
On the 3-wave Equations with Constant
Boundary Conditions

Georgi Grahovski

Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria

E-mail: grah@inrne.bas.bg

12 June 2012
Geometry, Integrability and Quantization 2012, Varna (Bulgaria)

Georgi Grahovski (INRNE) 3-wave Equations with CBC GIQ’12 - Varna 1 / 43



Based on the joint work with Vladimir Gerdjikov (Sofia).

VSG, GGG - E-print: arXiv/1204.5346.

Georgi Grahovski (INRNE) 3-wave Equations with CBC GIQ’12 - Varna 2 / 43



Outline

1 Introduction

2 Lax representation and Jost solutions

3 The fundamental analytic solutions of L

4 Time evolution of the scattering matrix

5 Spectral Properties of the Lax Operator

6 Conserved Quantities

7 Conclusions

Georgi Grahovski (INRNE) 3-wave Equations with CBC GIQ’12 - Varna 3 / 43



Introduction

3-wave resonant interaction equations
The case of vanishing boundary conditions

3-wave resonant interaction model:

i
∂q1
∂t

+ iv1
∂q1
∂x

+ κq∗2q3 = 0,

i
∂q2
∂t

+ iv2
∂q2
∂x

+ κq∗1q3 = 0,

i
∂q3
∂t

+ iv3
∂q3
∂x

+ κq1q2 = 0.

κ – interaction constant, vi – the group velocities of the model,
qi = qi (x , t), i = 1, 2, 3.
The 3-wave equations can be solved through the Inverse Scattering
Method.

Zakharov V. E., Manakov S. V., Zh. Exp. Teor. Fiz., 69 (1975), 1654–1673;
(INF preprint 74-41, Novosibirsk (1975) (In Russian)).
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Introduction

ISM as a Generalised Fourier Transform
Describing the Fundamental Properties of NLEEs

The interpretation of the ISM as a GFT and the expansions over the so
called “squared solutions” allows one to study all the fundamental
properties of NLEEs:

1 the description of the whole class of NLEE related to a given spectral
problem (Lax operator) solvable by the ISM;

2 derivation of the infinite family of integrals of motion;
3 the Hamiltonian properties of the NLEE’s.

M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Studies in Appl. Math. 53 (1974), n.
4, 249–315.

Gerdjikov V. S., Kulish P. P., Physica D 3(1981), 549–564.
Gerdjikov V. S., Inverse Problems 2 (1986), 51–74.

V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Integrable Hamiltonian Hierarchies: Spectral and
Geometric Methods, Lect. Notes Phys. 748, Springer, Berlin - Heidelberg (2008).
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Introduction

Describing the Fundamental Properties ...
The Hamiltonian and ... going to constant boundary conditions

The (canonical) Hamiltonian of 3WRI eqns. is given by:

H3−w =
1

2

∫ ∞
−∞

dx

(
3∑

k=1

vk

(
qk
∂q∗k
∂x
− q∗k

∂qk
∂x

)
+ κ(q3q

∗
1q
∗
2 + q∗3q1q2)

)
.

A special interest deserves the case when some (or all) of the
functions qk(x , t) tend to a constant as x → ±∞. Below we choose:

q1,2(x , t)→ 0, q3(x , t)→ ρeiφ± , x → ±∞.

Here the constants θ = φ+ − φ− and ρ are of a physical origin and
play a basic role in determining the properties of 3WRI eqns. with
CBC and its soliton solutions.

Faddeev L. D., Takhtadjan L. A., Hamiltonian approach in the theory of solitons,
Springer Verlag, Berlin (1987).
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Introduction

The Case of Constant Boundary Conditions
“Bright” vs. “Dark” Solitons

More specifically, ρ characterizes the end-points of the continuous
spectrum of the Lax operator L(λ).
The discrete spectrum, in this case, may consist of real simple
eigenvalues λk , k = 1, . . . ,N lying in the lacuna −2ρ < λk < 2ρ.
To them, there correspond the so-called “dark solitons” whose
properties and behavior substantially differ from the ones of the bright
solitons.
The 3- and N-wave interaction models describe a special class of
wave-wave interactions that are not sensitive on the physical nature of
the waves and bear an universal character.

Kaup D. J., Reiman A., Bers A, Rev. Mod. Phys. 51 (1979), 275–310.

