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Moving Frames

Classical contributions:
M. Bartels (~1800), J. Serret, J. Frénet, G. Darboux,

E. Cotton, Elie Cartan

Modern developments: (1970’s)
S.S. Chern, M. Green, P. Griffiths, G. Jensen, ...

The equivariant approach: (1997 — )

PJO, M. Fels, G. Mari—Beffa, I. Kogan, J. Cheh,
J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,
E. Hubert, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue,
A. Nikitin, J. Patera, F. Valiquette, R. Thompson, ...




“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598601



Applications of Moving Frames

Differential geometry

Equivalence

Symmetry

Differential invariants

Rigidity

Joint invariants and semi-differential invariants
Invariant differential forms and tensors
Identities and syzygies

Classical invariant theory



Computer vision — object recognition & symmetry
detection

Invariant numerical methods

Invariant variational problems

Invariant submanifold flows

Poisson geometry & solitons

Killing tensors in relativity

Invariants of Lie algebras in quantum mechanics

Lie pseudo-groups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry — F. Klein

Euclidean group:

o { SE(m) = SO(m) x R™
| E(m)=0@m)xR™

2 Az + € SO(m) or O(m), beR™, zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G =A(m) =GL(m) x R™
€ GL(m)
Projective group: G =PSL(m+1)

acting on R™ C RP™

—> Applications in computer vision



Tennis, Anyone?




Binary form:

Equivalence of polynomials (binary forms):

Oz) = (vxm”@(j“ﬁ) o= (j §) c QL)

e multiplier representation of GL(2)
e modular forms




@@w:Wx+®”@(“““ﬂ

YT + 0

Transformation group:

g: (z,u) (

ax + 0 u )
yr+6  (yx+o)”

Equivalence of functions <= equivalence of graphs

Lo ={(#u) = (z,Q)} C C*



Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(2) left moving frame
plg-z) = . . .
p(z)-g right moving frame

pleft(z) = pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness
Isotropy subgroup: G,={9lg-z=2} for ze M

e free — the only group element g € G which fixes one point
z € M 1is the identity
—> G, =A{e}forall ze M

° — the orbits all have the same dimension as G
—> G, C G is discrete for all z € M

e regular — the orbits form a regular foliation
% irrational flow on the torus

e cffective — the only group element which fixes every point in
M is the identity: ¢g-z =z for all z € M iff g = e:

G NN

zeM



Geometric Construction

Normalization = choice of cross-section to the group orbits
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Geometric Construction

Normalization = choice of cross-section to the group orbits




Algebraic Construction
—dimG < m=dimM

Coordinate cross-section

K= =@, 00 8. =C, }
left right
w(g,z) =g 1 2 w(g,2) =gz
=(g.,,...,0,) — group parameters

z=1(zy,...,%2,) — coordinates on M



Choose " = dim GG components to normalize:

wy(g,2)=¢; w,.(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
— Implicit Function Theorem

The solution
= p(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(z)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

L(2) = 0,1 (p(2),2) o Ly y(2) = wo(p(2), 2)

— These are the coordinates of the canonical form k € K.



Completeness of Invariants

Theorem. Every invariant I(z) can
be (locally) uniquely written as a
function of the fundamental invariants:

I(z)=H(I,(2), ... ,I__ (2))

YT m—r



Invariantization

Definition. The invariantization of a function
F': M — R with respect to a right moving frame
g = p(z) is the the invariant function I = ((F)
defined by

L(Zl) = Cpy - [’(Zr) — CT" L(ZT+1) — ]1<Z>7 s [’(Zm) — Im—r(’Z)'

cross-section variables fundamental invariants
“phantom invariants”

L F(zy,-.h2,)] = Fleyy..oye,1i(2),. .. L, (%))




Invariantization amounts to restricting F' to the cross-
section

I|[K=F|K

and then requiring that I = ¢(F) be constant
along the orbits.

In particular, if I(z) is an invariant, then «(I) = I.

