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• Parametric resonance

– in mechanics: systems with external sources of energy
(e.g., the pendulum with oscillating pivot point, periodically varying stiffness, mass, or load),

– in fluid or plasma mechanics: frequency modulation or density fluctuations,

– in mathematical biology: periodic environmental changes.

Hill equation (analysis of the orbit of the Moon — lunar stability problem, modelling of a quadrupole mass spectrometer,
as the 1D Schrödinger equation of an electron in a crystal, etc.):

ẍ+
(
ω2
0 + p(t)

)
x = 0, (1)

where ω0 is a constant, and p(t) is a π-periodic function with zero average.
More generally:

ẍ+ kẋ+
(
ω2
0 + p(t)

)
F (x) = 0, (2)

where k > 0 is the damping coefficient, and F (x) = x+ bx2 + cx3 + · · · .
Mathieu equation (stability of railroad rails as trains drive over them, seasonally forced population dynamics,

the Floquet theory of the stability of limit cycles, etc.):

ẍ+ (a− 2q cos 2t)x = 0, (3)

where a is a real constant, and q can be complex.
Lamé equation (when we replace circular functions by elliptic ones):

ẍ+ (A+B℘(t))x = 0, (4)

where A, B are some constants, and ℘(t) is the Weierstrass elliptic function. Another form:

ẍ+
(
A+B sn2 t

)
x = 0, (5)

where sn(t) is the Jacobi elliptic function of the first kind.



• One-dimensional wave equation

Let us consider the following one-dimensional wave equation:

w′′(x) + q2(x)w(x) = 0, q(x) =
ω

c
n(x), (6)

which describes the harmonic waves ∼ exp(−iωt) propagating in a nonuniform dielectric medium with gradually varying
dielectric refraction index n(x); c is the speed of light in vacuum and ′ denotes the differentiation with respect to x.

• Floquet theorem

According to the Floquet theorem, for any periodic refraction index n(x) = n(x + λ) (or equivalently for any periodic
coefficient q(x) = q(x+ λ)) the one-dimensional wave equation (6) has a quasi-periodic solution

w(x) = w̃(x) exp(±µx), (7)

where w̃(x) is a periodic function and the characteristic exponent µ can be either (i) real or (ii) purely imaginary. The
former case corresponds to a parametric (anti-)resonance in the stop bands of the periodic structure, and the latter one to
a periodic modulation of the carrier travelling wave.

• Periodic part of the solution

The one-dimensional wave equation for w̃(x) has the following form:

w̃′′(x)± 2µw̃′(x) +
[
q2(x) + µ2

]
w̃(x) = 0. (8)



• Admittance function

If we introduce an admittance function

y(x) =
w′(x)

q(x)w(x)
⇒ w(x) = w0 exp

[∫
y(x)q(x)dx

]
, (9)

then it is easy to observe that Eq. (6) can be equivalently rewritten as follows:

q(x)y′(x) + q′(x)y(x) + q2(x)
[
1 + y2(x)

]
= 0, (10)

i.e., ∫
y′(x)dx

q(x) [1 + y2(x)]
+

∫
y(x)q′(x)dx

q2(x) [1 + y2(x)]
= x0 − x. (11)

• Harmonic oscillator

If q(x) ≡ q0 is a constant, then Eq. (11) reads

1

q0

∫
dy

1 + y2
= x0 − x. (12)

The integral can be easily integrated with the substitution y = ctg ψ, dy = −dψ/ sin2 ψ, 1 + y2 = 1/ sin2 ψ. Then

ψ = ctg−1y = ψ0 + q0 (x− x0) = q0 (x− x̃0) , x̃0 = x0 −
ψ0

q0
, (13)

and

w(x) = w0 exp

[
q0

∫
ctg q0 (x− x̃0) dx

]
= w0 exp

[∫
d sin q0 (x− x̃0)
sin q0 (x− x̃0)

]
= w̃0 sin q0 (x− x̃0) . (14)



