2D Solitons in Dissipative Media

Stefan C. Mancas

Nonlinear Waves Department of Mathematics Embry-Riddle Aeronautical University Daytona Beach, FL. 32114

XIVth International Conference Geometry, Integrability and Quantization June 8-13, 2012 Varna, Bulgaria

ъ

Outline

Introduction

- CCQGLE
- Classes of Solitons Solutions
- No Hopf Bifurcations in Hamiltonian Systems
- 2 Numerical Methods
 - Simulations on 2D CCQGLE
 - Initial Conditions
 - Parameters
- 3 Numerical Simulations/Results
 - 2D Solitons
 - Future Work
 - 3D CCQGLE
 - Acknowledgment

CCQGLE Classes of Solitons Solutions No Hopf Bifurcations in Hamiltonian Systems

Complex Cubic-Quintic Ginzburg-Landau Equation (CCQGLE)

CCQGLE

 $\partial_t A = \epsilon A + (b_1 + ic_1) \nabla^2_{\perp} A - (b_3 - ic_3) |A|^2 A - (b_5 - ic_5) |A|^4 A$

- Canonical equation governing the weakly nonlinear behavior of dissipative systems
- ∇^2_{\perp} -transverse Laplacian for radially symmetric beams, A(x, y; t)-envelope field, *t*-cavity number
- ϵ -linear loss/gain, b_1 -angular spectral filtering, $c_1 = 0.5$ diffraction coefficient, b_3 -nonlinear gain/loss, $c_3 = 1$ -nonlinear dispersion, b_5 -saturation of the nonlinear gain/loss, c_5 -saturation of the nonlinear refractive index
- Akhmediev et. al. [1] new classes: pulsating, creeping, staking, represented by the second state of t

CCQGLE Classes of Solitons Solutions No Hopf Bifurcations in Hamiltonian Systems

Previous Numerical Simulations on 1D CCQGLE

CCQGLE Classes of Solitons Solutions No Hopf Bifurcations in Hamiltonian Systems

Hamiltonian Systems \rightarrow No Hopf Bifurcations

- Five classes of solutions that are not stationary in time
- Don't exist as stable structures in Hamiltonian systems
- Envelopes exhibit complicated temporal dynamics and are unique to dissipative systems
- Dissipation allows the occurrence of Hopf and it leads to the various classes of pulsating solitons in CCQGLE

Simulations on 2D CCQGLE Initial Conditions Parameters

2D Fourier Spectral Method

- Fourier $\mathcal{F}(u)(k_x, k_y) = \widehat{u}(k_x, k_y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(k_x x + k_y y)} u(x, y) \, dx dy$
- inverse Fourier $\mathcal{F}^{-1}(\widehat{u})(x,y) = u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k_x x + k_y y)} \widehat{u}(k_x,k_y) dk_x dk_y$
- PDE \Rightarrow ODE $\widehat{A}_t = \alpha(k_x, k_y)\widehat{A} + \beta |\widehat{A}|^2 \widehat{A} + \gamma |\widehat{A}|^4 \widehat{A}$
- $\alpha(k_x, k_y) = \epsilon (b_1 + ic_1)(k_x^2 + k_y^2), \ \beta = -(b_3 ic_3), \ \gamma = -(b_5 ic_5)$

Simulations on 2D CCQGLE Initial Conditions Parameters

Spatial Discretization (Discrete Fourier Transform)

- Rectangular Mesh $\Omega = [-L/2, L/2] \times [-L/2, L/2]$ into $n \times n$ uniformly spaced grid points $X_{ij} = (x_i, y_j)$ with $\Delta x = \Delta y = L/n$, and $A(X_{ij}) = A_{ij}$
- 2DFT

$$\widehat{A}_{k_xk_y} = \Delta x \Delta y \sum_{i=1}^n \sum_{j=1}^n e^{-i(k_x x_i + k_y y_j)} A_{ij}, \ k_x, k_y = -\frac{n}{2} + 1, \cdots, \frac{n}{2}$$

inverse 2DFT

$$\begin{array}{l} A_{ij} = \frac{1}{(2\pi)^2} \sum_{k_x = -n/2+1}^{n/2} \sum_{k_y = -n/2+1}^{n/2} e^{i(k_x x_i + k_y y_j)} \widehat{A}_{k_x k_y}, \ i, j = 1, 2, \cdots, n \end{array}$$

Simulations on 2D CCQGLE Initial Conditions Parameters

Temporal Discretization

• Explicit scheme for the nonlinear part, and exact solution for the linear part $\widehat{A}(t) = A(x, y; 0)e^{\alpha(k_x, k_y)t}$

• Initializing
$$\widehat{A}^n = \widehat{A}(t_n) \Rightarrow$$

 $\mathcal{N}_3 = \mathcal{F}\left(\left|\mathcal{F}^{-1}(\widehat{A}^n)\right|^2 \mathcal{F}^{-1}(\widehat{A}^n)\right), \mathcal{N}_5 = \mathcal{F}\left(\left|\mathcal{F}^{-1}(\widehat{A}^n)\right|^4 \mathcal{F}^{-1}(\widehat{A}^n)\right)$

