Parametric representation of waves propagation in transmission bands of periodic media

A. Popov ${ }^{\sharp}$, V. Kovalchuk ${ }^{\text {b }}$

\# Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences 142190 Troitsk, Moscow region, Russia
${ }^{\text {b }}$ Institute of Fundamental Technological Research, Polish Academy of Sciences
$5^{\text {B }}$, Pawińskiego str., 02-106 Warsaw, Poland

XIV ICGIQ, Varna, June 8-13, 2012

- Parametric resonance

- in mechanics: systems with external sources of energy
(e.g., the pendulum with oscillating pivot point, periodically varying stiffness, mass, or load),
- in fluid or plasma mechanics: frequency modulation or density fluctuations,
- in mathematical biology: periodic environmental changes.

Hill equation (analysis of the orbit of the Moon - lunar stability problem, modelling of a quadrupole mass spectrometer, as the 1D Schrödinger equation of an electron in a crystal, etc.):

$$
\begin{equation*}
\ddot{x}+\left(\omega_{0}^{2}+p(t)\right) x=0, \tag{1}
\end{equation*}
$$

where ω_{0} is a constant, and $p(t)$ is a π-periodic function with zero average.
More generally:

$$
\begin{equation*}
\ddot{x}+k \dot{x}+\left(\omega_{0}^{2}+p(t)\right) F(x)=0 \tag{2}
\end{equation*}
$$

where $k>0$ is the damping coefficient, and $F(x)=x+b x^{2}+c x^{3}+\cdots$.
Mathieu equation (stability of railroad rails as trains drive over them, seasonally forced population dynamics, the Floquet theory of the stability of limit cycles, etc.):

$$
\begin{equation*}
\ddot{x}+(a-2 q \cos 2 t) x=0 \tag{3}
\end{equation*}
$$

where a is a real constant, and q can be complex.
Lamé equation (when we replace circular functions by elliptic ones):

$$
\begin{equation*}
\ddot{x}+(A+B \wp(t)) x=0, \tag{4}
\end{equation*}
$$

where A, B are some constants, and $\wp(t)$ is the Weierstrass elliptic function. Another form:

$$
\begin{equation*}
\ddot{x}+\left(A+B \operatorname{sn}^{2} t\right) x=0 \tag{5}
\end{equation*}
$$

where $\operatorname{sn}(t)$ is the Jacobi elliptic function of the first kind.

- One-dimensional wave equation

Let us consider the following one-dimensional wave equation:

$$
\begin{equation*}
w^{\prime \prime}(x)+q^{2}(x) w(x)=0, \quad q(x)=\frac{\omega}{c} n(x), \tag{6}
\end{equation*}
$$

which describes the harmonic waves $\sim \exp (-i \omega t)$ propagating in a nonuniform dielectric medium with gradually varying dielectric refraction index $n(x) ; c$ is the speed of light in vacuum and I denotes the differentiation with respect to x.

- Floquet theorem

According to the Floquet theorem, for any periodic refraction index $n(x)=n(x+\lambda)$ (or equivalently for any periodic coefficient $q(x)=q(x+\lambda)$) the one-dimensional wave equation (6) has a quasi-periodic solution

$$
\begin{equation*}
w(x)=\widetilde{w}(x) \exp (\pm \mu x) \tag{7}
\end{equation*}
$$

where $\widetilde{w}(x)$ is a periodic function and the characteristic exponent μ can be either (i) real or (ii) purely imaginary. The former case corresponds to a parametric (anti-)resonance in the stop bands of the periodic structure, and the latter one to a periodic modulation of the carrier travelling wave.

- Periodic part of the solution

The one-dimensional wave equation for $\widetilde{w}(x)$ has the following form:

$$
\begin{equation*}
\widetilde{w}^{\prime \prime}(x) \pm 2 \mu \widetilde{w}^{\prime}(x)+\left[q^{2}(x)+\mu^{2}\right] \widetilde{w}(x)=0 \tag{8}
\end{equation*}
$$

- Admittance function

If we introduce an admittance function

$$
\begin{equation*}
y(x)=\frac{w^{\prime}(x)}{q(x) w(x)} \quad \Rightarrow \quad w(x)=w_{0} \exp \left[\int y(x) q(x) d x\right] \tag{9}
\end{equation*}
$$

then it is easy to observe that Eq. (6) can be equivalently rewritten as follows:

$$
\begin{equation*}
q(x) y^{\prime}(x)+q^{\prime}(x) y(x)+q^{2}(x)\left[1+y^{2}(x)\right]=0 \tag{10}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\int \frac{y^{\prime}(x) d x}{q(x)\left[1+y^{2}(x)\right]}+\int \frac{y(x) q^{\prime}(x) d x}{q^{2}(x)\left[1+y^{2}(x)\right]}=x_{0}-x \tag{11}
\end{equation*}
$$

- Harmonic oscillator

If $q(x) \equiv q_{0}$ is a constant, then Eq. (11) reads

$$
\begin{equation*}
\frac{1}{q_{0}} \int \frac{d y}{1+y^{2}}=x_{0}-x \tag{12}
\end{equation*}
$$