S. V. Manakov, Teor. Mat. Phys. 28 (1976), 172–179.
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Introduction

3-waves with CBC
Setting up the problem

It is normal to expect that the properties 1 – 3, known for the case of
vanishing boundary conditions will have their counterparts for the case
of constant boundary conditions.
However there is no easy and direct way to do so. For example, one
may relate both cases by taking a limit ρ→ 0.
Of course, in this limit most of the difficulties, related mostly with the
end-points of the continuous spectrum disappear.
The spectral data, the analyticity properties of the Jost solutions and
the corresponding Riemann-Hilbert problem are substantially different
and more difficult for ρ > 0.

Aims:
1 To study the direct scattering problem for the 3WRI eqns with CBC;
2 To study the spectral properties of the associated Lax operator.
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Lax representation and Jost solutions

Lax representation
Algebraic Setup

Consider the pair of Lax operators:

Lψ ≡
(
i
∂

∂x
+ [J,Q(x , t)]− λJ

)
ψ(x , t, λ) = 0,

Mψ ≡
(
i
∂

∂t
+ [I ,Q(x , t)]− λI

)
ψ(x , t, λ) = 0,

with

Q =

 0 q1 q3
q∗1 0 q2
q∗3 q∗2 0

 ,
J = diag (J1, J2, J3),

I = diag (I1, I2, I3).

Q(x , t), I and J are traceless matrices (i.e. the Lax operators
∈ sl(3,C))
The eigenvalues of I and J are ordered as follows:
J1 > J2 > J3, I1 > I2 > I3 (J1 + J2 + J3 = 0 and I1 + I2 + I3 = 0).
Here λ ∈ C is a spectral parameter.
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Lax representation and Jost solutions

Lax representation
Zero Curvature Equation

The compatibility condition:

i [J,Qt ]− i [I ,Qx ] + [[I ,Q], [J,Q]] = 0,

The group velocities take the form:

v1 =
I1 − I2
J1 − J2

, v2 =
I2 − I3
J2 − J3

, v3 =
I1 − I3
J1 − J3

,

The interaction constant κ reads:

κ = J1I2 + J2I3 + J3I1 − J2I1 − J3I2 − J1I3.
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Lax representation and Jost solutions

Imposing Boundary Conditions

Constant boundary conditions as |x | → ∞:

lim
x→±∞

q1(x , t) = lim
x→±∞

q2(x , t) = 0, lim
x→±∞

q3(x , t) = q±3 = ρe iφ± .

For the potential matrix Q(x , t) one can write:

lim
x→±∞

Q(x , t) = Q±, Q± =

 0 0 ρe iφ±

0 0 0
ρe−iφ± 0 0


The difference

θ = φ+ − φ−
of the asymptotic phases φ± plays a crucial rôle in the Hamiltonian
formulation of the 3-wave model with constant boundary conditions:
its values label the leaf on the phase spaceM of the 3WRI model,
where one can determine the class of admissible functionals, and to
construct a Hamiltonian formulation.
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Lax representation and Jost solutions

Imposing Boundary Conditions
The Asymptotic phases

The two asymptotic potentials Q± are related by

Q+ = Q(θ)Q−(t)Q−1(θ),

where θ = φ+ − φ− and

Q(θ) =

 e iθ/2 0 0
0 1 0

0 0 e−iθ/2

 .
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Lax representation and Jost solutions

Direct Scattering Problem for L
Jost Solutions

The direct and the inverse scattering problem for the Lax operator will
be done for fixed t and in most of the corresponding formulae t will be
omitted.
The starting point in developing the DSP for 3WRI eqns are the
eigenfunctions (the Jost solutions) of the auxiliary spectral problem

L(x , t, λ)ψ±(x , t, λ) = 0,

Asymptotic behavior for x → ±∞ respectively:

lim
x→±∞

ψ±(x , t, λ)e iJ(λ)x = ψ±,0(λ)P(λ),

where P(λ) is a projector:

P(λ) = diag (θ(|Reλ| − 2ρ), 1, θ(|Reλ| − 2ρ))

and θ(z) is the step function.
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Lax representation and Jost solutions

Jost Solutions
Asymptotic Lax operators

P(λ) ensures that the continuous spectrum of L has multiplicity 3 for
|Reλ| − 2ρ > 0 and multiplicity 1, for −2ρ < Reλ < 2ρ.
The x and t-independent matrices ψ±,0(λ) in diagonalize the
asymptotic Lax operators:

L±(x , t, λ) = i
∂

∂x
+ [J,Q±]− λJ.