• 4 step AB, or 4th order RK

$$\widehat{A}^{n+1} = \\
\widehat{A}^n e^{\alpha(k_x, k_y)t} + \frac{\Delta t}{24} \left[55f(\widehat{A}^n) - 59f(\widehat{A}^{n-1}) + 37f(\widehat{A}^{n-2}) - 9f(\widehat{A}^{n-3}) \right]$$
• $f(\widehat{A}) = \beta \mathcal{N}_1 + \gamma \mathcal{N}_2$

Simulations on 2D CCQGLE Initial Conditions Parameters

IC

- Gaussian $A(x, y; 0) = A_0 e^{-r^2}$
- ring shape with rotating phase $A(x, y; 0) = A_0 r^m e^{-r^2} e^{im\theta}$
- *m* degree of vorticity, A_0 real amplitude, $\theta = \tan^{-1} \left(\frac{\sigma_y y}{\sigma_{xx}} \right)$
- widths either circular or elliptic are controlled by

Figure: Initial shapes of solitons. Left: Gaussian, Right: Ring with merry property vorticity m = 1.

Simulations on 2D CCQGLE Initial Conditions Parameters

System's Parameters

- Initial parameters
- Monitor energy $Q(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |A(x, y; t)|^2 dx dy = \sum_{i=1}^{n} \sum_{j=1}^{n} |A_{ij}|^2 \Delta x \Delta y$

2D solitons	ϵ	<i>b</i> 1	C1	b ₃	<i>C</i> 3	b_5	<i>C</i> 5
Stationary	-0.045	0.04	0.5	-0.21	1	0.03	-0.08
Vortex (spinning)	-0.1	0.1	0.5	-0.88	1	0.04	-0.02
Pulsating	-0.045	0.04	0.5	-0.37	1	0.05	-0.08
Exploding/Erupting	-0.1	0.125	0.5	-1	1	0.1	-0.6
Creeping	-0.1	0.101	0.5	-1.3	1	0.3	-0.101

Table: Initial sets of parameters for 2D solitons from which we start simulations [1]

Stationary Solitons

 circular Gaussian IC and stays radially symmetric, stable and uninteresting. A₀ = 2.5, and σ_x = σ_y = 1

= 200

2D Solitons

Ring Vortex (stable) Solitons

• <u>Circular</u> ring with rotating phase IC but different parameters, stable, it is spinning around its center. $A_0 = 2.5$, and $\sigma_x = \sigma_y = 1$

Left: Contour plot of $|A|^2$. Bottom Right: Phase plot of θ at t = 20s. BottomBry Right:

2D Solitons

Ring Vortex (unstable) Solitons

- <u>Circular Vortex</u> it is spinning so much that breaks its symmetry
- changes into several bell-shaped solitons via multiple bifurcations, $A_0 = 3, \sigma_x = 0.15, \sigma_v = 0.15$

Figure: Left: 10 bell-shaped solitons due to defocusing. Right has a renot spinning

Mancas, ERAU 2012

2D Solitons

Ring Vortex (stable) Solitons

• Elliptic stable, it is spinning around its center, and breaks symmetry but remains stable, $A_0 = 2.5$, $\sigma_x = 0.15$, $\sigma_y = 0.85$

2D Solitons

= 200

2D Solitons

Pulsating Solitons (change stability)

- Gaussian IC, $A_0 = 5$, slightly elliptical, $\sigma_x = 0.8333$ and $\sigma_y = 0.9091$
- Pulsating similar to stationary initially but requires longer time to capture pulsations

Figure: Left: Energy shows transitions. Right: No pulsations at t = 200s

2D Solitons

Pulsating Phase at t = 480s, t = 490s

2D Solitons

Pulsating Phase at t = 500s, t = 510s

2D Solitons

Parameters for Exploding/Erupting

- Gaussian IC, $A_0 = 3.0$, and circular $\sigma_x = \sigma_y = 0.3$
- computed over 64 simulations within a 5 dimensional space by varying parameters one by one and looked for right Q(t)

