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Moving Frames

Classical contributions:
M. Bartels (∼1800), J. Serret, J. Frénet, G. Darboux,

É. Cotton, Élie Cartan

Modern developments: (1970’s)

S.S. Chern, M. Green, P. Griffiths, G. Jensen, . . .

The equivariant approach: (1997 – )
PJO, M. Fels, G. Maŕı–Beffa, I. Kogan, J. Cheh,

J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,
E. Hubert, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue,
A. Nikitin, J. Patera, F. Valiquette, R. Thompson, . . .



“I did not quite understand how he [Cartan] does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598–601



Applications of Moving Frames

• Differential geometry

• Equivalence

• Symmetry

• Differential invariants

• Rigidity

• Joint invariants and semi-differential invariants

• Invariant differential forms and tensors

• Identities and syzygies

• Classical invariant theory



• Computer vision — object recognition & symmetry
detection

• Invariant numerical methods

• Invariant variational problems

• Invariant submanifold flows

• Poisson geometry & solitons

• Killing tensors in relativity

• Invariants of Lie algebras in quantum mechanics

• Lie pseudo-groups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

• finite-dimensional Lie group

• infinite-dimensional Lie pseudo-group



Equivalence:
Determine when two p-dimensional submanifolds

N and N ⊂ M

are congruent :

N = g · N for g ∈ G

Symmetry:
Find all symmetries,

i.e., self-equivalences or self-congruences :

N = g · N



Classical Geometry — F. Klein

• Euclidean group: G =






SE(m) = SO(m) ! R
m

E(m) = O(m) ! R
m

z $−→ A · z + b A ∈ SO(m) or O(m), b ∈ R
m, z ∈ R

m

⇒ isometries: rotations, translations , (reflections)

• Equi-affine group: G = SA(m) = SL(m) ! Rm

A ∈ SL(m) — volume-preserving

• Affine group: G = A(m) = GL(m) ! Rm

A ∈ GL(m)

• Projective group: G = PSL(m + 1)
acting on Rm ⊂ RPm

=⇒ Applications in computer vision



Tennis, Anyone?



Classical Invariant Theory

Binary form:

Q(x) =
n∑

k=0

(
n

k

)

ak xk

Equivalence of polynomials (binary forms):

Q(x) = (γx + δ)n Q

(
αx + β

γx + δ

)

g =

(
α β
γ δ

)

∈ GL(2)

• multiplier representation of GL(2)
• modular forms



Q(x) = (γx + δ)n Q

(
αx + β

γx + δ

)

Transformation group:

g : (x, u) $−→

(
αx + β

γx + δ
,

u

(γx + δ)n

)

Equivalence of functions ⇐⇒ equivalence of graphs

ΓQ = { (x, u) = (x, Q(x)) } ⊂ C
2



Moving Frames

Definition.

A moving frame is a G-equivariant map

ρ : M −→ G

Equivariance:

ρ(g·z) =

{
g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame

ρleft(z) = ρright(z)−1



The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: Gz = { g | g · z = z } for z ∈M

• free — the only group element g ∈ G which fixes one point
z ∈ M is the identity

=⇒ Gz = {e} for all z ∈M

• locally free — the orbits all have the same dimension as G
=⇒ Gz ⊂ G is discrete for all z ∈M

• regular — the orbits form a regular foliation
)≈ irrational flow on the torus

• effective — the only group element which fixes every point in
M is the identity: g · z = z for all z ∈M iff g = e:

G∗M =
\

z∈M
Gz = {e}



Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits
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Algebraic Construction

r = dim G ≤ m = dim M

Coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g−1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M



Choose r = dim G components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr

Solve for the group parameters g = (g1, . . . , gr)

=⇒ Implicit Function Theorem

The solution
g = ρ(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

g = ρ(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants

I1(z) = wr+1(ρ(z), z) . . . Im−r(z) = wm(ρ(z), z)

=⇒ These are the coordinates of the canonical form k ∈ K.



