curvature equal to \sqrt{c}, i.e. γ is a biharmonic circle in $\mathbb{S}^{2}(c)$.

Sketch of the proof.

- assume $\Sigma^{2} \neq$ pseudo-umbilical $\Rightarrow|T|=$ constant $\neq 0$, i.e. $|N|=$ constant $\in[0,1)$

Sketch of the proof.

- assume $\Sigma^{2} \neq$ pseudo-umbilical $\Rightarrow|T|=$ constant $\neq 0$, i.e. $|N|=$ constant $\in[0,1)$
- $A_{U}=0, \forall U \perp H \Rightarrow \operatorname{dim} L=\operatorname{dimspan}\{\operatorname{Im} \sigma, N\} \leq 2 \Rightarrow$
- $T \Sigma^{2} \oplus L$ is parallel, invariant by \bar{R}, and $\xi \in T \Sigma^{2} \oplus L \Rightarrow$
- Σ^{2} lies in
- $\mathbb{S}^{2}(c) \times \mathbb{R}$ (if $N=0$), or
- $\mathbb{S}^{3}(c) \times \mathbb{R}$

Sketch of the proof.

- assume $\Sigma^{2} \neq$ pseudo-umbilical $\Rightarrow|T|=$ constant $\neq 0$, i.e. $|N|=$ constant $\in[0,1)$
- $A_{U}=0, \forall U \perp H \Rightarrow \operatorname{dim} L=\operatorname{dimspan}\{\operatorname{Im} \sigma, N\} \leq 2 \Rightarrow$
- $T \Sigma^{2} \oplus L$ is parallel, invariant by \bar{R}, and $\xi \in T \Sigma^{2} \oplus L \Rightarrow$
- Σ^{2} lies in
- $\mathbb{S}^{2}(c) \times \mathbb{R}$ (if $N=0$), or
- $\mathbb{S}^{3}(c) \times \mathbb{R}$
- $|N|>0 \Rightarrow\left\{E_{3}=\frac{H}{|H|}, E_{4}=\frac{N}{|N|}\right\}$ global orthonormal frame field $\Rightarrow|\sigma|^{2}=\left|A_{3}\right|^{2}=c\left(2-|T|^{2}\right)$
- $0=2 K=2 c\left(1-|T|^{2}\right)+4|H|^{2}-|\sigma|^{2} \Rightarrow 4|H|^{2}=c|T|^{2}$

Sketch of the proof.

- assume $\Sigma^{2} \neq$ pseudo-umbilical $\Rightarrow|T|=$ constant $\neq 0$, i.e. $|N|=$ constant $\in[0,1)$
- $A_{U}=0, \forall U \perp H \Rightarrow \operatorname{dim} L=\operatorname{dimspan}\{\operatorname{Im} \sigma, N\} \leq 2 \Rightarrow$
- $T \Sigma^{2} \oplus L$ is parallel, invariant by \bar{R}, and $\xi \in T \Sigma^{2} \oplus L \Rightarrow$
- Σ^{2} lies in
- $\mathbb{S}^{2}(c) \times \mathbb{R}$ (if $\left.N=0\right)$, or
- $\mathbb{S}^{3}(c) \times \mathbb{R}$
- $|N|>0 \Rightarrow\left\{E_{3}=\frac{H}{|H|}, E_{4}=\frac{N}{|N|}\right\}$ global orthonormal frame field $\Rightarrow|\sigma|^{2}=\left|A_{3}\right|^{2}=c\left(2-|T|^{2}\right)$
- $0=2 K=2 c\left(1-|T|^{2}\right)+4|H|^{2}-|\sigma|^{2} \Rightarrow 4|H|^{2}=c|T|^{2}$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+2\left(\operatorname{trace} A_{H}^{3}\right)-4 c|H|^{4}=\left|\nabla A_{H}\right|^{2}+8 c|H|^{4}|N|^{2}$

Sketch of the proof.

- assume $\Sigma^{2} \neq$ pseudo-umbilical $\Rightarrow|T|=$ constant $\neq 0$, i.e. $|N|=$ constant $\in[0,1)$
- $A_{U}=0, \forall U \perp H \Rightarrow \operatorname{dim} L=\operatorname{dimspan}\{\operatorname{Im} \sigma, N\} \leq 2 \Rightarrow$
- $T \Sigma^{2} \oplus L$ is parallel, invariant by \bar{R}, and $\xi \in T \Sigma^{2} \oplus L \Rightarrow$
- Σ^{2} lies in
- $\mathbb{S}^{2}(c) \times \mathbb{R}$ (if $\left.N=0\right)$, or
- $\mathbb{S}^{3}(c) \times \mathbb{R}$
- $|N|>0 \Rightarrow\left\{E_{3}=\frac{H}{|H|}, E_{4}=\frac{N}{|N|}\right\}$ global orthonormal frame field $\Rightarrow|\sigma|^{2}=\left|A_{3}\right|^{2}=c\left(2-|T|^{2}\right)$
- $0=2 K=2 c\left(1-|T|^{2}\right)+4|H|^{2}-|\sigma|^{2} \Rightarrow 4|H|^{2}=c|T|^{2}$
- $\frac{1}{2} \Delta\left|A_{H}\right|^{2}=\left|\nabla A_{H}\right|^{2}+2\left(\operatorname{trace} A_{H}^{3}\right)-4 c|H|^{4}=\left|\nabla A_{H}\right|^{2}+8 c|H|^{4}|N|^{2}$
- $\left|A_{H}\right|^{2}=c\left(2-|T|^{2}\right)|H|^{2}=$ constant $\Rightarrow N=0 \Rightarrow \Sigma^{2}=\pi^{-1}(\gamma)$, where γ is a proper-biharmonic pmc curve with curvature $\kappa=2|H|=\sqrt{c}$

Remark

$\nabla A_{H}=0$ for all proper-biharmonic surfaces in $\mathbb{S}^{n}(c) \times \mathbb{R}$.
Theorem (F., Oniciuc, Rosenberg - 2011)
If Σ^{m}, with $m \geq 3$, is a proper-biharmonic pme submanifold in $\mathbb{S}^{n}(c) \times \mathbb{R}$ such that $\nabla A_{H}=0$, then either

1. Σ^{m} is a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c)$, with $\nabla A_{H}=0$; or
2. Σ^{m} is (an open part of) a vertical cylinder $\pi^{-1}\left(\Sigma^{m-1}\right)$, where Σ^{m-1} is a proper-biharmonic pmc submanifold in $\mathbb{S}^{n}(c)$ such that the shape operator corresponding to its mean curvature vector field in $\mathbb{S}^{n}(c)$ is parallel.