	Parameters for ZEUS Simulations(Exploding c1=0.5 and c3=1)									
Parameters	2°c1	c5	epsilon	-b3	b1	-b5	Job			
energy1	1.00000	-0.60000	-0.10000	1.00000	0.12500	-0.10000	test rur			
energy2	1.00000	-0.50000	-0.08000	1.40000	0.10000	-0.12500	2224			
energy3	1.00000	-0.50000	-0.10000	1.00000	0.12500	-0.10000	2230			
energy4	1.00000	-0.60000	-0.15000	1.00000	0.12500	-0.10000	2227			
energy5	1.00000	-0.40000	-0.10000	1.00000	0.12500	-0.10000	2237			
energy6	1.00000	-0.60000	-0.20000	1.00000	0.12500	-0.10000	2238			
energy7	1.00000	-0.60000	-0.20000	1.20000	0.12500	-0.10000	2261			
energy8	1.00000	-0.60000	-0.20000	1.00000	0.13000	-0.10000	2262			
energy9	1.00000	-0.60000	-0.20000	1.00000	0.13500	-0.10000	2349			
energy10	1.00000	-0.60000	-0.20000	0.80000	0.13000	-0.10000	2350			
energy11	1.00000	-0.50000	-0.20000	0.80000	0.13500	-0.10000	2358			
energy12	1.00000	-0.50000	-0.20000	0.80000	0.13500	-0.08000	2363			
energy13	1.00000	-0.50000	-0.20000	0.80000	0.13000	-0.10000	2360			
energy14	1.00000	-0.50000	-0.20000	0.60000	0.13500	-0.10000	2361			
energy15	1.00000	-0.50000	-0.15000	0.80000	0.13500	-0.10000	2362			
energy16	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.10000	2371			
energy17	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.09000	2372			
energy18	1.00000	-0.50000	-0.20000	0.90000	0.13000	-0.10000	2373			
energy19	1.00000	-0.50000	-0.20000	0.85000	0.13500	-0.10000	2374			
energy20	1,00000	-0.50000	-0.15000	0.90000	0.13500	-0.10000	2375			
energy21	1,00000	-0.50000	-0.20000	0.90000	0.13500	-0.10000	2399			
energy22	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.11000	2408			
energy23	1.00000	-0.50000	-0.20000	0.90000	0.14000	-0.10000	2409			
energy24	1.00000	-0.50000	-0.15000	0.90000	0.13500	-0.10000	2412			
energy25	1.00000	-0.50000	-0.15000	0.90000	0.14000	-0.10000	2413			
energy26	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.10000	2463			
energy27	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.09500	2464			
energy28	1.00000	-0.50000	-0.20000	0.90000	0.13000	-0.10000	2465			
energy29	1.00000	-0.50000	-0.20000	0.87500	0.13500	-0.10000	2466			
energy30	1.00000	-0.50000	-0.25000	0.90000	0.13500	-0.10000	2467			
energy31	1.00000	-0.40000	-0.20000	0.90000	0.13500	-0.09500	2490			
energy32	1.00000	-0.50000	-0.20000	0.90000	0.13500	-0.09000	2491			
energy33	1.00000	-0.50000	-0.20000	0.90000	0.14000	-0.09500	2492			
energy34	1,00000	-0.50000	-0.20000	0.85000	0.13500	-0.09500	2493			
energy35	1,00000	-0.50000	-0.30000	0.90000	0.13500	-0.09500	2494			
energy36	1.00000	-0.50000	-0.30000	0.90000	0.13500	-0.10500	2505			
energy37	1.00000	-0.50000	-0.30000	0.90000	0.13500	-0.09000	2506			
00	4 00000									

Mancas, ERAU 2012

2D Solitons

2D Solitons

Energy for Exploding/Erupting

- Gaussian IC, $A_0 = 3.0$, and circular $\sigma_x = \sigma_y = 0.3$
- Exploding: look for high bursts of energy

Figure: Energy is periodic with high bursts almost every 12s _____

・ロト (周) (E) (E) (E) (E)

2D Solitons

Exploding/Erupting

• Initial soliton is smooth, then circular waves appear and grow.

Figure: Evolution for the exploding t = 90s, t = 91s

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

2D Solitons

Exploding/Erupting

 Envelopes begin to degenerate, going from a radially Gaussian shape to regions of its slopes that cave in

2D Solitons

Exploding/Erupting

 Then, soliton explodes intermittently, resulting in significant bursts of power above, but it recovers the initial shape after the explosion

Figure: Evolution for the exploding t = 94s; t = 95s + 4s + 31s + 6

Numerical Methods Numerical Simulations/Results Future Work

2D Solitons

Exploding/Erupting

b)

Creeping

- Gaussian IC, $A_0 = 3.0$, and circular $\sigma_x = \sigma_y = 0.25$
- Creeping Soliton for 0-100 s
- Creeping Soliton for 100-200 s It changes its shape and shifts a finite distance periodically while remains confined to domain

2D Solitons

Energy for Creeping

Figure: Energy for creeping soliton

3D CCQGLE

3D Solitons

- Vary parameters for all classes of solitons
- Increase vorticity m > 1
- Study the stability regimes, transitions to instability, breaking, emerging a new class or non-existing (dissipating)
- Develop 3D numerical schemes, light bullets
- Soliton-soliton interaction

Acknowledgment

 Computations were performed on a Linux cluster (256 Intel Xeon 3.2GHz 1024 KB cache 4GB with Myrinet MX, GNU Linux) at ERAU

Figure: ZEUS cluster at ERAU

Work was partially supported by Office of Sponsored EMBRY-PIDDLE Research, ERAU

J.M. Soto-Crespo, N. Akhmediev, A. Ankiewicz Pulsating, creeping, and erupting solitons in dissipative systems JPhys. Rev. Lett., 85:2937, 2000.

J.M. Soto-Crespo, N. Akhmediev, N. Devine, Mejia-Cortis Transformations of continuously self-focusing and continuously self-defocusing dissipative solitons Optics Express, 16:15388, 2008.