Invariantization defines a canonical projection

. : functions +—— Invariants




Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m <r=dmG.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

e An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G™: J"(M,p) — J"(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx--+xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
Ggm . g o )

—> joint or semi-differential invariants
—> invariant numerical approximations



e Prolonging to derivatives (jet space)
G™ N (M,p) — I*(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G": Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
Ggm . g o )

— joint or semi-differential invariants
—> invariant numerical approximations



Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w= Rz +b

To obtain the classical (left) moving frame we invert
the group transformations:

y= coso(r—a)+sing(u—>b)

w=R 1 z—-1
v=—sin¢g(r —a)+cos¢(u—0>) } ( |

Assume for simplicity the curve is (locally) a graph:

C={u=f(z)}

—> extensions to parametrized curves are straightforward



Prolong the action to J" via implicit differentiation:

y= coso(r—a)+sing(u—>b)
v=—sin¢(r —a)+ coso(u—Db)
— —sin¢@ + u, cos @

Y cos ¢ + u, sin ¢

v — uCCZE

Y9 (cos¢ +u,sing)3

(cos¢ +u, sing)u,  — 3u_sing
v —
yuy (cos@p +u,sin¢)d




Prolong the action to J" via implicit differentiation:

vy

yyy

= coso(x—a)+sino(u—>0)
= —sino (x —a) +cos o (u — b)
_ —sin¢ + u, cos
~ cos¢ +u,sin
— uazx
(cosd +u,sin )3
_ (cos & +u,sino)u,  — 3u?_sin
(cosd +u, sin o )3



Normalization: r=dimdG =3

y= coso(x—a)+sino(u—>0)=0
v=—sind(x—a)+coso(u—0) =0
” _ —sin +uxfzos — 0
Y cos ¢ + u,, sin
v — uCUZL'
Y9 (cosd +u,sino )3
(cos & +u,sino)u,  — 3u?_sin

yvy (cosd +u, sin o )3



Solve for the group parameters:

y= coso(x—a)+sino(u—>0)=0
v=—sing(x—a)+coso(u—>0) =0
—sin ¢ + u,, CoS
v, = _ =0
Y coso +u,sin
—> Left moving frame p:JI — SE(2)

= =u = tan~ ' U,



=X = U = tan "~ u

Differential invariants

U , . — U
Y0y T (cos o +u, sino )3 T L+ u2)3
v — ... _ — =
yuy ds (1+wu2)3
B . d’k 3
Uyyyy — .. | N d82 — 3/{; — e e

— recurrence formulae

Contact invariant one-form — arc length

dy = (cos® +u,sino)dr +— ds=/1+u2 dz



Dual invariant differential operator
— arc length derivative

d 1 d d 1 d
dy  cos +u,sin¢ dx | ds M1+ u? dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to
arc length:

ds’ ds?’

K,



The Classical Picture: T
/I

Moving frame p: (r,u,u,) — (R,a) € SE(2)

sl ) ()



Frenet frame
d _
t:_X:<xs>, n:tiz< y)
ds Ys Lg

Frenet equations = Pulled-back Maurer—Cartan forms:
dx dt dn

— =1t — =KD — = — K t.
ds ’ ds ’ ds



Equi-affine Curves G = SA(2)

z— Az+Db A € SL(2), b € R?
Invert for left moving frame:

y=0(r—a)—[(u—D>)

w=A"1(z—b)
v=—7(x—a)+a(u—>)
ad—pBy=1
Prolong to J? via implicit differentiation
1
dy = (6 — fu,) dz D, = D



Prolongation:
y=0(r—a)—f(u—D>)
v=—7(x—a)+a(u—>)

v —au,
v, =—
Y _
0 —Bu,
u
v = — Tx

CRCEY PR

T )P

(%

yyyy (06— Bu,)

Vyyyyy — -



Normalization: r=dimG =5
y=o0(x—a)—J(u—0)=0
v=—7(x—a)+a(u—>0) =0

— /u/x -
Uy = — ", =0
U.T.T _
RO AL
Uyyy = — ( — Bu )5
uscscscsc( _ ux)2+10 ( T usc) Uy u:m:a:+15 2u:3m:
Vyyyy = (0= Su, )T
v o

Yyyyyy



Equi-affine Moving Frame

p: (z,u,u,,u, ., u,.) — (A b) e SA(2)
A= o Y Uy o %u;a?/e) Upra
— = u 3y u_1/3 - %u—5/3u .

Nondegeneracy condition: U, 7 0.



Totally Singular Submanifolds

Definition. A p-dimensional submanifold N C M is
totally singular if G™ does not act freely on j, N for any n > 0.

Theorem. N is totally singular if and only if its symme-
try group Gy ={g|g-N C N} has dimension > p, and so G
does not act freely on N itself.

Thus, the totally singular submanifolds are the only ones
that do not admit a moving frame of any order.

In equi-affine geometry, only the straight lines (u,, = 0 )
are totally singular since they admit a three-dimensional equi-
affine symmetry group.



Equi-affine arc length

dy — ( - ’sz) d;C — dS = 13/ uZUZU dx

Equi-affine curvature

yyyy

yyyyy

(%

Yyyyyy

2

K = 5 UprUpgoe — 3 Upra

B 8/3

guxx
dk
ds
d?k
— 5K

ds?



