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Complex Cubic-Quintic Ginzburg-Landau Equation
(CCQGLE)

CCQGLE

∂tA = εA + (b1 + ic1)∇2
⊥A− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A

Canonical equation governing the weakly nonlinear behavior of
dissipative systems

∇2
⊥−transverse Laplacian for radially symmetric beams,

A(x , y ; t)−envelope field, t−cavity number

ε−linear loss/gain, b1−angular spectral filtering, c1 = 0.5−
diffraction coefficient, b3−nonlinear gain/loss, c3 = 1−nonlinear
dispersion, b5−saturation of the nonlinear gain/loss,
c5−saturation of the nonlinear refractive index

Akhmediev et. al. [1] new classes: pulsating, creeping, snaking,
chaotical

Mancas, ERAU 2012 2D Solitons



Introduction
Numerical Methods

Numerical Simulations/Results
Future Work

Acknowledgment

CCQGLE
Classes of Solitons Solutions
No Hopf Bifurcations in Hamiltonian Systems

Previous Numerical Simulations on 1D CCQGLE
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Figure: Pulsating, Snaking, Creeping, Chaotical
Mancas, ERAU 2012 2D Solitons



Introduction
Numerical Methods

Numerical Simulations/Results
Future Work

Acknowledgment

CCQGLE
Classes of Solitons Solutions
No Hopf Bifurcations in Hamiltonian Systems

Hamiltonian Systems→ No Hopf Bifurcations

Five classes of solutions that are not stationary in time

Don’t exist as stable structures in Hamiltonian systems

Envelopes exhibit complicated temporal dynamics and are
unique to dissipative systems

Dissipation allows the occurrence of Hopf and it leads to the
various classes of pulsating solitons in CCQGLE
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Simulations on 2D CCQGLE
Initial Conditions
Parameters

2D Fourier Spectral Method

Fourier
F(u)(kx , ky ) = û(kx , ky ) = 1

2π

∫∞
−∞

∫∞
−∞ e−i(kx x+ky y)u(x , y) dxdy

inverse Fourier
F−1(û)(x , y) = u(x , y) = 1

2π

∫∞
−∞

∫∞
−∞ ei(kx x+ky y)û(kx , ky ) dkxdky

PDE⇒ ODE
Ât = α(kx , ky )Â + β |̂A|2A + γ |̂A|4A

α(kx , ky ) = ε− (b1 + ic1)(k2
x + k2

y ), β = −(b3 − ic3),
γ = −(b5 − ic5)

Mancas, ERAU 2012 2D Solitons



Introduction
Numerical Methods

Numerical Simulations/Results
Future Work

Acknowledgment

Simulations on 2D CCQGLE
Initial Conditions
Parameters

Spatial Discretization (Discrete Fourier Transform)

Rectangular Mesh Ω = [−L/2,L/2]× [−L/2,L/2] into n × n
uniformly spaced grid points Xij = (xi , yj ) with ∆x = ∆y = L/n,
and A(Xij ) = Aij

2DFT
Âkx ky = ∆x∆y

∑n
i=1
∑n

j=1 e−i(kx xi +ky yj )Aij , kx , ky = − n
2 + 1, · · · , n

2

inverse 2DFT
Aij = 1

(2π)2

∑n/2
kx =−n/2+1

∑n/2
ky =−n/2+1 ei(kx xi +ky yj )Âkx ky , i , j =

1,2, · · · ,n
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Temporal Discretization

Explicit scheme for the nonlinear part, and exact solution for the
linear part Â(t) = ̂A(x , y ; 0)eα(kx ,ky )t

Initializing Ân = Â(tn)⇒

N3 = F
(∣∣∣F−1(Ân)

∣∣∣2 F−1(Ân)

)
, N5 = F

(∣∣∣F−1(Ân)
∣∣∣4 F−1(Ân)

)
4 step AB, or 4th order RK

Ân+1 =
Âneα(kx ,ky )t + ∆t

24

[
55f (Ân)− 59f (Ân−1) + 37f (Ân−2)− 9f (Ân−3)

]
f (Â) = βN1 + γN2
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Simulations on 2D CCQGLE
Initial Conditions
Parameters