Completeness of Invariants

Theorem. Every invariant I(z) can
be (locally) uniquely written as a
function of the fundamental invariants:

I(z) = H(I1(z), . . . , Im−r(z))



Invariantization

Definition. The invariantization of a function
F : M → R with respect to a right moving frame
g = ρ(z) is the the invariant function I = ι(F )
defined by

I(z) = F (ρ(z) · z).

ι(z1) = c1, . . . ι(zr) = cr, ι(zr+1) = I1(z), . . . ι(zm) = Im−r(z).

cross-section variables fundamental invariants
“phantom invariants”

ι [ F (z1, . . . , zm) ] = F (c1, . . . , cr, I1(z), . . . , Im−r(z))



Invariantization amounts to restricting F to the cross-
section

I |K = F |K

and then requiring that I = ι(F ) be constant
along the orbits.

In particular, if I(z) is an invariant, then ι(I) = I.

Invariantization defines a canonical projection

ι : functions $−→ invariants



Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r = dim G.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

• An effective action can usually be made free by:



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·×M −→ M × · · ·×M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations
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Euclidean Plane Curves
Special Euclidean group: G = SE(2) = SO(2) ! R2

acts on M = R2 via rigid motions: w = R z + b

To obtain the classical (left) moving frame we invert
the group transformations:

y = cosφ (x− a) + sinφ (u− b)

v = − sinφ (x− a) + cosφ (u− b)




 w = R−1(z − b)

Assume for simplicity the curve is (locally) a graph:

C = {u = f(x)}

=⇒ extensions to parametrized curves are straightforward



Prolong the action to Jn via implicit differentiation:

y = cosφ (x− a) + sinφ (u− b)

v = − sinφ (x− a) + cosφ (u− b)

vy =
− sinφ + ux cosφ

cosφ + ux sinφ

vyy =
uxx

(cosφ + ux sinφ )3

vyyy =
(cosφ + ux sinφ )uxxx − 3u2

xx sinφ

(cosφ + ux sinφ )5

...



Prolong the action to Jn via implicit differentiation:
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v = − sinφ (x− a) + cosφ (u− b)

vy =
− sinφ + ux cosφ

cosφ + ux sinφ
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uxx
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xx sinφ

(cosφ + ux sinφ )5

...



Normalization: r = dim G = 3

y = cosφ (x− a) + sinφ (u− b) = 0

v = − sinφ (x− a) + cosφ (u− b) = 0

vy =
− sinφ + ux cosφ

cosφ + ux sinφ
= 0

vyy =
uxx

(cosφ + ux sinφ )3

vyyy =
(cosφ + ux sinφ )uxxx − 3u2

xx sinφ

(cosφ + ux sinφ )5

...



Solve for the group parameters:

y = cosφ (x− a) + sinφ (u− b) = 0

v = − sinφ (x− a) + cosφ (u− b) = 0

vy =
− sinφ + ux cosφ

cosφ + ux sinφ
= 0

=⇒ Left moving frame ρ : J1 −→ SE(2)

a = x b = u φ = tan−1 ux



a = x b = u φ = tan−1 ux

Differential invariants

vyy =
uxx

(cosφ + ux sinφ )3
$−→ κ =

uxx

(1 + u2
x)3/2

vyyy = · · · $−→
dκ

ds
=

(1 + u2
x)uxxx − 3uxu2

xx

(1 + u2
x)3

vyyyy = · · · $−→
d2κ

ds2
− 3κ3 = · · ·

=⇒ recurrence formulae

Contact invariant one-form — arc length

dy = (cosφ+ ux sinφ) dx $−→ ds =
√

1 + u2
x dx



Dual invariant differential operator
— arc length derivative

d

dy
=

1

cosφ+ ux sinφ

d

dx
$−→

d

ds
=

1
√

1 + u2
x

d

dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to
arc length:

κ,
dκ

ds
,

d2κ

ds2
, · · ·



The Classical Picture:

z

t

n

Moving frame ρ : (x, u, ux) $−→ (R, a) ∈ SE(2)

R =
1

√
1 + u2

x

(
1 −ux

ux 1

)

= ( t, n ) a =

(
x
u

)



Frenet frame

t =
dx

ds
=

(
xs

ys

)

, n = t⊥ =

(
− ys

xs

)

.