The integral can be easily integrated with the substitution $y=\operatorname{ctg} \psi, d y=-d \psi / \sin ^{2} \psi, 1+y^{2}=1 / \sin ^{2} \psi$. Then

$$
\begin{equation*}
\psi=\operatorname{ctg}^{-1} y=\psi_{0}+q_{0}\left(x-x_{0}\right)=q_{0}\left(x-\widetilde{x}_{0}\right), \quad \widetilde{x}_{0}=x_{0}-\frac{\psi_{0}}{q_{0}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
w(x)=w_{0} \exp \left[q_{0} \int \operatorname{ctg} q_{0}\left(x-\widetilde{x}_{0}\right) d x\right]=w_{0} \exp \left[\int \frac{d \sin q_{0}\left(x-\widetilde{x}_{0}\right)}{\sin q_{0}\left(x-\widetilde{x}_{0}\right)}\right]=\widetilde{w}_{0} \sin q_{0}\left(x-\widetilde{x}_{0}\right) \tag{14}
\end{equation*}
$$

- (i) real characteristic exponent

A wide class of analytical solutions can be found by the method of phase parameter:

$$
\begin{equation*}
y(x)=\operatorname{ctg} \psi(x) \tag{15}
\end{equation*}
$$

Then Eq. (10) reads

$$
\begin{equation*}
-\frac{q(x) \psi^{\prime}(x)}{\sin ^{2} \psi(x)}+q^{\prime}(x) \operatorname{ctg} \psi(x)+\frac{q^{2}(x)}{\sin ^{2} \psi(x)}=0 \tag{16}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\psi^{\prime}(x)-\frac{q^{\prime}(x)}{2 q(x)} \sin 2 \psi(x)=q(x) \tag{17}
\end{equation*}
$$

If there exists the inversion $x=X(\psi)$, then we can write $w(x), y(x)$, and $q(x)$ as functions of ψ, i.e.,

$$
\begin{equation*}
w[X(\psi)]=W(\psi), \quad y[X(\psi)]=Y(\psi) \equiv \operatorname{ctg} \psi, \quad q[X(\psi)]=Q(\psi) \tag{18}
\end{equation*}
$$

Then Eqs. (9) and (11) can be rewritten as follows:

$$
\begin{align*}
W(\psi) & =w_{0} \sin \psi \exp \left[-\int \dot{G}(\psi) \cos ^{2} \psi d \psi\right] \tag{19}\\
X(\psi) & =x_{0}+\frac{1}{q_{0}}\left[\int \frac{d \psi}{\exp G(\psi)}-\frac{1}{2} \int \frac{\dot{G}(\psi) \sin 2 \psi d \psi}{\exp G(\psi)}\right] \tag{20}
\end{align*}
$$

where we made a substitution $Q(\psi)=q_{0} \exp G(\psi)$; here and below dots denote the differentiation with respect to ψ.

- Periodic refraction index

In particular, for any periodic refraction index $n(x)=n(x+\lambda)$ defined implicitly by a Fourier series

$$
\begin{equation*}
G(\psi)=a_{0}+\sum_{m=1}^{\infty}\left(a_{2 m} \cos 2 m \psi+b_{2 m} \sin 2 m \psi\right) \tag{21}
\end{equation*}
$$

we obtain a Floquet solution

$$
\begin{equation*}
w(x)=\widetilde{w}(x) \exp (-\mu x) \tag{22}
\end{equation*}
$$

where $\widetilde{w}(x)$ is a periodic function, i.e.,

$$
\begin{equation*}
\widetilde{w}(x+2 \lambda)=\widetilde{w}(x), \tag{23}
\end{equation*}
$$

and the characteristic exponent $\mu=\nu / \lambda$ is given by the explicit formulae for the period λ :

$$
\begin{equation*}
\lambda=\frac{2}{q_{0}} \int_{0}^{\pi} \exp [-G(\psi)] \sin ^{2} \psi d \psi \tag{24}
\end{equation*}
$$

and attenuation per period ν :

$$
\begin{equation*}
\nu=\int_{0}^{\pi} G(\psi) \sin 2 \psi d \psi \tag{25}
\end{equation*}
$$

These analytical relations, giving the very simple description of the wave field attenuation in a periodic structure, are useful for the optimal design of multilayer mirrors and Bragg fiber claddings. However, from the theoretical point of view this solution remains incomplete until a similar parametric representation is found for propagating waves in transmission bands of a periodic medium.

- (ii) complex characteristic exponent

For a complex wave also is possible to define a phase parameter $\psi(x)$, which obviously must be a homogeneous function of $w(x)$ and $w^{\prime}(x)$.

Let us observe that

$$
\begin{equation*}
\frac{y(x)+i}{y(x)-i}=\frac{\operatorname{ctg} \psi+i}{\operatorname{ctg} \psi-i}=\frac{\cos \psi+i \sin \psi}{\cos \psi-i \sin \psi}=\exp (2 i \psi) \tag{26}
\end{equation*}
$$

then Eq. (15) can be equivalently rewritten as follows:

$$
\begin{equation*}
\psi(x)=\operatorname{ctg}^{-1} y(x)=\frac{1}{2 i} \ln \frac{y(x)+i}{y(x)-i}=\frac{1}{2 i} \ln \frac{w^{\prime}(x)+i q(x) w(x)}{w^{\prime}(x)-i q(x) w(x)} \tag{27}
\end{equation*}
$$