Indeed,

([J,Q±]− λJ)ψ±,0(λ) = −ψ±,0(λ)J(λ),

where J(λ) = −diag (J1(λ), J2(λ), J3(λ)) and

J1(λ) =
1

2

[
J2λ+ (J1 − J3)

√
λ2 − 4ρ2

]
, J2(λ) = −λJ2,

J3(λ) =
1

2

[
J2λ− (J1 − J3)

√
λ2 − 4ρ2

]
, k(λ) =

√
λ2 − 4ρ2.
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Lax representation and Jost solutions

The Scattering Matrix
Asymptotic Lax operators

Using the asymptotic phases we have:

ψ±,0(λ) =
1√

2λ(k + λ)

 2ρ 0 −(λ+ k)e iφ±

0 1 0
(λ+ k)e−iφ± 0 2ρ


We will deal with the Riemannian surface related to k(λ); its first
sheet is fixed up by the condition: sign Im k(λ) = sign Imλ.
The Jost solutions ψ+(x , t, λ) and ψ−(x , t, λ) are related by the
scattering matrix T (t, λ):

T (t, λ) = ψ−1+ (x , t, λ)ψ−(x , t, λ), detT (λ) = 1.

For a sake of convenience, from now on, instead of the spectral
parameter λ we will be using the so-called "uniformizing variable"

ζ =
1

2ρ
(λ+ k(λ)).
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Lax representation and Jost solutions

The Scattering Matrix
The uniformising variable

In terms of ζ we have:

λ = ρ

(
ζ +

1

ζ

)
, k(λ) = ρ

(
ζ − 1

ζ

)
.

Then, the form of J take the form:

J(ζ) = −ρ diag
(
J3ζ +

J1
ζ
, J2

(
ζ +

1

ζ

)
, J1ζ +

J3
ζ

)
.
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Lax representation and Jost solutions

Direct Scattering Problem for L
Integrable Representations for the Jost Solutions

Consider slightly modified Jost solutions:

η±(x , ζ) = ψ−1±,0(ζ)ψ±(x , ζ)e iJ(ζ)x , lim
x→±∞

η±(x , ζ) = 11,

and satisfying the following equation:

i
∂η±
∂x

+ ψ−1±,0[J,Q(x , t)− Q±]ψ±,0η±

− ρ(ζ + ζ−1)[J(ζ), η±(x , t, ζ)] = 0.

Equivalently, η±(x , ζ) can be regarded as solutions to the following
Volterra-type integral equations:

η±(x , ζ) = 11 + i

∫ x

±∞
dy e−iJ(ζ)(x−y)

× ψ−1±,0[J,Q(y)− Q±]ψ±,0η±(y , ζ)e iJ(ζ)(x−y), ζ ∈ R,
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Lax representation and Jost solutions

Direct Scattering Problem for L
Integrable Representations for the Jost Solutions ... (cont’d)

In addition the second column of the Jost solution is defined also on
the unit circle in the ζ-plane:

(η
(2)
± )k2(x , ζ) = δk2 + i

∫ x

±∞
dy e−i(Jk (ζ)−J2(ζ))(x−y)

×
(
ψ−1±,0[J,Q(y)− Q±]ψ±,0η±(y , ζ)

)
, |ζ| = 1.
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The fundamental analytic solutions of L

Fundamental Analytic Solutions (FAS) for L
Introducing the regions on analyticity

In order to construct the fundamental analytic solutions (FAS) of L we
first need to determine the regions of the complex ζ-plane in which
the imaginary parts of the eigenvalues of J(ζ) are ordered.
To do this we first need to find the curves on which

Im (Jj(ζ)− Jk(ζ)) = 0, 1 ≤ j < k ≤ 3; Im J1(ζ) = 0.

Writing down ζ = |ζ|e iφ0 we find:

Im (J1(ζ)− J2(ζ)) = ρ

(
(J2 − J3)|ζ|+ J1 − J2

|ζ|

)
sinφ0,

Im (J2(ζ)− J3(ζ)) = ρ

(
(J1 − J2)|ζ|+ J2 − J3

|ζ|

)
sinφ0,

Im (J1(ζ)− J3(ζ)) = ρ(J1 − J3)

(
|ζ|+ 1

|ζ|

)
sinφ0.
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The fundamental analytic solutions of L

Fundamental Analytic Solutions (FAS) for L
Introducing the regions on analyticity ... (cont’d)

Im J2(ζ) = −J2ρ
(
|ζ| − 1

|ζ|

)
sinφ0.