Frenet equations = Pulled-back Maurer–Cartan forms:

dx

ds
= t,

dt

ds
= κn,

dn

ds
= −κ t.



Equi-affine Curves G = SA(2)

z $−→ A z + b A ∈ SL(2), b ∈ R
2

Invert for left moving frame:

y = δ (x− a)− β (u− b)

v = − γ (x− a) + α (u− b)




 w = A−1(z − b)

α δ − β γ = 1

Prolong to J3 via implicit differentiation

dy = (δ − β ux) dx Dy =
1

δ − β ux

Dx



Prolongation:

y = δ (x− a)− β (u− b)

v = − γ (x− a) + α (u− b)

vy = −
γ − α ux

δ − β ux

vyy = −
uxx

(δ − β ux)3

vyyy = −
(δ − β ux) uxxx + 3β u2

xx

(δ − β ux)5

vyyyy = −
uxxxx(δ − β ux)2 + 10β (δ − β ux)uxx uxxx + 15β2 u3

xx

(δ − β ux)7

vyyyyy = . . .



Normalization: r = dim G = 5

y = δ (x− a)− β (u− b) = 0

v = − γ (x− a) + α (u− b) = 0

vy = −
γ − α ux

δ − β ux

= 0

vyy = −
uxx

(δ − β ux)3
= 1

vyyy = −
(δ − β ux) uxxx + 3β u2

xx

(δ − β ux)5
= 0

vyyyy = −
uxxxx(δ − β ux)2 + 10β (δ − β ux)uxx uxxx + 15β2 u3

xx

(δ − β ux)7

vyyyyy = . . .



Equi-affine Moving Frame

ρ : (x, u, ux, uxx, uxxx) $−→ (A,b) ∈ SA(2)

A =

(
α β
γ δ

)

=

(
3

√
uxx − 1

3 u−5/3
xx uxxx

ux
3

√
uxx u−1/3

xx − 1
3 u−5/3

xx uxxx

)

b =

(
a
b

)

=

(
x
u

)

Nondegeneracy condition: uxx )= 0.



Totally Singular Submanifolds

Definition. A p-dimensional submanifold N ⊂ M is
totally singular if G(n) does not act freely on jnN for any n ≥ 0.

Theorem. N is totally singular if and only if its symme-
try group GN = { g | g · N ⊂ N } has dimension > p, and so GN

does not act freely on N itself.

Thus, the totally singular submanifolds are the only ones
that do not admit a moving frame of any order.

In equi-affine geometry, only the straight lines ( uxx ≡ 0 )
are totally singular since they admit a three-dimensional equi-
affine symmetry group.



Equi-affine arc length

dy = (δ − β ux) dx $−→ ds = 3

√
uxx dx

Equi-affine curvature

vyyyy $−→ κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

vyyyyy $−→
dκ

ds

vyyyyyy $−→
d2κ

ds2
− 5κ2



The Classical Picture:

z

t

n

A =

(
3

√
uxx − 1

3 u−5/3
xx uxxx

ux
3

√
uxx u−1/3

xx − 1
3 u−5/3

xx uxxx

)

= ( t, n ) b =

(
x
u

)



Frenet frame

t =
dz

ds
, n =

d2z

ds2
.

Frenet equations = Pulled-back Maurer–Cartan forms:

dz

ds
= t,

dt

ds
= n,

dn

ds
= κ t.