Let us define the quasi-phase parameter $\psi(x)$ of a complex wave function $w(x)$ as follows:

$$
\begin{equation*}
\psi(x)=\frac{1}{2 i} \ln \frac{w^{\prime}(x)+i q(x) w(x)}{w^{* \prime}(x)-i q(x) w^{*}(x)}=\int\left\{q(x)+\frac{q^{\prime}(x)}{q(x)} \frac{\operatorname{Re}[y(x)]}{|y(x)+i|^{2}}\right\} d x \tag{28}
\end{equation*}
$$

The complex-valued admittance $y(x)$ as a function of ψ reads

$$
\begin{equation*}
y[X(\psi)]=Y(\psi)=\frac{\dot{W}(\psi)}{\dot{X}(\psi) Q(\psi) W(\psi)}, \tag{29}
\end{equation*}
$$

and then Eq. (1) can be rewritten as a pair of nonlinear differential equations

$$
\begin{equation*}
\dot{X}=\frac{1}{Q}\left(1-\frac{\dot{G} \operatorname{Re} Y}{|Y+i|^{2}}\right), \quad \dot{Y}=\frac{\dot{G} \operatorname{Im} Y\left[i\left(Y^{2}-1\right)-2 Y\right]}{|Y+i|^{2}}-\left(1+Y^{2}\right) \tag{30}
\end{equation*}
$$

Proof. The second part of Eq. (28) can be obtained from the first one by the direct calculation of the integral representation of the logarithm, i.e.,

$$
\begin{equation*}
\operatorname{Re}\left[\frac{1}{i} \int \frac{d\left(w^{\prime}+i q w\right)}{w^{\prime}+i q w}\right]=\operatorname{Re}\left[\frac{1}{i} \int \frac{w^{\prime \prime}+i\left(q w^{\prime}+q^{\prime} w\right)}{w^{\prime}+i q w} d x\right] \tag{31}
\end{equation*}
$$

and now, using Eq. (6) and the facts that $\operatorname{Re}(i z)=-\operatorname{Im}(z), \operatorname{Im}(i z)=\operatorname{Re}(z)$, we finally obtain that Eq. (31) can be rewritten as follows:

$$
\begin{equation*}
\operatorname{Im}\left[\int \frac{i q\left(w^{\prime}+i q w\right)+i q^{\prime} w}{w^{\prime}+i q w} d x\right]=\int\left(q+\frac{q^{\prime}}{q} \operatorname{Re}\left[\frac{1}{y(x)+i}\right]\right) d x . \tag{32}
\end{equation*}
$$

Let us also note that

$$
\begin{equation*}
|y(x)+i|^{2}=|y(x)|^{2}+2 \operatorname{Im}[y(x)]+1 . \tag{33}
\end{equation*}
$$

As for the first of Eqs. (30), it follows directly from Eq. (28), i.e.,

$$
\begin{equation*}
\frac{d \psi}{d x} \equiv \frac{1}{\dot{X}(\psi)}=Q(\psi)+\frac{\dot{G}(\psi)}{\dot{X}(\psi)} \frac{\operatorname{Re}[Y(\psi)]}{|Y(\psi)+i|^{2}} . \tag{34}
\end{equation*}
$$

And the second of Eqs. (30) is obtained inserting $w^{\prime \prime}(x)=[q(x) w(x) h(x)]^{\prime}$ into Eq. (6), then

$$
\begin{equation*}
w^{\prime \prime}[X(\psi)]=Q^{2} W\left(\frac{\dot{Y}+Y \dot{G}}{Q \dot{X}}+Y^{2}\right) \equiv-Q^{2} W=-q^{2} w, \tag{35}
\end{equation*}
$$

what provides us also with the compatibility condition (cf. Eq. (10))

$$
\begin{equation*}
\dot{Y}+Y \dot{G}+\left(1+Y^{2}\right) Q \dot{X}=0 \tag{36}
\end{equation*}
$$

imposing constraints on choosing the complex admittance $Y(\psi)$.

- \mathcal{R}, \mathcal{Y}-variables

For the sake of convenience, let us denote $Y=\mathcal{R} \exp (i \mathcal{Y})$ and separate real and imaginary parts of the second of Eqs. (30), then as a result we obtain the following pair of nonlinear differential equations:

$$
\begin{align*}
\dot{\mathcal{R}} & =-\dot{G} \mathcal{S}(\mathcal{R}, \mathcal{Y})\left[2 \mathcal{R}+\left(1+\mathcal{R}^{2}\right) \sin \mathcal{Y}\right]-\left(1+\mathcal{R}^{2}\right) \cos \mathcal{Y}=-\dot{G} R+\left(\mathcal{R}^{2}+1\right)[\dot{G} \mathcal{C}(\mathcal{R}, \mathcal{Y})-1] \cos \mathcal{Y}, \tag{37}\\
\dot{\mathcal{Y}} & =\frac{\mathcal{R}^{2}-1}{\mathcal{R}}[\dot{G} \mathcal{C}(\mathcal{R}, \mathcal{Y})-1] \sin \mathcal{Y} \tag{38}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{S}(\mathcal{R}, \mathcal{Y})=\frac{\mathcal{R} \sin \mathcal{Y}}{1+\mathcal{R}^{2}+2 \mathcal{R} \sin \mathcal{Y}}, \quad \mathcal{C}(\mathcal{R}, \mathcal{Y})=\frac{\mathcal{R} \cos \mathcal{Y}}{1+\mathcal{R}^{2}+2 \mathcal{R} \sin \mathcal{Y}} \tag{39}
\end{equation*}
$$