IC

Gaussian A(x , y ; 0) = A0e−r2

ring shape with rotating phase A(x , y ; 0) = A0rme−r2
eimθ

m− degree of vorticity, A0− real amplitude, θ = tan−1 (σy y
σx x

)
widths either circular or elliptic are controlled by
r =

√
(σxx)2 + (σy y)2

Figure: Initial shapes of solitons. Left: Gaussian, Right: Ring with
vorticity m = 1.
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Initial Conditions
Parameters

System’s Parameters

Initial parameters

Monitor energy
Q(t) =

∫∞
−∞

∫∞
−∞ |A(x , y ; t)|2 dxdy =

∑n
i=1
∑n

j=1 |Aij |2∆x∆y

2D solitons ε b1 c1 b3 c3 b5 c5

Stationary -0.045 0.04 0.5 -0.21 1 0.03 -0.08
Vortex (spinning) -0.1 0.1 0.5 -0.88 1 0.04 -0.02

Pulsating -0.045 0.04 0.5 -0.37 1 0.05 -0.08
Exploding/Erupting -0.1 0.125 0.5 -1 1 0.1 -0.6

Creeping -0.1 0.101 0.5 -1.3 1 0.3 -0.101

Table: Initial sets of parameters for 2D solitons from which we start
simulations [1]
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2D Solitons

Stationary Solitons

circular Gaussian IC and stays radially symmetric, stable and
uninteresting. A0 = 2.5, and σx = σy = 1

Figure: Energy is concentrated in the center of the domain
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2D Solitons

Ring Vortex (stable) Solitons

Circular ring with rotating phase IC but different parameters, stable, it is
spinning around its center. A0 = 2.5, and σx = σy = 1

Figure: Top Left: Energy. Top Right: Ring vortex at t = 20s. Bottom
Left: Contour plot of |A|2. Bottom Right: Phase plot of θ at t = 20s
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Ring Vortex (unstable) Solitons

Circular Vortex it is spinning so much that breaks its symmetry
changes into several bell-shaped solitons via multiple bifurcations,
A0 = 3, σx = 0.15, σy = 0.15

Figure: Left: 10 bell-shaped solitons due to defocusing. Right: phases
are not spinning
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Ring Vortex (stable) Solitons

Elliptic stable, it is spinning around its center, and breaks symmetry but
remains stable, A0 = 2.5, σx = 0.15, σy = 0.85

Figure: Two peaks appear on top
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Pulsating Solitons (change stability)

Gaussian IC, A0 = 5, slightly elliptical, σx = 0.8333 and σy = 0.9091
Pulsating similar to stationary initially but requires longer time to capture
pulsations

Figure: Left: Energy shows transitions. Right: No pulsations at t = 200s
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2D Solitons

Pulsating Phase at t = 480s, t = 490s
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2D Solitons

Pulsating Phase at t = 500s, t = 510s
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Parameters for Exploding/Erupting

Gaussian IC, A0 = 3.0, and circular σx = σy = 0.3
computed over 64 simulations within a 5 dimensional space by varying
parameters one by one and looked for right Q(t)
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Energy for Exploding/Erupting

Gaussian IC, A0 = 3.0, and circular σx = σy = 0.3
Exploding: look for high bursts of energy

Figure: Energy is periodic with high bursts almost every 12s
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Exploding/Erupting

Initial soliton is smooth, then circular waves appear and grow.

Figure: Evolution for the exploding t = 90s, t = 91s
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2D Solitons

Exploding/Erupting

Envelopes begin to degenerate, going from a radially Gaussian shape
to regions of its slopes that cave in

Figure: Evolution for the exploding t = 92s, t = 93s
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Exploding/Erupting

Then, soliton explodes intermittently, resulting in significant bursts of
power above, but it recovers the initial shape after the explosion

Figure: Evolution for the exploding t = 94s, t = 95s
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Exploding/Erupting
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Figure: Evolution for the exploding soliton
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2D Solitons

Creeping

Gaussian IC, A0 = 3.0, and circular σx = σy = 0.25
Creeping Soliton for 0-100 s
Creeping Soliton for 100-200 s It changes its shape and shifts a finite
distance periodically while remains confined to domain

Figure: Creeping soliton
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Energy for Creeping

Figure: Energy for creeping soliton
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3D CCQGLE

3D Solitons

Vary parameters for all classes of solitons
Increase vorticity m > 1
Study the stability regimes, transitions to instability,
breaking, emerging a new class or non-existing
(dissipating)
Develop 3D numerical schemes, light bullets
Soliton-soliton interaction
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