Since J1 − J2 > 0, J1 − J3 > 0 and J2 − J3 > 0 it is easy to see that
the solutions of the fist set of eqs. is the real axis in the complex
ζ-plane;
In addition Im J2(ζ) = 0 for |ζ|2 = 1.
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The fundamental analytic solutions of L

Fundamental Analytic Solutions (FAS) for L
Ordering in the regions on analyticity

The complex ζ-plane is split into four regions Ωk , k = 1, . . . , 4 formed by
the intersections of the upper and lower complex half-planes C+ and C−
with the unit circle S.

The ordering of Im′, Jk(λ) in each of them depends
on the sign of J2 and are as follows:

Ω1 : Im J1(λ) > 0 > Im J2(λ) > Im J3(λ),

Ω2 : Im J1(λ) > Im J2(λ) > 0 > Im J3(λ),

Ω3 : Im J3(λ) > 0 > Im J2(λ) > Im J1(λ),

Ω4 : Im J3(λ) > Im J2(λ) > 0 > Im J1(λ),

for J2 > 0
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The fundamental analytic solutions of L

Fundamental Analytic Solutions (FAS) for L
Ordering in the regions on analyticity ... (cont’d)

and
Ω1 : Im J1(λ) > Im J2(λ) > 0 > Im J3(λ),

Ω2 : Im J1(λ) > 0 > Im J2(λ) > Im J3(λ),

Ω3 : Im J3(λ) > Im J2(λ) > 0 > Im J1(λ),

Ω4 : Im J3(λ) > 0 > Im J2(λ) > Im J1(λ),

for J2 < 0.
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The fundamental analytic solutions of L

Constructing the Fundamental Analytic Solutions
Integral representations for the FAS in Ω1

introduce the FAS as the solution of the following set of integral
equations:{

ξ+(1)(x , ζ)
}
kl

= δkl + i

∫ x

∞
dy e−i(Jk (ζ)−Jl (ζ))(x−y)

×
{
ψ−1+,0[J,Q(y)− Q+]ψ+,0ξ

+
(1)(y , ζ)

}
kl
, k < l .{

ξ+(1)(x , ζ)
}
kl

= i

∫ x

−∞
dy e−i(Jk (ζ)−Jl (ζ))(x−y)

×
{
ψ−1+,0[J,Q(y)− Q−]ψ+,0ξ

+
(1)(y , ζ

}
kl
, k ≥ l .

The proof of the fact that ξ+(1)(x , ζ) is an analytic function of ζ for
any ζ ∈ Ω1 is based on the fact, that due the ordering all exponential
factors for ζ ∈ C+ are decaying.
This ensures the convergence of all integrals.
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The fundamental analytic solutions of L

Constructing the Fundamental Analytic Solutions
Integral representations for the FAS in Ω4

Similarly, the FAS in the region Ω4 is the solution of the set of integral
equations:{

ξ−(4)(x , ζ)
}
kl

= δkl + i

∫ x

−∞
dy e−i(Jk (ζ)−Jl (ζ))(x−y)

×
{
ψ−1+,0[J,Q(y)− Q−]ψ+,0ξ

−
(4)(y , ζ)

}
kl
, k ≤ l .

{
ξ−(4)(x , ζ)

}
kl

= i

∫ x

∞
dy e−i(Jk (ζ)−Jl (ζ))(x−y)

×
{
ψ−1+,0[J,Q(y)− Q+]ψ+,0ξ

−
(4)(y , ζ

}
kl
. k > l .

The proof of the analyticity of ξ−(4)(x , ζ) for any ζ ∈ Ω4 is similar to
the one for ξ+(1)(x , ζ).
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The fundamental analytic solutions of L

Constructing the Fundamental Analytic Solutions
Integral representations for the FAS in Ω2 and Ω3

It remains to outline the construction of ξ−(2)(x , λ) and ξ+(3)(x , λ) for
the regions Ω2 and Ω3. To this end we make use of the involution of
the Lax operator L that is a consequence of Q = −Q†. Then we
conclude:

χ−(3)(x , ζ) = (χ+,†
(1) )−1(x , 1/ζ∗), χ+

(2)(x , ζ) = (χ−,†(4) )−1(x , 1/ζ∗).