• (i) real characteristic exponent

A wide class of analytical solutions can be found by the method of phase parameter:

y(x) = ctg ψ(x). (15)

Then Eq. (10) reads

− q(x)ψ′(x)

sin2 ψ(x)
+ q′(x) ctg ψ(x) +

q2(x)

sin2 ψ(x)
= 0, (16)

i.e.,

ψ′(x)− q′(x)

2q(x)
sin 2ψ(x) = q(x). (17)

If there exists the inversion x = X(ψ), then we can write w(x), y(x), and q(x) as functions of ψ, i.e.,

w [X(ψ)] = W (ψ), y [X(ψ)] = Y (ψ) ≡ ctg ψ, q [X(ψ)] = Q(ψ). (18)

Then Eqs. (9) and (11) can be rewritten as follows:

W (ψ) = w0 sinψ exp

[
−
∫
Ġ(ψ) cos2 ψ dψ

]
, (19)

X(ψ) = x0 +
1

q0

[∫
dψ

expG(ψ)
− 1

2

∫
Ġ(ψ) sin 2ψ dψ

expG(ψ)

]
, (20)

where we made a substitution Q(ψ) = q0 expG(ψ); here and below dots denote the differentiation with respect to ψ.



• Periodic refraction index

In particular, for any periodic refraction index n(x) = n(x+ λ) defined implicitly by a Fourier series

G(ψ) = a0 +
∞∑
m=1

(a2m cos 2mψ + b2m sin 2mψ) , (21)

we obtain a Floquet solution
w(x) = w̃(x) exp(−µx), (22)

where w̃(x) is a periodic function, i.e.,
w̃(x+ 2λ) = w̃(x), (23)

and the characteristic exponent µ = ν/λ is given by the explicit formulae for the period λ:

λ =
2

q0

∫ π

0

exp [−G(ψ)] sin2 ψdψ, (24)

and attenuation per period ν:

ν =

∫ π

0

G(ψ) sin 2ψdψ. (25)

These analytical relations, giving the very simple description of the wave field attenuation in a periodic structure, are
useful for the optimal design of multilayer mirrors and Bragg fiber claddings. However, from the theoretical point of view
this solution remains incomplete until a similar parametric representation is found for propagating waves in transmission
bands of a periodic medium.



• (ii) complex characteristic exponent

For a complex wave also is possible to define a phase parameter ψ(x), which obviously must be a homogeneous function
of w(x) and w′(x).

Let us observe that
y(x) + i

y(x)− i
=

ctg ψ + i

ctg ψ − i
=

cosψ + i sinψ

cosψ − i sinψ
= exp (2iψ) , (26)

then Eq. (15) can be equivalently rewritten as follows:

ψ(x) = ctg−1y(x) =
1

2i
ln
y(x) + i

y(x)− i
=

1

2i
ln
w′(x) + iq(x)w(x)

w′(x)− iq(x)w(x)
. (27)

Let us define the quasi-phase parameter ψ(x) of a complex wave function w(x) as follows:

ψ(x) =
1

2i
ln

w′(x) + iq(x)w(x)

w∗′(x)− iq(x)w∗(x)
=

∫ {
q(x) +

q′(x)

q(x)

Re [y(x)]

|y(x) + i|2

}
dx. (28)

The complex-valued admittance y(x) as a function of ψ reads

y [X(ψ)] = Y (ψ) =
Ẇ (ψ)

Ẋ(ψ)Q(ψ)W (ψ)
, (29)

and then Eq. (1) can be rewritten as a pair of nonlinear differential equations

Ẋ =
1

Q

(
1− Ġ Re Y

|Y + i|2

)
, Ẏ =

Ġ Im Y [i (Y 2 − 1)− 2Y ]

|Y + i|2
−
(
1 + Y 2

)
. (30)



Proof. The second part of Eq. (28) can be obtained from the first one by the direct calculation of the integral representation
of the logarithm, i.e.,