The Classical Picture:

3 1, -5/3
. ( ua;a: 3 umm ua;a:a:
B 3 -1/3 1, -5/3
um ua;a: ua;a: 3 ua;a: u

/ t
L) e




Frenet frame

t_dz n_dQZ
ds’ o ds?’

Frenet equations = Pulled-back Maurer—Cartan forms:

dz_ dt_ dn_

— =1 — = n — =k t.
ds ’ ds ’ ds



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.
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Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.

Constant invariants provide immediate information:
e.g. KR=2 <= K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k=1 Versus Kk =sinhx



However, a functional dependency or
the invariants ¢s intrinsic:

e.g. K.=Kr —1 <=

S



However, a functional dependency or among
the invariants ¢s intrinsic:

e.g. /<;S:/<;3—1 — Rgzﬁg—l

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.




However, a functional dependency or among
the invariants ¢s intrinsic:

e.g. /<;S:/<;3—1 — Rgzﬁg—l

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

(" But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both x and ., depend on a single
parameter, and so, locally, are subject to a syzygy:

ks = H(r) (%)

But then

fpp = S H(x) = H'(K) 5, = H'(s) H(s)

and similarly for s etc.

CEER
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy ().

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

Kk, in order to establish equivalence!



Signature Curves

Definition. The signature curve S C R? of a curve
C C R?is parametrized by the two lowest order
differential invariants

{4} e v




Signature Curves

Definition. The signature curve S C R? of a curve
C C R?is parametrized by the two lowest order
differential invariants

{4} e v

Theorem. Two regular curves C and C are equiva-
lent:

C=g-C
if and only if their signature curves are identical:



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={9lg-NCN}

of a nonsingular submanifold N C M equals the
codimension of its signature:

dimG,y = dim N —dim

Corollary. For a nonsingular submanifold N C M,

0 < dimGy < dimN

—> Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
e The submanifold N has a p-dimensional symmetry group
e The signature & degenerates to a point: dim & = 0

e The submanifold has all constant differential invariants

N = H-{z,} is the orbit of a p-dimensional subgroup H C G

—> FEuclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..

—> Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

— Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ¢ .

—> Approximate symmetries



The Index



The Curve x = cost + %COSQ t, y=sint+ 1—10811’1275

-6

The Original Curve  FEuclidean Signature Affine Signature



The Curve CU:COSt—I—%COSQt, y:%x+sint+1—1()sin2t

-6

The Original Curve  FEuclidean Signature Affine Signature



Canine Left Ventricle Signature

Original Canine Heart .
MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature




Evolution of Invariants and Signatures

Basic question: If the submanifold evolves according to
an invariant evolution equation, how do its differential
invariants & signatures evolve?

Theorem. Under the curve shortening flow C, = —kn,
the signature curve K, = H(t,k) evolves according to the
parabolic equation

OH
T H*H,_ —rx’H,_+4r*H



Nut 1 Nut 2
600

750

700
500
650
Closeness: 0.137673
450
400 500 400 500
Signature Curve Nut 1 Signature Curve Nut 2
0.01 0.01
0.005 \,\ 0.005
of | 0
~0.005 /1 —0.005
. -0.01 -0.01
-0.015

~0.015 -0.015
005 0 005 0.1 -005 0 005 0.1



Hook 1 Nut 1

750
1000
900 700

800 650
Closeness: 0.031217

700

200 400 500

Signature Curve Hook 1 Signature Curve Nut 1

0.01

0.005

—-0.005

-0.01

-0.015
-0.05




Signature Metrics

Hausdorft
Monge—Kantorovich transport
Electrostatic repulsion

Latent semantic analysis
Histograms

Gromov—Hausdorff & Gromov—Wasserstein



Signatures
s
; Classical Signature
/{S
Original curve m
K

N

Differential invariant signature



K
Signatures W

S
; Classical Signature
K:S
Original curve m
(YN

N

Differential invariant signature



Occlusions /\
\/\/
S

Classical Signature

kg

Original curve /
(O

Differential invariant signature



The BafHer Jigsaw Puzzle
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The BafHler Solved




Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

k(A,B,C) = 4% _ 4 \/S(s — a)isbc_ b)(s — ¢)

_a+t+b+ec
T2

’ —  semi-perimeter



Invariantization of Numerical Schemes

—> Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge—Kutta Method for ordi-
nary differential equations, or the Crank—Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant numeri-
cal scheme that preserves the symmetry group. In challenging
regimes, the resulting invariantized numerical scheme can, with
an inspired choice of moving frame, perform significantly better
than its progenitor.