The next step is to analyze the interrelations between the Jost
solutions ψ±(x , ζ) and the FAS χ±(x , ζ). Skipping the details we note
that:

χ+
(α)(x , ζ) = ψ−(x , ζ)S+

(α)(ζ), χ+
(α)(x , ζ) = ψ+(x , ζ)T−(α)(ζ)D+

(α)(ζ),

χ−(β)(x , ζ) = ψ−(x , ζ)S−(β)(ζ), χ−(β)(x , ζ) = ψ+(x , ζ)T+
(β)(ζ)D−(β)(ζ),

where ζ ∈ R ∪ S, α = 1, 3 and β = 2, 4 match the indices of the
regions of analyticity Ωk .
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The fundamental analytic solutions of L

Gauss Decomposition for T

Gauss decomposition of the scattering matrix:

T (ζ) = T∓(ζ)D±(ζ)(S±(ζ))−1,

where:

T+(ζ) =

 1 T+
1 (ζ) T+

3 (ζ)
0 1 T+

2 (ζ)
0 0 1

 , T−(t, ζ) =

 1 0 0

T−
1 (ζ) 1 0

T−
3 (ζ) T2(ζ) 1

 ,

S+(ζ) =

 1 S+
1 (ζ) S+

3 (ζ)
0 1 S+

2 (ζ)
0 0 1

 , S−(t, ζ) =

 1 0 0

S−
1 (ζ) 1 0

S−
3 (ζ) S2(ζ) 1

 ,

D+(ζ) = diag
(
m+

1 (ζ),
m+

2 (ζ)

m+
1 (ζ)

,
1

m+
2 (ζ)

)
,

D−(ζ) = diag
(

1

m−2 (ζ)
,
m−2 (ζ)

m−1 (ζ)
,m−1 (ζ)

)
.
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The fundamental analytic solutions of L

Gauss Decomposition for T
Explicit form of the Gauss Factors

Here m±k (ζ) are the principal upper/lower minors of order k of the
scattering matrix;
the explicit expressions for the matrix elements of T± and S± in
terms of Tij(ζ) are given by:

S+
1 (ζ) = −T12(ζ)

T11(ζ)
, S+

2 (ζ) =
T13(ζ)T21(ζ)− T11(ζ)T23(ζ)

T11(ζ)T22(ζ)− T12(ζ)T21(ζ)
,

S+
3 (ζ) =

T12(ζ)T23(ζ)− T13(ζ)T22(ζ)

T11(ζ)T22(ζ)− T12(ζ)T21(ζ)
,

T−1 (ζ) =
T21(ζ)

T11(ζ)
, T−2 (ζ) =

T32(ζ)T11(ζ)− T31(ζ)T12(ζ)

T11(ζ)T22(ζ)− T12(ζ)T21(ζ)
,

T−3 (ζ) =
T31(ζ)

T11(ζ)
.

Due to the the special choice of the matrix Q(x , t), it follows that
S−(ζ) = (S+(1/ζ∗))† and T+(ζ) = (T−(1/ζ∗))†.
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The fundamental analytic solutions of L

On the Inverse Scattering Problem for L
Casting to a Riemann-Hilbert Problem

One of the most effective method for solving the ISP for a given L is
to reduce it to a RHP.
On the complex ζ-plane it can be formulated as follows:

ξ+(α)(x , ζ) = ξ−(β)(x , ζ)Gα,β(x , t, ζ), lim
k→∞

ξ+(x , ζ) = 11,

G (ζ) = e−iJ(ζ)x−iF (ζ)t(S−)−1S+e iJ(ζ)x+iF (ζ)t .

This relation holds true for k ∈ R in the complex k-plane.
The RHP for Lax operators with vanishing boundary conditions look
similarly. However, in our case, it is more complicated due to the fact,
that we are dealing with an RHP formulated on the Riemannian
surface related to the root k(λ) =

√
λ2 − 4ρ2.

The sewing function G (x , ζ) gives the minimal set of scattering data,
sufficient to reconstruct the scattering matrix T (ζ).
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Time evolution of the scattering matrix

Fixing up the Dispersion Law

Start with a bit more general M-operator:

Mψ ≡
(
i
∂

∂t
+ [I ,Q(x , t)]− ζI

)
ψ(x , t, ζ) = ψ(x , t, ζ)F (ζ).

The compatibility condition [L,M] = 0 holds true for any x- and
t-independent matrix F (ζ).
F (ζ) is an eigenfunction for the asymptotic M-operator, when
x → ±∞:

([I ,Q±]− ζI )ψ±,0 = ψ±,0F (ζ).