Re

[
1

i

∫
d(w′ + iqw)

w′ + iqw

]
= Re

[
1

i

∫
w′′ + i(qw′ + q′w)

w′ + iqw
dx

]
(31)

and now, using Eq. (6) and the facts that Re (iz) = −Im(z), Im (iz) = Re(z), we finally obtain that Eq. (31) can be
rewritten as follows:

Im

[∫
iq (w′ + iqw) + iq′w

w′ + iqw
dx

]
=

∫ (
q +

q′

q
Re

[
1

y(x) + i

])
dx. (32)

Let us also note that
|y(x) + i|2 = |y(x)|2 + 2Im [y(x)] + 1. (33)

As for the first of Eqs. (30), it follows directly from Eq. (28), i.e.,

dψ

dx
≡ 1

Ẋ(ψ)
= Q(ψ) +

Ġ(ψ)

Ẋ(ψ)

Re [Y (ψ)]

|Y (ψ) + i|2
. (34)

And the second of Eqs. (30) is obtained inserting w′′(x) = [q(x)w(x)h(x)]′ into Eq. (6), then

w′′ [X(ψ)] = Q2W

(
Ẏ + Y Ġ

QẊ
+ Y 2

)
≡ −Q2W = −q2w, (35)

what provides us also with the compatibility condition (cf. Eq. (10))

Ẏ + Y Ġ+
(
1 + Y 2

)
QẊ = 0 (36)

imposing constraints on choosing the complex admittance Y (ψ).



• R,Y-variables

For the sake of convenience, let us denote Y = R exp(iY) and separate real and imaginary parts of the second of Eqs.
(30), then as a result we obtain the following pair of nonlinear differential equations:

Ṙ = −Ġ S (R,Y)
[
2R+

(
1 +R2

)
sinY

]
−
(
1 +R2

)
cosY = −ĠR +

(
R2 + 1

) [
Ġ C (R,Y)− 1

]
cosY , (37)

Ẏ =
R2 − 1

R

[
Ġ C (R,Y)− 1

]
sinY , (38)

where

S (R,Y) =
R sinY

1 +R2 + 2R sinY
, C (R,Y) =

R cosY
1 +R2 + 2R sinY

. (39)

Let us also note that in new variables we have that

Re Y (ψ) = R(ψ) cosY(ψ), Im Y (ψ) = R(ψ) sinY(ψ) (40)

and
|Y (ψ) + i|2 = 1 +R2(ψ) + 2R(ψ) sinY(ψ). (41)

Then the functions S (R,Y) and C (R,Y) can be also defined as follows:

S (R,Y) =
Im Y (ψ)

|Y (ψ) + i|2
, C (R,Y) =

Re Y (ψ)

|Y (ψ) + i|2
(42)

with the compatibility condition

S2 (R,Y) + C2 (R,Y) =
|Y (ψ)|2

|Y (ψ) + i|4
. (43)



• Another form of equations

Let us note that Eqs. (37) and (38) can be equivalently rewritten as follows:

Ṙ+ ĠR
R2 + 1

=
[
Ġ C (R,Y)− 1

]
cosY , (44)

RẎ
R2 − 1

=
[
Ġ C (R,Y)− 1

]
sinY . (45)

• Solution

In a general complex case Eqs. (37) and (38) can be integrated with respect to Y(ψ):

Y(ψ) = arcsin

{
1 +R2(ψ)

R(ψ)
Q(ψ) exp

[
−2

∫
Ġ(ψ)dψ

1 +R2(ψ)

]}
. (46)

Proof. Let us denote

J (R,Y) =
R sinY
R2 + 1

. (47)

Then using Eqs. (37) and (38) we can calculate its derivative with respect to ψ:

J̇ (R,Y) =
(1−R2) Ṙ sinY + (1 +R2)RẎ cosY

(R2 + 1)2
=
R2 − 1

R2 + 1
ĠJ (R,Y) . (48)

We see that Eq. (48) can be easily integrated.