Let us also note that in new variables we have that

$$
\begin{equation*}
\operatorname{Re} Y(\psi)=\mathcal{R}(\psi) \cos \mathcal{Y}(\psi), \quad \operatorname{Im} Y(\psi)=\mathcal{R}(\psi) \sin \mathcal{Y}(\psi) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
|Y(\psi)+i|^{2}=1+\mathcal{R}^{2}(\psi)+2 \mathcal{R}(\psi) \sin \mathcal{Y}(\psi) \tag{41}
\end{equation*}
$$

Then the functions $\mathcal{S}(\mathcal{R}, \mathcal{Y})$ and $\mathcal{C}(\mathcal{R}, \mathcal{Y})$ can be also defined as follows:

$$
\begin{equation*}
\mathcal{S}(\mathcal{R}, \mathcal{Y})=\frac{\operatorname{Im} Y(\psi)}{|Y(\psi)+i|^{2}}, \quad \mathcal{C}(\mathcal{R}, \mathcal{Y})=\frac{\operatorname{Re} Y(\psi)}{|Y(\psi)+i|^{2}} \tag{42}
\end{equation*}
$$

with the compatibility condition

$$
\begin{equation*}
\mathcal{S}^{2}(\mathcal{R}, \mathcal{Y})+\mathcal{C}^{2}(\mathcal{R}, \mathcal{Y})=\frac{|Y(\psi)|^{2}}{|Y(\psi)+i|^{4}} \tag{43}
\end{equation*}
$$

- Another form of equations

Let us note that Eqs. (37) and (38) can be equivalently rewritten as follows:

$$
\begin{align*}
\frac{\dot{\mathcal{R}}+\dot{G} \mathcal{R}}{\mathcal{R}^{2}+1} & =[\dot{G} \mathcal{C}(\mathcal{R}, \mathcal{Y})-1] \cos \mathcal{Y} \tag{44}\\
\frac{\mathcal{R} \dot{\mathcal{Y}}}{\mathcal{R}^{2}-1} & =[\dot{G} \mathcal{C}(\mathcal{R}, \mathcal{Y})-1] \sin \mathcal{Y} \tag{45}
\end{align*}
$$

- Solution

In a general complex case Eqs. (37) and (38) can be integrated with respect to $\mathcal{Y}(\psi)$:

$$
\begin{equation*}
\mathcal{Y}(\psi)=\arcsin \left\{\frac{1+\mathcal{R}^{2}(\psi)}{\mathcal{R}(\psi)} Q(\psi) \exp \left[-2 \int \frac{\dot{G}(\psi) d \psi}{1+\mathcal{R}^{2}(\psi)}\right]\right\} \tag{46}
\end{equation*}
$$

Proof. Let us denote

$$
\begin{equation*}
\mathcal{J}(\mathcal{R}, \mathcal{Y})=\frac{\mathcal{R} \sin \mathcal{Y}}{\mathcal{R}^{2}+1} \tag{47}
\end{equation*}
$$

Then using Eqs. (37) and (38) we can calculate its derivative with respect to ψ :

$$
\begin{equation*}
\dot{\mathcal{J}}(\mathcal{R}, \mathcal{Y})=\frac{\left(1-\mathcal{R}^{2}\right) \dot{\mathcal{R}} \sin \mathcal{Y}+\left(1+\mathcal{R}^{2}\right) \mathcal{R} \dot{\mathcal{Y}} \cos \mathcal{Y}}{\left(\mathcal{R}^{2}+1\right)^{2}}=\frac{\mathcal{R}^{2}-1}{\mathcal{R}^{2}+1} \dot{G} \mathcal{J}(\mathcal{R}, \mathcal{Y}) \tag{48}
\end{equation*}
$$

We see that Eq. (48) can be easily integrated.

- Second-order nonlinear differential equation

For the function $\mathcal{C}(\psi)=\mathcal{C}[\mathcal{R}(\psi), \mathcal{Y}(\psi)]$ we obtain a nice nonlinear second-order differential equation

$$
\begin{equation*}
\ddot{\mathcal{C}}(\psi)+4 \mathcal{C}(\psi)=\frac{\dot{G}(\psi)}{2}\left[\dot{\mathcal{C}}^{2}(\psi)+4 \mathcal{C}^{2}(\psi)-1\right] \tag{49}
\end{equation*}
$$

with the eigenfrequency 2 and modulation determined by the variable refraction index

$$
\begin{equation*}
n(x)=n_{0} \exp [G[\psi(x)]] \tag{50}
\end{equation*}
$$

where $n_{0}=(c / \omega) q_{0}$.