It is easy to check that ψ±,0 diagonalize also [I ,Q±]− ζI and
therefore F (ζ) is a diagonal matrix:

F (ζ) = diag (f1(ζ), f2(ζ), f3(ζ)),
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Time evolution of the scattering matrix

Time Evolution of the Scattering Data

In terms of ζ we have:

F (ζ) = ρ diag
(
I1ζ +

I3
ζ
, I2

(
ζ − 1

ζ

)
, I3ζ +

I1
ζ

)
.

Time evolution of the associated scattering matrix T (ζ):

i
dT

dt
− [F (ζ),T (t, ζ)] = 0.

As a consequence the Gauss factors of T (t, ζ) satisfy

i
dT±

dt
− [F (ζ),T±(t, ζ)] = 0, i

dS±

dt
− [F (ζ),S±(t, ζ)] = 0.

i
dD±

dt
= 0.
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Time evolution of the scattering matrix

Time Evolution of the Gauss Factors

The principle minors m±1 (ζ) and m±2 (ζ) are time-independent and can
be considered as generating functionals of the integrals of motion
For the off-diagonal ones we get:

Tij(t, ζ) = Tij(0, ζ)e−i(fi (ζ)−fj (ζ))t .

The function F (ζ) is known as the dispersion law for the 3-wave
equations with constant boundary conditions.
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Spectral Properties of the Lax Operator

The Class of Admissible Potentials

The crucial fact that determines the spectral properties of the
operator L(ζ) is the choice of the class of functions where from we
shall choose the potential Q(x).
For a sake of simplicity, we assume that Q(x , t) satisfies

Condition C.1 Q(x , t) is smooth for all x and t and is such that

lim
x→±∞

|x |p(Q(x , t)− Q±) = 0 for all p = 0, 1, . . . .

The FAS χ±(x , ζ) of L(ζ) allows one to construct the resolvent of the
operator L and then to investigate its spectral properties.
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Spectral Properties of the Lax Operator

The resolvent of L(ζ)

By a resolvent of L(ζ) we understand an integral operator R(ζ) with
kernel R(x , y , ζ) which satisfies

L(ζ)(R(ζ)f )(x) = f (x),

where f (x) is an 3-component vector complex-valued function with
bounded norm, i.e. ∫ ∞

−∞
dy |f T (y)f (y)| <∞.

From the general theory of linear operators we know that the point ζ
in the complex ζ-plane is a regular point if R(ζ) is a bounded integral
operator.
In each connected subset of regular points R(ζ) is analytic in ζ.
The points ζ which are not regular constitute the spectrum of L(ζ).
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Spectral Properties of the Lax Operator

The Spectrum of L(ζ)

Roughly speaking the spectrum of L(ζ) consist of two types of points:

i) the continuous spectrum of L(ζ) consists of all points ζ for which
R(ζ) is an unbounded integral operator;
ii) the discrete spectrum of L(ζ) consists of all points ζ for which
R(ζ) develops pole singularities.
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Spectral Properties of the Lax Operator

Properties of the Resolvent
Explicit form using FAS

If we write down R(ζ) in the form:

R(ζ)f (x) =

∫ ∞
−∞

R(x , y , ζ)f (y),

the kernel R(x , y , ζ) of the resolvent is given by:

R(α)(x , y , ζ) = R±(α)(x , y , ζ), for ζ ∈ Ω(α).

where

R±(α)(x , y , ζ) = −iχ±(α)(x , ζ)Θ±(α)(x − y)(χ±(α))
−1(y , ζ), ζ ∈ Ω(α),
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Spectral Properties of the Lax Operator

Properties of the Resolvent
Explicit form using FAS

Here

Θ+
1 (x − y) = diag (−θ(y − x), θ(x − y), θ(x − y)),

Θ−2 (x − y) = diag (−θ(y − x),−θ(y − x), θ(x − y)),

Θ+
3 (x − y) = diag (θ(x − y),−θ(y − x),−θ(y − x)),

Θ−4 (x − y) = diag (−θ(x − y), θ(x − y),−θ(y − x)),

for J2 > 0, and

Θ+
1 (x − y) = diag (−θ(y − x),−θ(y − x), θ(x − y)),

Θ−2 (x − y) = diag (−θ(y − x), θ(x − y), θ(x − y)),

Θ+
3 (x − y) = diag (θ(x − y), θ(x − y),−θ(y − x)),

Θ−4 (x − y) = diag (−θ(x − y),−θ(y − x),−θ(y − x)),

for J2 < 0.
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Spectral Properties of the Lax Operator