Invariant Runge-Kutta schemes

Uy, +2xu, —(r+ 1)u =sinz,



- — - RK
| ——  IRK
RK on Reduced Eqn

Comparison of symmetry reduction and invariantization for

U, +xu, —(x+1)u=sinzx, u(0)=u,(0)=1.



Invariantization of Crank—Nicolson
for Burgers’ Equation

Uy = EUgy, +uum

1 1 1 1 1 1
05 05 05 05 05 05
0 0 0 0 0 0
-05 -05 -05 -05 -05 -05
-1 -1 -1 -1 -1 -1
15 0.5 175 05 17 0.5 1 % 05 171 05 17% 0.5




The Calculus of Variations

T[u] = /L(m,u(”))dx — variational problem

L(z,u™) — Lagrangian

To construct the Euler-Lagrange equations: E(L) =0

e Take the first variation:

oL

O(Ldx) = O;:] us dug dx
e Integrate by parts:
S(Ldx) =) oL D, (0u®) dx
a,J auJ
L
=Y (-D) ;0 — ou” dx—z E,_(

a,J 8uJ a=1

L) du® dx



Invariant Variational Problems

According to Lie, any G—invariant variational problem can
be written in terms of the differential invariants:

I[u]:/L(a:,u("))dx:/P(... DI .. ) w

I, ... If — fundamental differential invariants
D,,. ,Dp — invariant differential operators
Dy I — differentiated invariants

Ww=wA---AwP — invariant volume form



If the variational problem is G-invariant, so
Tlu] = /L(m,u(”))dx: /P( DRI ) w

then its Fuler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

K= q +“5920)3/2 curvature (differential invariant)
ds = /1 +u2dx — arc length

d 1 d
D=—= — arc length derivative

ds /1 + u2 dx

Euclidean—invariant variational problem

/Lazu dx—/Pli,/is,liss,.. ) ds

Fuler-Lagrange equations

E(L) ~ F(k,kyKygy ... ) =0

)78 TUss)



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/\/1+ug dx

E(L)=—x=0

—> straight lines

The Elastica (Euler):




General Euclidean—invariant variational problem

Tlu] = /L(aﬁ,u("))daz = /P(lﬁ KgyRggy -+ )ds

Y S

To construct the invariant Euler-Lagrange equations:

Take the first variation:

S(Pds) =Y a—P&ij ds + P d(ds)

7 Ok
Invariant variation of curvature:
ok = A, (du) A, =D?+kK?

Invariant variation of arc length:

d(ds) = B(du) ds B=—-k

—> moving frame recurrence formulae



Integrate by parts:
§(Pds)=[E(P)A(du) — H(P)B(du) | ds

= [A*E(P) — B*H(P)]éuds = E(L) Suds

Invariantized Euler—Lagrange expression

8P d
D= —
z:: (‘9/{ ds
Invariantized Hamiltonian
- OP
— .. (=D)Y — P
g:j fis (7P) Or;

Fuclidean—invariant Euler-Lagrange formula

E(L) = A*§(P) — B*H(P) = (D* + k?) £(P) + sk H(P)

= 0.



The Elastica:



The shape of a Mobius strip

E. L. STAROSTIN AND G. H. M. VAN DER HELIDEN®

Cesite bor Hosfinesar Dynamics, Degariment of Civil and Emviransentsl Enginesring, Usiversity College Londas, Londsn WE1E 5T, LK

*g-mail; g.heljdan@iucan ok

Fushsnng oning: 15 July 2007, ool 10 108RRmat1 229

The Mabius strip, obtzined by tuking a rectangular strip of
plastic or paper. twisting one end theough 180", and then
jorning the ends, is the canonicl exanmple of u one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since s first formulation in refs 1,2, Here we
wse the imvariant varigtional bicomplex formalism to derive
the first equilibrivm eguations for 2 wide developable strip
undergoing large deformations, theceby giving the frst non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Mobies steip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat trinngular regions, a
feature also faumiliar from fabric draping” and paper crumpling™,
This could give new insight nte enespy localization phenomena
in unstectchable sheets®, which might help to predict points
dmo{mmtg. It coubd also eid our understanding of the

1l mﬂp}rm:-a] prupertios of rana-
md mu'rn&mpk Miabius m—lp structures”

11 s Bxir o day that the Mobius strip 3 one of the few wons
of mathematics that have been absorbed into wider culture. It
b mrthematical besuty and inspired artists such as Escher™, In
engineering, pulley belts are often used in the form of Ml irips
tor wear "otk sdces equally. At a mocl: sorsller seabe, Miibius stzips
have recently been formed in ribbon-shaped Nhle; crystals under
certadn erowtl conditions invalvine a Bree temperature eradient™.