- Parametric solutions

Therefore, there are two ways of constructing sought parametric solutions:
(i) to define $G(\psi)$ and then solve Eq. (49) with respect to $\mathcal{C}(\psi)$ or
(ii) to define $\mathcal{C}(\psi)$ and then find $G(\psi)$ by integration:

$$
\begin{equation*}
G(\psi)=2 \int \frac{\ddot{\mathcal{C}}(\psi)+4 \mathcal{C}(\psi)}{\dot{\mathcal{C}}^{2}(\psi)+4 \mathcal{C}^{2}(\psi)-1} d \psi \tag{51}
\end{equation*}
$$

Remark: If we take that $\dot{\mathcal{C}}(\psi) \equiv 0$, then the function $\mathcal{C}(\psi)$ is constant and from Eq. (51) we obtain that

$$
\begin{equation*}
G(\psi)=\frac{8 \mathcal{C}}{4 \mathcal{C}^{2}-1}\left(\psi-\psi_{0}\right) \tag{52}
\end{equation*}
$$

- Relations

The variables \mathcal{R} and \mathcal{Y} can be expressed through \mathcal{C} and its first derivative $\dot{\mathcal{C}}$ as follows:

$$
\begin{equation*}
\operatorname{ctg} \mathcal{Y}=\frac{\mathcal{C}}{\mathcal{S}}=\frac{4 \mathcal{C}}{1-4 \mathcal{C}^{2}-\dot{\mathcal{C}}^{2}}, \quad \mathcal{R}^{2}=\frac{4 \mathcal{C}^{2}+(1+\dot{\mathcal{C}})^{2}}{4 \mathcal{C}^{2}+(1-\dot{\mathcal{C}})^{2}} \tag{53}
\end{equation*}
$$

Therefore, the complex admittance $Y=\mathcal{R} \exp (i \mathcal{Y})$ can be expressed through \mathcal{C} and its first derivative $\dot{\mathcal{C}}$ as follows:

$$
\begin{equation*}
Y=\left(1+\mathcal{R}^{2}\right)\left[\frac{\mathcal{R} \cos \mathcal{Y}}{1+\mathcal{R}^{2}}+i \frac{\mathcal{R} \sin \mathcal{Y}}{1+\mathcal{R}^{2}}\right]=\frac{4 \mathcal{C}+i\left(1-4 \mathcal{C}^{2}-\dot{\mathcal{C}}^{2}\right)}{4 \mathcal{C}^{2}+(1-\dot{\mathcal{C}})^{2}} \tag{54}
\end{equation*}
$$

If the functions $Q(\psi)$ and/or $\mathcal{C}(\psi)$ are given, then the following expressions for $X(\psi)$ and the complex-valued wave function $W(\psi)$ can be written:

$$
\begin{align*}
X(\psi) & =\int(1-\dot{G}(\psi) \mathcal{C}(\psi)) \frac{d \psi}{Q(\psi)}, \tag{55}\\
W(\psi) & =w_{0} \exp \left[\int(1-\dot{G}(\psi) \mathcal{C}(\psi)) Y(\psi) d \psi\right]=w_{0} \exp \left[\int \frac{(1-\dot{G} \mathcal{C})\left[4 \mathcal{C}+i\left(1-4 \mathcal{C}^{2}-\dot{\mathcal{C}}^{2}\right)\right]}{4 \mathcal{C}^{2}+(1-\dot{\mathcal{C}})^{2}} d \psi\right] . \tag{56}
\end{align*}
$$

- Partial solutions

Let us note that for any function $\dot{G}(\psi)$ there are two particular solutions of Eq. (49), namely,

$$
\begin{equation*}
\mathcal{C}_{1}(\psi)=\alpha \sin \beta \psi, \quad \mathcal{C}_{2}(\psi)=\alpha \cos \beta \psi, \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha= \pm \frac{1}{\beta}, \quad \beta= \pm 2 \tag{58}
\end{equation*}
$$

Proof. It is easy to check that the first particular solution $\mathcal{C}_{1}(\psi)$ is the solution of Eq. (49) by direct calculations of the following terms:

$$
\begin{align*}
\ddot{\mathcal{C}}_{1}(\psi)+4 \mathcal{C}_{1}(\psi) & =\left(4-\beta^{2}\right) \alpha \sin \beta \psi \tag{59}\\
\dot{\mathcal{C}}_{1}^{2}(\psi)+4 \mathcal{C}_{1}^{2}(\psi)-1 & =\left(4-\beta^{2}\right) \alpha^{2} \sin ^{2} \beta \psi+\left(\alpha^{2} \beta^{2}-1\right) \tag{60}
\end{align*}
$$

Therefore, if we suppose that α and β fulfil the following conditions:

$$
\begin{equation*}
\alpha^{2} \beta^{2}-1=0, \quad 4-\beta^{2}=0 \tag{61}
\end{equation*}
$$

then for any function $\dot{G}(\psi)$ the left- and right-hand sides of Eq. (49) are equal to zero separately.
The same is true for the second particular solution $\mathcal{C}_{2}(\psi)$.

- Real-valued admittance

For the partial solutions of Eq. (49), the admittance $Y(\psi)$ is purely real, i.e.,

$$
Y(\psi)=\left\{\begin{array}{lr}
"+": & \operatorname{ctg}\left(\psi-\psi_{0}\right), \tag{62}\\
"-": & -\operatorname{tg}\left(\psi-\psi_{0}\right),
\end{array}\right.
$$

therefore, for any given function $\dot{G}(\psi)$ (equivalently $Q(\psi)$) we obtain the following expressions for $X(\psi)$:

$$
\begin{equation*}
X(\psi)=\int\left[1 \mp \dot{G}(\psi) \sin \left(\psi-\psi_{0}\right) \cos \left(\psi-\psi_{0}\right)\right] \frac{d \psi}{Q(\psi)} \tag{63}
\end{equation*}
$$

and the complex-valued wave function $W(\psi)$:

$$
\begin{equation*}
W(\psi)=w_{0} \sqrt{1-Z^{2}(\psi)} \exp \left[-\int \dot{G}(\psi) Z^{2}(\psi) d \psi\right] \tag{64}
\end{equation*}
$$

where

$$
Z(\psi)=\left\{\begin{array}{lc}
"+": & \cos \left(\psi-\psi_{0}\right) \tag{65}\\
"-": & \sin \left(\psi-\psi_{0}\right) .
\end{array}\right.
$$