Properties of the Resolvent
Properties of the Kernel of R

Theorem:

Let Q(x) satisfy the conditions (C.1) and is such that the minors m±k (ζ)
have a finite number of simple zeroes ζ±j . Then

1 R±(x , y , ζ) is an analytic function of ζ for ζ ∈ C± having pole
singularities at ζ±j ;

2 R±(x , y , ζ) is a kernel of a bounded integral operator for ζ ∈ R ∪ E ;
3 R(x , y , ζ) is uniformly bounded function for ζ ∈ R ∪ E and provides a

kernel of an unbounded integral operator;
4 R±(x , y , ζ) satisfy the equation:

L(ζ)R±(x , y , ζ) = 11δ(x − y).
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Spectral Properties of the Lax Operator

Properties of the Resolvent ... (cont’d)

The continuous spectrum of L in the complex k-plane coincides with
the contour of the RHP R ∪ S with multiplicity 3 on R and
multiplicity 1 on S.
On the complex λ-plane the continuous spectrum of L is on the real
axis; it has multiplicity 3 on the semi-axis Reλ < −2ρ and Reλ > 2ρ
and multiplicity 1 in the ‘lacuna’ −2ρ < Reλ < 2ρ.
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Conserved Quantities

The Integrals of Motion and the Scattering Data

The diagonal factors D±(ζ) are time independent and can be used to
generate the infinite set of integrals of motion.
For the 3WRI eqns., these matrices are expressed through the principal
upper/lower minors m±(ζ) of the scattering matrix T (ζ):

lnD±k,1 = − i

4
(Jk − Jk+1)Pk + (J1 − J3)P3,

The momenta Pk , k = 1, 2, 3 are given by:

P1 =

∫ ∞
−∞

dx |q1(x)|2, P2 =

∫ ∞
−∞

dx |q2(x)|2,

P3 =

∫ ∞
−∞

dx (|q3(x)|2 − ρ2).

The fact that lnm±1 generates integrals of motion can be considered
as natural analog of the Manley–Rowe relations.
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Conserved Quantities

The Integrals of Motion and the Scattering Data ... (cont’d)

In our case it means an existence of two additional first integrals:

I1 = (J1 − J2)P1 + (J1 − J3)P3 = const,
I2 = (J2 − J3)P2 + (J1 − J3)P3 = const,

They can be interpreted as relations between the densities |qα|2 of the
waves of type α.
The total momentum for the 3-waves is also a conserved quantity:

P = (J1 − J2)P1 + (J2 − J3)P2 + (J1 − J3)P3 = const.

The integral of motion D2 is proportional to the Hamiltonian of the
3-wave equations.
The functional H3−w remains the same as for the case of vanishing
boundary conditions.
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Conclusions

Summary

We studied the direct scattering problem for the Lax operator and its
spectral properties.
This includes: the construction of Lax representation and the Jost
solutions of the Lax operator L.
Furthermore, we outlined the construction of the fundamental analytic
solutions (FAS) of L and formulated a Riemann-Hilbert problem for
the FAS on a relevant Riemannian surface.
We also outlined the construction of the resolvent of L(ζ) in terms of
the FAS and the spectral properties of L.
Finally, we briefly discuss the effects of the boundary conditions on the
conserved quantities of the 3-wave equations: we showed that the
total momentum for non-vanishing boundary conditions needs
regularization, while the Hamiltonian remains the same.
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Conclusions

Outlook

Similar analysis can be done for a 3-wave resonant interaction model
with more general boundary conditions: limx→−∞ qk(x , t) = q−k
(k = 1 or 2) and limx→+∞ q3(x , t) = q−3 . This may require the
matrices Q(θ) to have also off-diagonal entries.
It is an open problem to to derive the soliton solutions in the case of
constant boundary conditions (the so-called "dark solitons"), the
dark-dark and dark-bright soliton solutions, etc.
Another challenge is to extend this analysis also for systems,
describing resonant interactions of N waves or to N-wave type
systems related to simple Lie algebras.
Another open problem is to study the behavior of the scattering data
at the end-points of the continuous spectrum in the complex λ-plane.
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Conclusions

Thank you!
grah@inrne.bas.bg
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