• Second-order nonlinear differential equation

For the function C(ψ) = C [R(ψ),Y(ψ)] we obtain a nice nonlinear second-order differential equation

C̈(ψ) + 4C(ψ) =
Ġ(ψ)

2

[
Ċ2(ψ) + 4C2(ψ)− 1

]
(49)

with the eigenfrequency 2 and modulation determined by the variable refraction index

n(x) = n0 exp [G [ψ(x)]] , (50)

where n0 = (c/ω) q0.

• Parametric solutions

Therefore, there are two ways of constructing sought parametric solutions:

(i) to define G(ψ) and then solve Eq. (49) with respect to C(ψ) or

(ii) to define C(ψ) and then find G(ψ) by integration:

G(ψ) = 2

∫
C̈(ψ) + 4C(ψ)

Ċ2(ψ) + 4C2(ψ)− 1
dψ. (51)

Remark: If we take that Ċ(ψ) ≡ 0, then the function C(ψ) is constant and from Eq. (51) we obtain that

G(ψ) =
8C

4C2 − 1
(ψ − ψ0) . (52)



• Relations

The variables R and Y can be expressed through C and its first derivative Ċ as follows:

ctg Y =
C
S

=
4C

1− 4C2 − Ċ2
, R2 =

4C2 +
(

1 + Ċ
)2

4C2 +
(

1− Ċ
)2 . (53)

Therefore, the complex admittance Y = R exp(iY) can be expressed through C and its first derivative Ċ as follows:

Y =
(
1 +R2

) [R cosY
1 +R2

+ i
R sinY
1 +R2

]
=

4C + i
(

1− 4C2 − Ċ2
)

4C2 +
(

1− Ċ
)2 . (54)

If the functions Q(ψ) and/or C(ψ) are given, then the following expressions for X(ψ) and the complex-valued wave
function W (ψ) can be written:

X(ψ) =

∫ (
1− Ġ(ψ)C(ψ)

) dψ

Q(ψ)
, (55)

W (ψ) = w0 exp

[∫ (
1− Ġ(ψ)C(ψ)

)
Y (ψ)dψ

]
= w0 exp

∫
(

1− ĠC
) [

4C + i
(

1− 4C2 − Ċ2
)]

4C2 +
(

1− Ċ
)2 dψ

 . (56)



• Partial solutions

Let us note that for any function Ġ(ψ) there are two particular solutions of Eq. (49), namely,

C1(ψ) = α sin βψ, C2(ψ) = α cos βψ, (57)

where

α = ± 1

β
, β = ±2. (58)

Proof. It is easy to check that the first particular solution C1(ψ) is the solution of Eq. (49) by direct calculations of the
following terms:

C̈1(ψ) + 4C1(ψ) =
(
4− β2

)
α sin βψ, (59)

Ċ21(ψ) + 4C21(ψ)− 1 =
(
4− β2

)
α2 sin2 βψ +

(
α2β2 − 1

)
. (60)

Therefore, if we suppose that α and β fulfil the following conditions:

α2β2 − 1 = 0, 4− β2 = 0, (61)

then for any function Ġ(ψ) the left- and right-hand sides of Eq. (49) are equal to zero separately.
The same is true for the second particular solution C2(ψ).



• Real-valued admittance

For the partial solutions of Eq. (49), the admittance Y (ψ) is purely real, i.e.,

Y (ψ) =

{
“ + ” : ctg (ψ − ψ0) ,
“− ” : −tg (ψ − ψ0) ,

(62)

therefore, for any given function Ġ(ψ) (equivalently Q(ψ)) we obtain the following expressions for X(ψ):

X(ψ) =

∫ [
1∓ Ġ(ψ) sin (ψ − ψ0) cos (ψ − ψ0)

] dψ

Q(ψ)
, (63)

and the complex-valued wave function W (ψ):

W (ψ) = w0

√
1− Z2(ψ) exp

[
−
∫
Ġ(ψ)Z2(ψ)dψ

]
, (64)

where

Z(ψ) =

{
“ + ” : cos (ψ − ψ0) ,
“− ” : sin (ψ − ψ0) .