- Special solutions

Though it is hardly possible to find the exact solution of Eq. (49) in a general case, the above analysis clarifies the nature of quasi-periodic Bloch waves in the transmission band and allows one to construct a wide class of special analytical solutions. A continual set of integrable wave equations can be obtained if we choose

$$
\begin{equation*}
\dot{G}[\psi(\mathcal{C})]=\frac{d \ln M(\mathcal{C})}{d \mathcal{C}}=\frac{1}{M(\mathcal{C})} \frac{d M(\mathcal{C})}{d \mathcal{C}}, \tag{66}
\end{equation*}
$$

where $M(\mathcal{C})$ is an arbitrary real-valued function. In this case Eq. (49) has an energy integral

$$
\begin{equation*}
\dot{\mathcal{C}}^{2}=1-4 \mathcal{C}^{2}+M(\mathcal{C}) \tag{67}
\end{equation*}
$$

and a periodic solution $\mathcal{C}(\psi)=\mathcal{C}(\psi+\tau)$ given by the following expressions:

$$
\begin{equation*}
\psi= \pm \int \frac{d \mathcal{C}}{\sqrt{1-4 \mathcal{C}^{2}+M(\mathcal{C})}}, \quad \tau=2 \int_{\mathcal{C}_{-}}^{\mathcal{C}_{+}} \frac{d \mathcal{C}}{\sqrt{1-4 \mathcal{C}^{2}+M(\mathcal{C})}} \tag{68}
\end{equation*}
$$

where the turning points $\mathcal{C}_{ \pm}$are the roots of the radical.
Proof. Let us notice that using Eq. (66) we can calculate the complete derivative of $M[\mathcal{C}(\psi)]$ with respect to ψ as follows:

$$
\begin{equation*}
\frac{\dot{M}(\mathcal{C})}{M(\mathcal{C})}=\frac{1}{M(\mathcal{C})} \frac{d M(\mathcal{C})}{d \mathcal{C}} \frac{d \mathcal{C}}{d \psi}=\dot{G} \dot{\mathcal{C}} \tag{69}
\end{equation*}
$$

Then rewriting Eq. (49) in the form

$$
\begin{equation*}
\dot{G} \dot{\mathcal{C}}=\frac{2 \dot{\mathcal{C}}(\ddot{\mathcal{C}}+4 \mathcal{C})}{\dot{\mathcal{C}}^{2}+4 \mathcal{C}^{2}-1}=\frac{d}{d \psi} \ln \left[\dot{\mathcal{C}}^{2}+4 \mathcal{C}^{2}-1\right] \equiv \frac{d}{d \psi} \ln M(\mathcal{C}) \tag{70}
\end{equation*}
$$

and integrating Eq. (70) we obtain Eq. (67).

- General reasoning

Eq. (49) can be written in the following form:

$$
\begin{equation*}
\ddot{\mathcal{C}}=f(\dot{\mathcal{C}}, \mathcal{C}, \psi), \tag{71}
\end{equation*}
$$

where the direct dependence on ψ is realized only through the function $\dot{G}(\psi)$. Let us suppose that in some way we have rewritten it as a function of \mathcal{C}, i.e., $\dot{G}(\mathcal{C})=\dot{G}[\psi(\mathcal{C})]$. Then in Eq. (71) the direct dependence on ψ is missing, and therefore, we can take \mathcal{C} as an independent variable. Then we obtain that $\dot{\mathcal{C}}=y(\mathcal{C}), \ddot{\mathcal{C}}=y(\mathcal{C}) y^{\prime}(\mathcal{C})$, and Eq. (71) reads

$$
\begin{equation*}
2 y(\mathcal{C}) y^{\prime}(\mathcal{C})-\dot{G}(\mathcal{C}) y^{2}(\mathcal{C})=\dot{G}(\mathcal{C})\left(4 \mathcal{C}^{2}-1\right)-8 \mathcal{C}, \tag{72}
\end{equation*}
$$

where I denotes the derivative with respect to \mathcal{C}. Let us note that

$$
\begin{equation*}
\left(\frac{y^{2}}{M(\mathcal{C})}\right)^{\prime}=\frac{1}{M(\mathcal{C})}\left[2 y y^{\prime}-\frac{M^{\prime}(\mathcal{C})}{M(\mathcal{C})} y^{2}\right], \tag{73}
\end{equation*}
$$

and we see that to integrate Eq. (72) it is enough to suppose that the connection between the functions $\dot{G}(\mathcal{C})$ and $M(\mathcal{C})$ is given by Eq. (66). Then we obtain the following first-order differential equation:

$$
\begin{equation*}
\dot{\mathcal{C}}^{2}=y^{2}=M(\mathcal{C})\left[\int \frac{4 \mathcal{C}^{2}-1}{M^{2}(\mathcal{C})} d M(\mathcal{C})-\int \frac{\mathcal{C}}{M(\mathcal{C})} d \mathcal{C}\right] . \tag{74}
\end{equation*}
$$