Figure 1 Phato of 2 paper Mabius strip of aspect ratin 2. Trg sinp adopts a
hermelersic shape netenshity of e rateral causes the surtacs 1o be
deveiopabie, Bs stright genaratoss A ciwn 2nd e colourng wirns acoondiog o
1z bending enargy cansty.
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Evolution of Invariants and Signatures

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =1t+Jn
dt

e [, J — differential invariants

e t — ‘“unit tangent”

e n — ‘“unit normal”

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e C,=n — geometric optics or grassfire flow;
o ,=kKn — curve shortening flow;
e C,=r'Y3n — equi-affine invariant curve shortening flow:

¢
¢,

C,=n

equi—affine »

modified Korteweg—deVries flow;

thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn

preserves arc length if and only if

B(J)+DI=0.
D — invariant arc length derivative
B — invariant arc length variation

d(ds) = B(ou) ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C, = Jn,

0K 0K

— = = = J).

Foalh, Taoaw)
Invariant variations:

ok = A_(0u), ok, = A, (0u).
A_= A — invariant variation of curvature;

A =DA+ kkK, — invariant variation of «,.
S



Euclidean—1invariant Curve Evolution

Normal flow: (), =Jn

Ok 29

o7 = AxlJ) = (D" + %) J,

a"{s 3 2

v = A, (J)=(D°+r*D+3kk,) J.

Warning: For non-intrinsic flows, 0, and 9, do not commute!

Theorem. Under the curve shortening flow C;, = —kn,
the signature curve k, = H(t, k) evolves according to the
parabolic equation

OH
e H*H_ —r’H_+4r*H



Smoothed Ventricle Signature




Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k,=R(J)  where R=A-rD'B (%)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

—

—
—
—

Hasimoto
Langer, Singer, Perline
Mari—Beffa, Sanders, Wang

Qu, Chou, Anco, and many more ...



Euclidean plane curves
G = SE(2) = SO(2) x R?

A = D? 4 k2 B=—-k

R:A—/{SD_IB:D2—|—/€2—|—KJSD_1'/€

_ 3 2
8) _Rsss+§/€ K

Kk, = R(k

—> modified Korteweg-deVries equation



Equi-affine plane curves
G = SA(2) = SL(2) x R?
A:D4+§/£D2+§/£SD+%/£SS+%H2
B = %DQ — %/@
R=A-rD'B
:D4—|—%I€D2—|—%RS’D—|—%I€SS—|—%R2—|—%RS'D_1-li

_ _ 5 5 5 .2
Ry = R(’%s) = Kgg + §/{’%sss + glis’%ss + 5/1 K

— Sawada—Kotera equation

—

Recursion operator: R=R-(D?+ %,1 4 %’%D_l)



D? 4 (k% — 77%)
A=
27’D2 3KT, — 2K,T KT,, — K T, + 25T
ko K2 s K2
—21D, — 71
ng B &D§+ P 2Ds 11872 — 2KTT,
K K2 K K2
B=(rk 0)

() (20
TS Tt Ts

—> vortex filament flow (Hasimoto)




The Recurrence Formula

For any function or differential form 2:

di(2) = 1(d2) + Zr: v AL [v, ()]

k=1
Vy,...,v,, — Dbasis for g — infinitesimal generators
vl . ..,v" — dual invariantized Maurer—Cartan forms

* % The v* are uniquely determined by the recurrence
formulae for the phantom differential invariants



r

die(Q) =u(dQ) + k¥1 VP A L[, ()]

* % %k All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting {2 range over
the basic functions and differential forms!



die(Q) =u(dQ) + ];?“:1 VP A L[, ()]

* % %k All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting {2 range over
the basic functions and differential forms!

% % % Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



The Basis Theorem

Theorem. The differential invariant algebra Z is
generated by a finite number of differential invariants

I, ... I,
and p = dim NV invariant differential operators
Dy ooo 12,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants
and their invariant derivatives:

D;I,=D,D, ---D, I.

—> Lie, Tresse, Qustannikov, Kumpera

* Moving frames provides a constructive proof.



Minimal GGenerating Invariants

A set of differential invariants is a generating system if all
other differential invariants can be written in terms of them and
their invariant derivatives.

Euclidean curves C' C R3:
e curvature x and torsion 7

Equi-affine curves C' C R3:
e affine curvature x and torsion 7

Euclidean surfaces S C R3:
e mean curvature H

*  Gauss curvature K = ®(DWH),

Equi-affine surfaces S C R3:
e Pick invariant P.