(65)



• Special solutions

Though it is hardly possible to find the exact solution of Eq. (49) in a general case, the above analysis clarifies the
nature of quasi-periodic Bloch waves in the transmission band and allows one to construct a wide class of special analytical
solutions. A continual set of integrable wave equations can be obtained if we choose

Ġ [ψ(C)] =
d lnM(C)

dC
=

1

M(C)
dM(C)
dC

, (66)

where M(C) is an arbitrary real-valued function. In this case Eq. (49) has an energy integral

Ċ2 = 1− 4C2 +M(C) (67)

and a periodic solution C(ψ) = C(ψ + τ) given by the following expressions:

ψ = ±
∫

dC√
1− 4C2 +M(C)

, τ = 2

∫ C+
C−

dC√
1− 4C2 +M(C)

, (68)

where the turning points C± are the roots of the radical.

Proof. Let us notice that using Eq. (66) we can calculate the complete derivative of M [C(ψ)] with respect to ψ as follows:

Ṁ(C)
M(C)

=
1

M(C)
dM(C)
dC

dC
dψ

= ĠĊ. (69)

Then rewriting Eq. (49) in the form

ĠĊ =
2Ċ
(
C̈ + 4C

)
Ċ2 + 4C2 − 1

=
d

dψ
ln
[
Ċ2 + 4C2 − 1

]
≡ d

dψ
lnM(C) (70)

and integrating Eq. (70) we obtain Eq. (67).



• General reasoning

Eq. (49) can be written in the following form:

C̈ = f
(
Ċ, C, ψ

)
, (71)

where the direct dependence on ψ is realized only through the function Ġ(ψ). Let us suppose that in some way we have
rewritten it as a function of C, i.e., Ġ(C) = Ġ [ψ(C)]. Then in Eq. (71) the direct dependence on ψ is missing, and therefore,
we can take C as an independent variable. Then we obtain that Ċ = y(C), C̈ = y(C)y′(C), and Eq. (71) reads

2y(C)y′(C)− Ġ(C)y2(C) = Ġ(C)
(
4C2 − 1

)
− 8C, (72)

where ′ denotes the derivative with respect to C. Let us note that(
y2

M(C)

)′
=

1

M(C)

[
2yy′ − M ′(C)

M(C)
y2
]
, (73)

and we see that to integrate Eq. (72) it is enough to suppose that the connection between the functions Ġ(C) and M(C) is
given by Eq. (66). Then we obtain the following first-order differential equation:

Ċ2 = y2 = M(C)
[∫

4C2 − 1

M2(C)
dM(C)−

∫
8C

M(C)
dC
]
. (74)

If we compare Eq. (74) with Eq. (67), we obtain the compatibility condition

4C2 − 1

M(C)
+

∫
4C2 − 1

M2(C)
dM(C) = 1 +

∫
8C

M(C)
dC. (75)



• M(C) = const ⇒ sin

If we suppose that the function M(C) is constant, i.e.,

M(C) = c, c > −1, c 6= 0, (76)

then Ġ = 0 and we obtain that

ψ(C) = ±
∫

dC√
1 + c− 4C2

= ±1

2

∫
dy√

1− y2
, y =

2C√
1 + c

, (77)

C(ψ) = ±
√

1 + c

2
sin 2 (ψ − ψ0) , ψ0 = ψ(0). (78)

• M(C) = c+ 8eC ⇒ sin

If we suppose that
M(C) = c+ 8eC, c > −1− 4e2, c 6= 0, (79)

where c and e are constants, then

ψ(C) = ±
∫

dC√
1 + c+ 8eC − 4C2

= ±1

2

∫
dy√

1− y2
, y =

2 (C − e)√
1 + c+ 4e2

. (80)

C(ψ) = e±
√

1 + c+ 4e2

2
sin 2 (ψ − ψ0) . (81)