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx
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However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.
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Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

♥ But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single
parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves

Definition. The signature curve S ⊂ R2 of a curve
C ⊂ R2 is parametrized by the two lowest order
differential invariants

S =

{ (

κ ,
dκ

ds

) }

⊂ R
2

Theorem. Two regular curves C and C are equiva-
lent:

C = g · C

if and only if their signature curves are identical:

S = S
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Symmetry and Signature

Theorem. The dimension of the symmetry group

GN = { g | g · N ⊂ N }

of a nonsingular submanifold N ⊂ M equals the
codimension of its signature:

dimGN = dim N − dimS

Corollary. For a nonsingular submanifold N ⊂M ,

0 ≤ dim GN ≤ dim N

=⇒ Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

• The submanifold N has a p-dimensional symmetry group

• The signature S degenerates to a point: dimS = 0

• The submanifold has all constant differential invariants

• N = H · {z0} is the orbit of a p-dimensional subgroup H ⊂ G

=⇒ Euclidean geometry: circles, lines, helices, spheres, cylinders, planes, . . .

=⇒ Equi-affine plane geometry: conic sections.

=⇒ Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

ιN = min
{

# Σ−1{w}
∣∣∣ w ∈ S

}

=⇒ Self–intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ιN .

=⇒ Approximate symmetries



The Index

Σ

−→

N S
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The Curve x = cos t + 1
5 cos2 t, y = 1
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Canine Left Ventricle Signature

Original Canine Heart
MRI Image

Boundary of Left Ventricle



Smoothed Ventricle Signature
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Evolution of Invariants and Signatures

Basic question: If the submanifold evolves according to
an invariant evolution equation, how do its differential
invariants & signatures evolve?

Theorem. Under the curve shortening flow Ct = −κn,
the signature curve κs = H(t,κ) evolves according to the
parabolic equation

∂H

∂t
= H2 Hκκ − κ

3Hκ + 4κ2H



 









   














 










   














   



























   














 









   














   
















Signature Metrics

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic repulsion

• Latent semantic analysis

• Histograms

• Gromov–Hausdorff & Gromov–Wasserstein



Signatures
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Occlusions

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



The Baffler Jigsaw Puzzle



The Baffler Solved

=⇒ Dan Hoff



Symmetry–Preserving Numerical Methods

• Invariant numerical approximations to differential
invariants.

• Invariantization of numerical integration methods.

=⇒ Structure-preserving algorithms



Numerical approximation to curvature

a
b

cA

B

C

Heron’s formula

κ̃(A, B,C) = 4
∆

abc
= 4

√
s(s− a)(s− b)(s− c)

abc

s =
a + b + c

2
— semi-perimeter



Invariantization of Numerical Schemes

=⇒ Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge–Kutta Method for ordi-
nary differential equations, or the Crank–Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to invari-
antize the numerical scheme, leading to an invariant numeri-
cal scheme that preserves the symmetry group. In challenging
regimes, the resulting invariantized numerical scheme can, with
an inspired choice of moving frame, perform significantly better
than its progenitor.



     







































Invariant Runge–Kutta schemes

uxx + xux − (x + 1)u = sinx, u(0) = ux(0) = 1.



     


































Comparison of symmetry reduction and invariantization for

uxx + xux − (x + 1)u = sinx, u(0) = ux(0) = 1.



Invariantization of Crank–Nicolson
for Burgers’ Equation

ut = εuxx + u ux

  












  












  












  












  












  














The Calculus of Variations

I[u ] =
∫

L(x, u(n)) dx — variational problem

L(x, u(n)) — Lagrangian

To construct the Euler-Lagrange equations: E(L) = 0

• Take the first variation:

δ(L dx) =
∑

α,J

∂L

∂uα
J

δuα
J dx

• Integrate by parts:

δ(Ldx) =
∑

α,J

∂L

∂uα
J

DJ(δuα) dx

≡
∑

α,J

(−D)J ∂L

∂uα
J

δuα dx =
q∑

α=1

Eα(L) δuα dx



Invariant Variational Problems

According to Lie, any G–invariant variational problem can
be written in terms of the differential invariants:

I[u ] =
∫

L(x, u(n)) dx =
∫

P ( . . . DKIα . . . ) ω

I1, . . . , I# — fundamental differential invariants

D1, . . . ,Dp — invariant differential operators

DKIα — differentiated invariants

ω = ω1 ∧ · · · ∧ ωp — invariant volume form



If the variational problem is G-invariant, so

I[u ] =
∫

L(x, u(n)) dx =
∫

P ( . . . DKIα . . . ) ω

then its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

E(L) 3 F ( . . . DKIα . . . ) = 0

Main Problem:

Construct F directly from P .

(P. Griffiths, I. Anderson )



Planar Euclidean group G = SE(2)

κ =
uxx

(1 + u2
x)3/2

— curvature (differential invariant)

ds =
√

1 + u2
x dx — arc length

D =
d

ds
=

1
√

1 + u2
x

d

dx
— arc length derivative

Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ,κs,κss, . . . ) ds

Euler-Lagrange equations

E(L) 3 F (κ,κs,κss, . . . ) = 0



Euclidean Curve Examples

Minimal curves (geodesics):

I[u ] =
∫

ds =
∫ √

1 + u2
x dx

E(L) = −κ = 0
=⇒ straight lines

The Elastica (Euler):

I[u ] =
∫

1
2 κ

2 ds =
∫ u2

xx dx

(1 + u2
x)5/2

E(L) = κss + 1
2 κ

3 = 0
=⇒ elliptic functions



General Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ,κs,κss, . . . ) ds

To construct the invariant Euler-Lagrange equations:

Take the first variation:

δ(P ds) =
∑

j

∂P

∂κj

δκj ds + P δ(ds)

Invariant variation of curvature:

δκ = Aκ(δu) Aκ = D2 + κ2

Invariant variation of arc length:

δ(ds) = B(δu) ds B = −κ

=⇒ moving frame recurrence formulae



Integrate by parts:

δ(P ds) ≡ [ E(P )A(δu)−H(P )B(δu) ] ds

≡ [A∗E(P )− B∗H(P ) ] δu ds = E(L) δu ds

Invariantized Euler–Lagrange expression

E(P ) =
∞∑

n=0

(−D)n ∂P

∂κn

D =
d

ds

Invariantized Hamiltonian

H(P ) =
∑

i>j

κi−j (−D)j ∂P

∂κi

− P

Euclidean–invariant Euler-Lagrange formula

E(L) = A∗E(P )− B∗H(P ) = (D2 + κ2) E(P ) + κH(P ) = 0.



The Elastica:

I[u ] =
∫

1
2 κ

2 ds P = 1
2 κ

2

E(P ) = κ H(P ) = −P = − 1
2 κ

2

E(L) = (D2 + κ2) κ+ κ (− 1
2 κ

2 ) = κss + 1
2 κ

3 = 0







Evolution of Invariants and Signatures

G — Lie group acting on R2

C(t) — parametrized family of plane curves

G–invariant curve flow:

dC

dt
= V = I t + J n

• I, J — differential invariants

• t — “unit tangent”

• n — “unit normal”

• The tangential component I t only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

Ct = J n

Examples — Euclidean–invariant curve flows

• Ct = n — geometric optics or grassfire flow;

• Ct = κn — curve shortening flow;

• Ct = κ1/3 n — equi-affine invariant curve shortening flow:
Ct = nequi−affine ;

• Ct = κs n — modified Korteweg–deVries flow;

• Ct = κss n — thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by

v = I t + J n

preserves arc length if and only if

B(J) + D I = 0.

D — invariant arc length derivative

B — invariant arc length variation

δ(ds) = B(δu) ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow Ct = J n,

∂κ

∂t
= Aκ(J),

∂κs

∂t
= Aκs

(J).

Invariant variations:

δκ = Aκ(δu), δκs = Aκs

(δu).