If we compare Eq. (74) with Eq. (67), we obtain the compatibility condition

$$
\begin{equation*}
\frac{4 \mathcal{C}^{2}-1}{M(\mathcal{C})}+\int \frac{4 \mathcal{C}^{2}-1}{M^{2}(\mathcal{C})} d M(\mathcal{C})=1+\int \frac{8 \mathcal{C}}{M(\mathcal{C})} d \mathcal{C} . \tag{75}
\end{equation*}
$$

- $M(\mathcal{C})=$ const $\quad \Rightarrow \quad \sin$

If we suppose that the function $M(\mathcal{C})$ is constant, i.e.,

$$
\begin{equation*}
M(\mathcal{C})=c, \quad c>-1, \quad c \neq 0, \tag{76}
\end{equation*}
$$

then $\dot{G}=0$ and we obtain that

$$
\begin{align*}
\psi(\mathcal{C}) & = \pm \int \frac{d \mathcal{C}}{\sqrt{1+c-4 \mathcal{C}^{2}}}= \pm \frac{1}{2} \int \frac{d y}{\sqrt{1-y^{2}}}, \quad y=\frac{2 \mathcal{C}}{\sqrt{1+c}} \tag{77}\\
\mathcal{C}(\psi) & = \pm \frac{\sqrt{1+c}}{2} \sin 2\left(\psi-\psi_{0}\right), \quad \psi_{0}=\psi(0) \tag{78}
\end{align*}
$$

- $M(\mathcal{C})=c+8 e \mathcal{C} \quad \Rightarrow \quad \sin$

If we suppose that

$$
\begin{equation*}
M(\mathcal{C})=c+8 e \mathcal{C}, \quad c>-1-4 e^{2}, \quad c \neq 0, \tag{79}
\end{equation*}
$$

where c and e are constants, then

$$
\begin{align*}
& \psi(\mathcal{C})= \pm \int \frac{d \mathcal{C}}{\sqrt{1+c+8 e \mathcal{C}-4 \mathcal{C}^{2}}}= \pm \frac{1}{2} \int \frac{d y}{\sqrt{1-y^{2}}}, \quad y=\frac{2(\mathcal{C}-e)}{\sqrt{1+c+4 e^{2}}} \tag{80}\\
& \mathcal{C}(\psi)=e \pm \frac{\sqrt{1+c+4 e^{2}}}{2} \sin 2\left(\psi-\psi_{0}\right) . \tag{81}
\end{align*}
$$

- $M(\mathcal{C})=c+8 e \mathcal{C}-d^{2} \mathcal{C}^{2} \quad \Rightarrow \quad \sin$

If we suppose that

$$
\begin{equation*}
M(\mathcal{C})=c+8 e \mathcal{C}-d^{2} \mathcal{C}^{2}, \quad c>-1-\frac{16 e^{2}}{d^{2}+4}, \quad c \neq 0, \tag{82}
\end{equation*}
$$

where c, e, and d are constants, then

$$
\begin{align*}
\psi(\mathcal{C}) & = \pm \int \frac{d \mathcal{C}}{\sqrt{1+c+8 e \mathcal{C}-\left(d^{2}+4\right) \mathcal{C}^{2}}}= \pm \frac{1}{2} \int \frac{d y}{\sqrt{1-y^{2}}}, \quad y=\frac{\left(d^{2}+4\right) \mathcal{C}-4 e}{\sqrt{(1+c)\left(d^{2}+4\right)+16 e^{2}}} \tag{83}\\
\mathcal{C}(\psi) & =\frac{1}{d^{2}+4}\left\{4 e \pm \sqrt{(1+c)\left(d^{2}+4\right)+16 e^{2}} \sin \left[\sqrt{d^{2}+4}\left(\psi-\psi_{0}\right)\right]\right\} . \tag{84}
\end{align*}
$$

- $M(\mathcal{C})=c+8 e \mathcal{C}+\left(k^{2}+4\right) \mathcal{C}^{2} \quad \Rightarrow \quad$ sh

If we suppose that

$$
\begin{equation*}
M(\mathcal{C})=c+8 e \mathcal{C}+\left(k^{2}+4\right) \mathcal{C}^{2}, \quad c>-1+\frac{16 e^{2}}{k^{2}}, \quad k>0, \quad c \neq 0 \tag{85}
\end{equation*}
$$

where c, e, and k are constants, then

$$
\begin{align*}
\psi(\mathcal{C}) & = \pm \int \frac{d \mathcal{C}}{\sqrt{1+c+8 e \mathcal{C}+k^{2} \mathcal{C}^{2}}}= \pm \frac{1}{2} \int \frac{d y}{\sqrt{1+y^{2}}}, \quad y=\frac{k^{2} \mathcal{C}+4 e}{\sqrt{(1+c) k^{2}-16 e^{2}}} \tag{86}\\
\mathcal{C}(\psi) & =\frac{1}{k^{2}}\left\{-4 e \pm \sqrt{(1+c) k^{2}-16 e^{2}} \operatorname{sh} k\left(\psi-\psi_{0}\right)\right\} \tag{87}
\end{align*}
$$

- $M(\mathcal{C})=\left(4 a^{2}-1\right)+b^{2} \mathcal{C}^{4} \quad \Rightarrow \quad$ sn