• M(C) = c+ 8eC − d2C2 ⇒ sin

If we suppose that

M(C) = c+ 8eC − d2C2, c > −1− 16e2

d2 + 4
, c 6= 0, (82)

where c, e, and d are constants, then

ψ(C) = ±
∫

dC√
1 + c+ 8eC − (d2 + 4) C2

= ±1

2

∫
dy√

1− y2
, y =

(d2 + 4) C − 4e√
(1 + c) (d2 + 4) + 16e2

. (83)

C(ψ) =
1

d2 + 4

{
4e±

√
(1 + c) (d2 + 4) + 16e2 sin

[√
d2 + 4 (ψ − ψ0)

]}
. (84)

• M(C) = c+ 8eC +
(
k2 + 4

)
C2 ⇒ sh

If we suppose that

M(C) = c+ 8eC +
(
k2 + 4

)
C2, c > −1 +

16e2

k2
, k > 0, c 6= 0, (85)

where c, e, and k are constants, then

ψ(C) = ±
∫

dC√
1 + c+ 8eC + k2C2

= ±1

2

∫
dy√

1 + y2
, y =

k2C + 4e√
(1 + c)k2 − 16e2

. (86)

C(ψ) =
1

k2

{
−4e±

√
(1 + c)k2 − 16e2 sh k (ψ − ψ0)

}
. (87)



• M(C) =
(
4a2 − 1

)
+ b2C4 ⇒ sn

Let us also consider an instructive example of modulated waves in a periodic dielectric medium, determined by the
following potential:

M(C) =
(
4a2 − 1

)
+ b2C4, a, b > 0, ab < 1, 4a2 6= 1. (88)

Then we obtain that

ψ(C) = ψ0 ±
∫ C
0

dC√
4a2 − 4C2 + b2C4

= ψ0 ±
1

b

∫ C
0

dC√
(C2+ − C2) (C2− − C2)

, (89)

where the roots of the radical are given as follows:

C2± =
2

b2

(
1±
√

1− a2b2
)
. (90)

If we take that C+ > C− > C > 0 (the roots C± are real for ab ≤ 1; additionally the condition C+ > C− imposes ab 6= 1),
then the auxiliary function C(ψ) is expressed through the Jacobi elliptic functions of the first kind:

C(ψ) = ±a
√

1 + p2 sn

[
2 (ψ − ψ0)√

1 + p2
, p

]
, (91)

where

C−
C+

= p =

√
1−
√

1− a2b2√
1 +
√

1− a2b2
=

1−
√

1− a2b2
ab

,
√

1 + p2 =

√
2

ab

√
1−
√

1− a2b2 =
C−
a
, C+C− =

2a

b
, (92)



• Complex-valued wave function

For any given function M [C(ψ)] the complex-valued wave function W (ψ) can be rewritten as follows:

W = w0 exp

[
±
∫

4C − iM
4C2 +

(
1∓
√

1− 4C2 +M
)2 (M − CM ′) dC

M
√

1− 4C2 +M

]
. (93)

In particular, for the complex increment we obtain that

χ+ iη = ln

[
W (ψ + τ)

W (ψ)

]
= 2

∫ C+
C−

2 +M

M2 + 16C2

{
4C
M
− i
}

(M − CM ′) dC√
1− 4C2 +M

. (94)

• Even functions M(C)
Let us take an arbitrary even function M(C), then the function

G(ψ) =

∫
Ġ(ψ)dψ = ±

∫
dM(C)

M(C)
√

1− 4C2 +M(C)
(95)

will be periodic. Moreover, for any even function M(C) we have that

χ = 2

∫ C+
C−

2 +M

M2 + 16C2

{
1− CM

′

M

}
4CdC√

1− 4C2 +M
= 0, (96)

which means that |W (ψ)| is periodic, while the phase advance per period τ , i.e.,

η = 4

∫ C+
0

2 +M

M2 + 16C2
(CM ′ −M) dC√

1− 4C2 +M
, (97)

determines the modulation period T = (2π/η) τ of the quasi-periodic solution W (ψ) predicted by the Floquets theory.



***

Thank you for your attention!

***