Aκ = A — invariant variation of curvature;

Aκs

= DA + κκs — invariant variation of κs.



Euclidean–invariant Curve Evolution

Normal flow: Ct = J n

∂κ

∂t
= Aκ(J) = (D2 + κ2) J,

∂κs

∂t
= Aκs

(J) = (D3 + κ2D + 3κκs)J.

Warning : For non-intrinsic flows, ∂t and ∂s do not commute!

Theorem. Under the curve shortening flow Ct = −κn,
the signature curve κs = H(t,κ) evolves according to the
parabolic equation

∂H

∂t
= H2 Hκκ − κ

3Hκ + 4κ2H



Smoothed Ventricle Signature
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Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

κt = R(J) where R = A− κsD
−1B (∗)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

=⇒ Hasimoto

=⇒ Langer, Singer, Perline

=⇒ Maŕı–Beffa, Sanders, Wang

=⇒ Qu, Chou, Anco, and many more ...



Euclidean plane curves

G = SE(2) = SO(2) ! R2

A = D2 + κ2 B = −κ

R = A− κsD
−1B = D2 + κ2 + κsD

−1 · κ

κt = R(κs) = κsss + 3
2 κ

2κs

=⇒ modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2) ! R2

A = D4 + 5
3 κD

2 + 5
3 κsD + 1

3 κss + 4
9 κ

2

B = 1
3 D

2 − 2
9 κ

R = A− κsD
−1B

= D4 + 5
3 κD

2 + 4
3 κsD + 1

3 κss + 4
9 κ

2 + 2
9 κsD

−1 · κ

κt = R(κs) = κ5s + 5
3 κκsss + 5

3 κsκss + 5
9 κ

2κs

=⇒ Sawada–Kotera equation

Recursion operator: R̂ = R · (D2 + 1
3 κ+ 1

3 κsD
−1)



Euclidean space curves

G = SE(3) = SO(3) ! R3

A =





D2
s + (κ2 − τ2)

2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2

−2τDs − τs

1

κ
D3

s −
κs

κ2
D2

s +
κ2 − τ2

κ
Ds +

κsτ
2 − 2κττs
κ2





B = (κ 0 )

R = A−

(
κs

τs

)

D−1B

(
κt

τt

)

= R

(
κs

τs

)

=⇒ vortex filament flow (Hasimoto)



The Recurrence Formula

For any function or differential form Ω:

d ι(Ω) = ι(dΩ) +
r∑

k=1

νk ∧ ι [vk(Ω)]

v1, . . . ,vr — basis for g — infinitesimal generators

ν1, . . . , νr — dual invariantized Maurer–Cartan forms

. . The νk are uniquely determined by the recurrence
formulae for the phantom differential invariants



d ι(Ω) = ι(dΩ) +
r∑

k=1

νk ∧ ι [vk(Ω)]

. . . All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting Ω range over
the basic functions and differential forms!

. . . Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



d ι(Ω) = ι(dΩ) +
r∑

k=1

νk ∧ ι [vk(Ω)]

. . . All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting Ω range over
the basic functions and differential forms!

. . . Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



The Basis Theorem

Theorem. The differential invariant algebra I is
generated by a finite number of differential invariants

I1, . . . , I#

and p = dimN invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants
and their invariant derivatives:

DJIκ = Dj1
Dj2

· · · Djn

Iκ.

=⇒ Lie, Tresse, Ovsiannikov, Kumpera

. Moving frames provides a constructive proof.



Minimal Generating Invariants

A set of differential invariants is a generating system if all
other differential invariants can be written in terms of them and
their invariant derivatives.

Euclidean curves C ⊂ R3:
• curvature κ and torsion τ

Equi–affine curves C ⊂ R3:
• affine curvature κ and torsion τ

Euclidean surfaces S ⊂ R3:
• mean curvature H

. Gauss curvature K = Φ(D(4)H).

Equi–affine surfaces S ⊂ R3:
• Pick invariant P .