Let us also consider an instructive example of modulated waves in a periodic dielectric medium, determined by the following potential:

$$
\begin{equation*}
M(\mathcal{C})=\left(4 a^{2}-1\right)+b^{2} \mathcal{C}^{4}, \quad a, b>0, \quad a b<1, \quad 4 a^{2} \neq 1 . \tag{88}
\end{equation*}
$$

Then we obtain that

$$
\begin{equation*}
\psi(\mathcal{C})=\psi_{0} \pm \int_{0}^{\mathcal{C}} \frac{d \mathcal{C}}{\sqrt{4 a^{2}-4 \mathcal{C}^{2}+b^{2} \mathcal{C}^{4}}}=\psi_{0} \pm \frac{1}{b} \int_{0}^{\mathcal{C}} \frac{d \mathcal{C}}{\sqrt{\left(\mathcal{C}_{+}^{2}-\mathcal{C}^{2}\right)\left(\mathcal{C}_{-}^{2}-\mathcal{C}^{2}\right)}} \tag{89}
\end{equation*}
$$

where the roots of the radical are given as follows:

$$
\begin{equation*}
\mathcal{C}_{ \pm}^{2}=\frac{2}{b^{2}}\left(1 \pm \sqrt{1-a^{2} b^{2}}\right) \tag{90}
\end{equation*}
$$

If we take that $\mathcal{C}_{+}>\mathcal{C}_{-}>\mathcal{C}>0$ (the roots $\mathcal{C}_{ \pm}$are real for $a b \leq 1$; additionally the condition $\mathcal{C}_{+}>\mathcal{C}_{-}$imposes $a b \neq 1$), then the auxiliary function $\mathcal{C}(\psi)$ is expressed through the Jacobi elliptic functions of the first kind:

$$
\begin{equation*}
\mathcal{C}(\psi)= \pm a \sqrt{1+p^{2}} \operatorname{sn}\left[\frac{2\left(\psi-\psi_{0}\right)}{\sqrt{1+p^{2}}}, p\right] \tag{91}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\mathcal{C}_{-}}{\mathcal{C}_{+}}=p=\frac{\sqrt{1-\sqrt{1-a^{2} b^{2}}}}{\sqrt{1+\sqrt{1-a^{2} b^{2}}}}=\frac{1-\sqrt{1-a^{2} b^{2}}}{a b}, \quad \sqrt{1+p^{2}}=\frac{\sqrt{2}}{a b} \sqrt{1-\sqrt{1-a^{2} b^{2}}}=\frac{\mathcal{C}_{-}}{a}, \quad \mathcal{C}_{+} \mathcal{C}_{-}=\frac{2 a}{b}, \tag{92}
\end{equation*}
$$

- Complex-valued wave function

For any given function $M[\mathcal{C}(\psi)]$ the complex-valued wave function $W(\psi)$ can be rewritten as follows:

$$
\begin{equation*}
W=w_{0} \exp \left[\pm \int \frac{4 \mathcal{C}-i M}{4 \mathcal{C}^{2}+\left(1 \mp \sqrt{1-4 \mathcal{C}^{2}+M}\right)^{2}} \frac{\left(M-\mathcal{C} M^{\prime}\right) d \mathcal{C}}{M \sqrt{1-4 \mathcal{C}^{2}+M}}\right] \tag{93}
\end{equation*}
$$

In particular, for the complex increment we obtain that

$$
\begin{equation*}
\chi+i \eta=\ln \left[\frac{W(\psi+\tau)}{W(\psi)}\right]=2 \int_{\mathcal{C}_{-}}^{\mathcal{C}_{+}} \frac{2+M}{M^{2}+16 \mathcal{C}^{2}}\left\{\frac{4 \mathcal{C}}{M}-i\right\} \frac{\left(M-\mathcal{C} M^{\prime}\right) d \mathcal{C}}{\sqrt{1-4 \mathcal{C}^{2}+M}} . \tag{94}
\end{equation*}
$$

- Even functions $M(\mathcal{C})$

Let us take an arbitrary even function $M(\mathcal{C})$, then the function

$$
\begin{equation*}
G(\psi)=\int \dot{G}(\psi) d \psi= \pm \int \frac{d M(\mathcal{C})}{M(\mathcal{C}) \sqrt{1-4 \mathcal{C}^{2}+M(\mathcal{C})}} \tag{95}
\end{equation*}
$$

will be periodic. Moreover, for any even function $M(\mathcal{C})$ we have that

$$
\begin{equation*}
\chi=2 \int_{\mathcal{C}_{-}}^{\mathcal{C}_{+}} \frac{2+M}{M^{2}+16 \mathcal{C}^{2}}\left\{1-\frac{\mathcal{C} M^{\prime}}{M}\right\} \frac{4 \mathcal{C} d \mathcal{C}}{\sqrt{1-4 \mathcal{C}^{2}+M}}=0 \tag{96}
\end{equation*}
$$

which means that $|W(\psi)|$ is periodic, while the phase advance per period τ, i.e.,

$$
\begin{equation*}
\eta=4 \int_{0}^{\mathcal{C}_{+}} \frac{2+M}{M^{2}+16 \mathcal{C}^{2}} \frac{\left(\mathcal{C} M^{\prime}-M\right) d \mathcal{C}}{\sqrt{1-4 \mathcal{C}^{2}+M}} \tag{97}
\end{equation*}
$$

determines the modulation period $T=(2 \pi / \eta) \tau$ of the quasi-periodic solution $W(\psi)$ predicted by the Floquets theory.

Thank you for your attention!

